CBMM Summer School 2018

Neuroscience Methods Tutorial

Diego Mendoza-Halliday

Postdoctoral affiliate, Desimone Lab McGovern Institute at MIT

Purpose of Tutorial

- Provide understanding of the principles underlying neural signals and some of the most used methods to record them, enabling basic comprehension of Neuroscience data and results.
- Develop a critical perspective of different Neuroscience methodological tools, their capabilities and limitations. – Which questions can/can't be answered with each technique?

Goals of Neuroscience

- 1. Understand the mechanisms by which the brain/nervous system carries out all functions (e.g. sensory processing, cognition, motor functions, etc.).
- 2. Understand what failures in those mechanisms lead to particular disorders of the brain.
- 3. Develop treatments for those disorders in order to restore function.

Psychophysics: the "black box" method

Psychophysics: the "black box" method

Interrogating the brain: neural signals

Signal: A fluctuating quantity in a medium whose variations represent information.

Examples of signal media:

Light, sound, electricity, magnetism, heat, material (e.g. chemical).

SIGNAL in neural function vs. SIGNAL in experimental acquisition e.g. Neuromagnetic and BOLD signals

Action potentials

Synaptic transmission

- Chemical signals:
 - Ca++ influx
 - Neurotransmitter release
- Electrical signals:
 - Postsynaptic currents Local field potentials

Local Field Potentials (LFP): perisynaptic currents

Nature Reviews | Neuroscience Buszaki et al., 2012

Neural signals summary

- Electrical signals:
 - Action potentials
 - Local field potentials
- Chemical signals:
 - Ca++ influx
 - Neurotransmitter release

Neural acquisition methods: Electrophysiology

- Acquisition of electrical signals of biological origin over time
- Various spatial scales:
 - Patch clamp
 - Intracellular electrode recordings
 - Extracellular electrode recordings
 - Electrocorticography (ECoG)
 - Electroencephalography (EEG)

Electrophysiology: Patch-clamp

- Glass pipette seals membrane patch by suction.
- Measures voltage changes in solution inside pipette (electrolyte)
- Used to study properties of a small patch of membrane, even individual ion channels!

Electrophysiology: Intracellular recordings

- Sharp glass pipette filled with electrolyte solution
- Pipette tip penetrates cell membrane of a single neuron
- Acquires voltage readings from intracellular space

Electrophysiology: Extracellular recordings

- Microelectrode made of metal (e.g. tungsten) coated with insulating material but with an exposed tip
- Acquires voltage readings in extracellular space
- Voltage signal has several components:
 - Noise
 - LFP
 - Single-unit spiking activity
 - Multi-unit spiking activity

Spike waveform analyses

- Excitatory neurons: broad-spiking
- Inhibitory interneurons: narrow-spiking

Plotting spiking data

2

PERISTIMULUS TIME HISTOGRAM (PSTH)

Types of microelectrodes

3D matrix electrode array

2D matrix electrode array

Local Field Potentials (LFP)

Local Field Potentials (LFP)

• Spectral analysis (Fourier transform)

Electrocorticogram (ECoG)

- Electrophysiological recordings from cortical surface
- Advantage: Human (patient) electrophysiological data
- Records field potentials (not so local anymore...)

Electroencephalogram (EEG)

- Electrophysiological recordings from scalp surface
- High temporal resolution but low spatial resolution

Electroencephalogram (EEG)

Electroencephalogram (EEG)

- Event-related potentials (ERP)
 - Measures positive and negative potentials (e.g. N180, P3)
 - Neural function signatures
 - Requires multiple-trial averaging
 - Potential amplitudes compared between conditions

Comparing electrophysiological methods

Depth (LFP) Grid (ECoG) Strip (ECoG) manne Strip (ECoG) F7 Scalp EEG 1 s

Buszaki et al., 2012

Neural signals summary

- Electrical signals:
 - Action potentials
 - Local field potentials
- Chemical signals:
 - Ca++ influx
 - Neurotransmitter release

Calcium imaging

Calcium imaging:

- Calcium-indicator dyes: Fluorescence dependent on Ca++ concentration
- Becomes optical signal

Smetters et al., 1999

Two-photon calcium imaging

Nikolenko et al., 2008

Katona et al., 2012

Indirect signals linked to neuronal activity

- Neuromagnetic signals
- Neurovascular coupling

Indirect signals linked to neuronal activity

Neuromagnetic signals

Indirect signals linked to neuronal activity

Neuromagnetic signals

Magnetoencephalography (MEG)

Superconducting sensors

Magnetoencephalography (MEG)

• Inverse problem of signal localization

Superconducting sensors

Magnetoencephalography (MEG)

Baldauf and Desimone, 2014

Indirect signals of neuronal activity: Neurovascular coupling

Whole brain vasculature

Macaque V1 microvasculature

Neurovascular coupling: Blood Oxygenation-Level Dependent (BOLD) signal

- Synaptic transmission activates a signaling cascade in neighboring astrocytes, which in turn signal vascular smooth muscle cells to cause vasodilation, resulting in a local increase in cerebral blood flow.
- Increased CBF causes an increase in blood oxygenation that overcompensates for the decrease due to neuronal activity.

Optical imaging (intrinsic signals)

Optical imaging (intrinsic signals)

- Functional maps across cortical surface
- Ocular dominance columns
- Orientation columns

Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) Univariate method

right hemisphere left hemisphere **fSTS** fSTS OFA OFA FFA FFA OFA OFA

Face-selective activation (faces > objects, *p*<0.0001)

Kanwisher et al., 1997

Functional Magnetic Resonance Imaging (fMRI) Multivariate method

Multivoxel Pattern Classification Analysis (MVPA)

Adam C. Riggall, and Bradley R. Postle J. Neurosci. 2012;32:12990-12998

Relationship between spikes, LFPs and BOLD

- Spikes, LFP power and BOLD usually correlate, but not always.

- BOLD correlates more with LFPs than with spikes.

- WARNING!

Spatial extent of SUA, MUA, LFPs and BOLD

Leavitt, Mendoza-Halliday & Martinez-Trujillo, 2017

Sejnowski et al., 2014

QUESTIONS?