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we study the primate visual system - current focus on object recognition




object recognition realized by
a stream of cortical areas

V1,V2, V3, V4

IT = inferotemporal cortex
(posterior, central and anterior)

“ventral stream”



containing neurons that
respond to specific images
(by emitting action potentials)

object recognition realized by
a set of cortical areas

V1,V2, V3, V4

IT = inferotemporal cortex
(posterior, central and anterior)

“ventral stream”



responses signal presence of
(represent) special features in
the world




special because too any
features in the world and many
fewer neurons

the visual system must be efficient
in allocating its neurons



Uncovering the visual “alphabet”

Leslie G. Ungerleider *, Andrew H. Bell
Vision Research 51 (2011) 782-799

“A!!

in English, 26 letters can act compositionally to
express almost any thought

“B”

a subset of neuronal representations may allow the
decoding of any visual scene

“C”




progress in defining a visual alphabet

—

Keiji Tanaka, 1996

Figure 3 Sixteen examples of the critical features of cells in TE. They are moderately complex.



Uncovering the visual “alphabet”

Leslie G. Ungerleider *, Andrew H. Bell
Vision Research 51 (2011) 782-799

?

how do we know
what any given neuron
f) represents about the world?

?




the canonical approach to visual selectivity

David Hubel and Torsten Wiesel
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the canonical approach to visual selectivity

David Hubel and Torsten Wiesel

—_—

I..

; ; . < introduced a tungsten
e e P A microelectrode into

' ' oLy | V8 primary visual cortex
(V1)

Electrical signal
from brain

Recording electrode ——»

Visual area
of brain

Stimulus

VA
'\ ) visual region to which the neuron responds (“receptive field”)



David Hubel Stephen Kuffler DISCHARGE PATTERNS AND FUNCTIONAL

ORGANIZATION OF MAMMALIAN RETINA*

STEPHEN W. KUFFLER
The Wilmer Institute, Johns Hopkins Hospital and University
Baltimore, Maryland
(1951)
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Enroth-Cugell and Robson, 1984



David Hubel Stephen Kuffler DISCHARGE PATTERNS AND FUNCTIONAL

ORGANIZATION OF MAMMALIAN RETINA*
STEPHEN W. KUFFLER

The Wilmer Institute, Johns Hopkins Hospital and University
Baltimore, Maryland
(1951)

simple light spots are effective stimuli
for retinal ganglion cells

http://braintour.harvard.edu

action potentials (“spikes”)

Fi1G. 4. Specific regions within receptive field. 0.2 mm. diameter light spot



modified
ophthalmoscope with
spots painted on glass
microscope slides

“in our very first
experiments, we used
| ) circular spots...because
Y 1)
BRAIN these had served Stephen
AN Kuffler so well”

VISUAL

PERCEPTION

DAVID H. HUBEL = TORSTEN N. WIESEL

Fi6. 1. Assembly for retinal studies from the unopened cat’s eye,
Cat in position (for details see text).




“early failures...were a matter of finding the right stimulus”

-Phbto,pourtesy of Margaret Livingstone

“We worked away, in shifts.

“Suddenly, as we inserted one of our glass slides
into the ophthalmoscope, the cell seemed to
come to life...

the cell was responding to the fine moving
shadow cast by the edge of the glass slide”



the neuron was selective for an
edge at a given orientation

Hubel and Wiesel (1959)



the neuron was selective for an
edge at a given orientation

I o Orientation selectivity:
% ———— V1 neurons respond to
I 4 lines/edges:
R
— thus they represent orientation
% S values present in the retinal scene

Hubel and Wiesel (1959)



A wonderful foundation for visual neuroscience:;

their scientific mission required exploration
(not enough known about the visual system)

they relied on previous successes (Kuffler’s spots)

they succeeded because of a little luck and “bullheaded
persistence” (Hubel, 2005)

They also highlighted an interesting challenge
to their successors:

as we explore the rest of the ventral stream,
how do we not miss the proverbial slide’s edge?



this problem grows as we move along the ventral stream

Neurons’ RF sizes
increases along the
ventral stream
(Desimone and Gross,
1979)
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neurons with larger

RFs can respond to
much more complex
stimuli —

A
BEmry:
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Hubel and Wiesel (1959)



in IT, neurons respond to pictures of monkey and human faces,
hands, places, artificial objects...

STIMULUS-SELECTIVE PROPERTIES OF INFERIOR TEMPORAL
NEURONS IN THE MACAQUE'

ROBERT DESIMONE,** THOMAS D. ALBRIGHT.$ CHARLES G. GROSS,f anpo CHARLES BRUCE$§
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Sec
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Orientation selectivity

also spatial frequency
wavelength/color

natural images

much more difficult to
parameterize!



thus we interpret neuronal tuning according to colloquial categories:

“places’

\

“faces”
ha

“fruits”




no theoretically rigorous way to

1) define what the complete set of category labels should be
(every lab does its own thing)

2) know how to assign any given image to a category

3) Neurons do not respect boundaries: face cells can respond to
fruits, place cells to bodies, ...

“a matter of finding the right stimulus”




using evolutionary search algorithms with IT neurons

Yamane, Carlson, Bowman, Wang and Connor (2008)

LINEAR G K4EIEIENEY
’ — nnn..-nn |n|t|al set of random 3-D shapes
--nn.n--.. (non-uniform rational basis splines, via OpenGL)

0 spikes s71

b

stimuli evolve under guidance of neuronal activity

: (using an evolutionary search algorithm)
nllﬂ!ﬂll
auoouDnoEn
QEENEEnG

SlAlaelrNSSS

preferred 3-D shapes as directed by the neuron



evolutionary algorithms with a larger feature space

analogy: a map of the observable universe




evolutionary algorithms with a larger feature space




evolutionary algorithms with a larger feature space:
generative adversarial networks

2MASS Redshift Survey (2MRS)




what are generative adversarial networks?



meanwhile in machine learning...

ImageNet Large Scale Visual Recognition Challenge

ImageNet Classification Error (Top 5)

25,0 26,0

2012: Krizhevsky, Sutskever and Hinton (Toronto):

AlexNet — a convolutional neural network

error rate

10,0
) . l I .
0,0 . .

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014 Human 2015 (ResNet) 2016
[GoogLeNet) [GoogleNet-vd)

Gustav von Zitzewitz



convolutional neural networks (“convnets”)

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output
outputs a vector
‘ (compact
representation of a
complex visual feature,

image as input

R A e.g. deer or cat
Input Image Feature maps Pooled Feature maps Pooled Dog(0.1) | present?)
Feature Maps Feature Maps L cat(0.4)
Deer(0.94)
Lion(0.2)

AlLabPage Data Source - Open Internet various sources Image Source - hilps://vinodsblog.com  via @vinod1975 W



convolutional neural networks (“convnets”)

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output
outputs a vector
‘ (compact
representation of a
complex visual feature,

image as input
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Input Image Feature maps Pooled Feature maps Pooled Dog(0.1) | present?)
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convolutional neural networks (“convnets”)

Convolution Pooling Convolution Pooling Fully Fully

Connected Connected

image as input

Output
outputs a vector
‘ (compact
representation of a
complex visual feature,

R A e.g. deer or cat
Input Image Feature maps Pooled Feature maps Pooled Dog(0.1) | present?)
Feature Maps Feature Maps L cat(o.4)
Deer(0.94)
Data Source - Open Internet various source-s Image Source - hitps:/ivinodsblog.com via @vinod1975 W 3 i danig)
h
generative adversarial networks (“GANSs”) 128

256 ——

vector as input

100 2 image as output

Stride 2 16

Project and reshape

CONV 2
CONV 3 64

CONV 4 =
Manish Chablani, towardsdatascience.com G(2)




GANSs learn to copy distributions: L
probability distribution

features
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What are they good for?




Uses being explored in the videogame, fashion, security
industries, creating data for training self-driving cars

pIX2pix

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. "High-Resolution Image Synthesis and Semantic Manipulation with
Conditional GANs", in CVPR, 2018.



BigGAN: Brock et al (2019), Google




can we link a neuron in a monkey’s brain to a GAN

and let it “build” its preferred complex image?




Will Xiao Peter Schade  Till Hartmann Gabriel Kreiman Margaret Livingstone
' ~—— - >
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Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, Jeff Clune. 2016

Input: 4096-element vector Output:

images
(256 x 256 x 3) trained to invert

representations in AlexNet
N layer fc6

Input data Convl Comv2 Convd Convd Convs
AN

Spatial pyramid pog Ig FC6 FCT FC8

—-* @5@

— 13 T334 1313 % 256
27% 27 % 256 H 4
i class number
/ %33 %96 5 J\\»’. scale 3_
27% 22T %3 4096 409




Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks
Nguyen et al. 2016

random
vectors
-
N
4
7/
4 non-
random
vectors

R et

running shoe water jug

pool table



we recorded from six monkeys
with chronically implanted arrays

Posterior/central inferotemporal cortex (one in primary visual cortex)

in my lab, now along the full ventral stream




To let the neuron search through the vector space, we used a genetic algorithm Will Xiao
(similar to those in the Connor lab)

Generative neural network

ﬂﬂ/ Images synthesized from codes

I

Initial codes




Neuronal Recording

ﬂﬂ/ Images synthesized from codes
L

Generative neural network

\fithess

o spikes per s

image
Neuron preference _wiixio




Generative neural network

U\
fitness

| ||i| E keep best . recombine ,L

F1 codes &mutate mage
I " E Neuron preference Wi xiao
Genetic algorithm




Generative neural network Neuronal Recording

11l

F1 codes

Wil Xiao




Behavioral task

Fixation point
Receptive field

150ms 100ms 150ms

100ms

synthetic images



Behavioral task

Fixation point neurons showed increases in firing rate during the evolution of new images
Receptive field

PIT single unit: mean firing rate per generation

A synthetic

150ms
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We replicated this effect in 6 animals, 46 experiments

animals
Ei
I u-
150 Ge
- Y1
change in response 100+ “ B3
to evolving J
synthetic images 50
(spikes/s) 0h
O multi-unit
-50 . . @ single-unit
50 0 50 100 150

change in response to fixed natural images

(spikes/s)

PIT single unit: mean firing rate per generation
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so what’s happening here?

A synthetic
580- reference

_\Cc). " ‘HN"“JL
260 Ve
D 40} ,

277 )

§20 d

e O

50 100 150 200
Generation

Initial generation: 30-40 Simoncelli and Portilla textures

next slide: one complete experiment,
mean synthetic image (top 5 images) per generation
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What can we say about these images?
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we showed >2500
images to same cell
Synthesized image

unique natural




Neurons encode multidimensional features

Synthesized image

O colored textures
O overall shape “gist”



Synthesized image

GAN trained to invert representations in AlexNet layer fc6

Input data Convl Conv2 Conv3 Conv4 ConvS  Spatial pyramid pooling FC6 FC7 FC8

i pool scale 1
= f ) ] 6 a ||
13x 13x 384 13x 13 x 384
13% 13 % 256: pool scale 2

27% 27 % 256

class number

55x 55 x 96 L_pool scale 3_J

227% 227 % 3 Lasss sssssssisasssssssansal 4096 4096




Synthesized image

evolved

GAN trained to invert representations in AlexNet layer fc6

Input data Convl Conv2 Conv3 Convd Convs Spatial pyramid pooling FC6 FC7 FC8
pool scale 1

(P& H- -

13x 13 % 384  13x 13 x 384 13% 12 % 256 pool scale 2

27x 27 % 256

class number

55x 55 % 96

_pool scale 3__
227% 227 % 3 4096 4096

100,000 images from ImageNet, a labeled-
image database



Input data Convl Conv2 Conv3 Conv4

13x 13 x 384 13x 13 x 384

27x 27 =% 256
55% 55 % 96

227x 227 %3

most similar images
according to AlexNet fc6

pool scale 1
(P& HH -
13x 13 x 256 pool scale 2

Convs Spatial pyramid pooling FC6 FCT FC8

class number

I__pool scale 3_
....................................... 4096 4036

because ImageNet pictures
are labeled, we can
quantify those words

R- Brabancon griffon
| proboscis monkey
faces-nogstsesy fOX squirrel  cpinanze

wire-haired fox terrier
spider monkey beagle

olden retrievertiti tOY terrier nipple

macaques-n02487547
nect:lo( l;lr'_laoce Windsor tje Japanese sp
hampery P English foxhound
ing- ball
bulletproof vestpataS pIng-pong ba
capuchin rock beauty
Blenheim spaniel

1N

0

Counts

N

0

100 200 300 400



we used the AlexNet interpretations to predict responses to novel images

A Synthetic image Nearest match Intermediate  Farthest match




we used the AlexNet interpretations to predict responses to novel images

A Synthetic image Nearest match Intermediate  Farthest match
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where did these representations come from?
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where did these representations come from?

~ Ge-7 (CIT)

Gu-21 (PIT)




animal care staff that visit
monkey Ge daily

Ge-7 (CIT)

Gu-21 (PIT)

evidence that early visual cortex abstracts shapes diagnostic of
the immediate environment!



some shapes are
undecipherable — this is

likely a feature, not a bug













comparing with the Tanaka Alphabet

Figure 3 Sixteen examples of the critical features of cells in TE. They are moderately complex.



Uncovering the visual “alphabet”

Leslie G. Ungerleider *, Andrew H. Bell
Vision Research 51 (2011) 782-799

The path ahead:

1) Identify a critical density of
representations

~ 2) Explain how these representations relate
to what monkeys care about (behavioral
tasks)

3) Are these representations
parameterized?




a review of the findings

We used generative networks and a genetic algorithm to
decode neurons’ representations in primate visual cortex

these resulting images are closer to the intrinsic optimal
representation than most natural images we can find

Images are not photorealistic, suggesting they are highly
abstracted features (but we have to try other generative

networks)

Neurons appear to be particularly concerned with
representing objects in the monkeys’ immediate
environment — monkey features and humans in
protective attire

thank you!
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