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Overview

Motivations: the greatest problem in science, CBMM, the MIT Quest
A bit of history: Neuroscience and Al, Science and Engineering

CBMM and the Quest

Al ethics and I1ts neural bases

Theory: explaining how deep networks work and what are their properties and
imitations.



CBMM'’s focus is the Science and the Engineering of Intelligence

We aim to make progress in understanding
Intelligence, that is in understanding how the
brain makes the mind, how the brain works and
how to build intelligent machines.

“The Convergence of Machine Learning and Artificial Intelligence
Towards Enabling Autonomous Driving”

Friday, March 24,2017
4:30pm -5:30pm
MIT Building 10-250
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CBMM Overview

The Center for Brains, Minds and Machines (CBMM) is a multi-institutional
NSF Science and Technology Center dedicated to the study of intelligence -
how the brain produces intelligent behavior and how we may be able to
replicate intelligence in machines. We believe in the synergy between the
science and the engineering of intelligence.

Cosnitive Science Machine Learning, Neuroscience,
~$50M . Computer Science  Computational
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Summer Course at Woods Hole: Our flagship initiative led by G. Kreiman

Brains, Minds & Machines Summer Course

An intensive three-week course gives advanced students a “deep” introduction to the problem of intelligence
b o
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The MIT Quest for Intelligence

The MIT Intelligence Quest

PROJECTSABOUTCONTACTFAQ

Forging connections between human and machine intelligence research, its
applications, and its bearing on society.

The MIT Intelligence Quest will advance the science and engineering of both human
and machine intelligence. Launched on February 1, 2018, this effort seeks to
discover the foundations of human intelligence and drive the development of
technological tools that can positively influence virtually every aspect of society.

The Institute’s culture of collaboration ...we seek to answer the deepest questions
about intelligence.
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https://intelligencequest.mit.edu/
http://news.mit.edu/2018/mit-launches-intelligence-quest-0201

Intelligence: The MIT Quest

BRIDGE

CORE: Cutting-Edge Research on the Science + Engineering of Intelligence

Natural Science of Intelligence Engineering of Intelligence

The Intersection

Nobel prize Turing Award, Fields Medal
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Overview

Motivations: the greatest problem in science, CBMM, the MIT Quest
A bit of history: Neuroscience and Al, Science and Engineering

CBMM and the Quest

Al ethics and I1ts neural bases

Theory: explaining how deep networks work and what are their properties and
imitations.



Logical for MIT...

Noam

Norbert
Chomsky

. Claude
Wiener

Shannon
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Just a definition: | use the word science to mean natural science




CBMM’s focus is the natural Science and the Engineering
of Intelligence

We aim to make progress Iin understanding
Intelligence, that Is in understanding how the
brain makes the mind, how the brain works and
how to build intelligent machines. We believe
that the science of intelligence will enable
better engineering of intelligence.

Friday, March 24,2017
4:30pm -5:30pm
MIT Building 10-250
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Neuron

Neuroscience-Inspired Artificial Intelligence

Demis Hassabis,-2:" Dharshan Kumaran,'-® Christopher Summerfield,'-* and Matthew Botvinick':2
1DeepMind, 5 New Street Square, London, UK

2Gatsby Computational Neuroscience Unit, 25 Howland Street, London, UK

SInstitute of Cognitive Neuroscience, University College London, 17 Queen Square, London, UK

4Department of Experimental Psychology, University of Oxford, Oxford, UK

*Correspondence: dhcontact@google.com

http://dx.doi.org/10.1016/j.neuron.2017.06.011

The fields of neuroscience and artificial intelligence (Al) have a long and intertwined history. In more recent
times, however, communication and collaboration between the two fields has become less commonplace.
In this article, we argue that better understanding biological brains could play a vital role in building intelligent
machines. We survey historical interactions between the Al and neuroscience fields and emphasize current
advances in Al that have been inspired by the study of neural computation in humans and other animals. We
conclude by highlighting shared themes that may be key for advancing future research in both fields.

The successful transfer of insights gained from neuroscience
to the development of Al algorithms is critically dependent on
the interaction between researchers working in both these
fields, with insights often developing through a continual hand-
ing back and forth of ideas between fields. In the future, we
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FINANCIAL TIMES

T.com/comment

You are signed in ~ Search for... a

. VINANCIAL TIMES
Subscribe now - e~

Save up to 60%» ~ T

Home World ¥ Companies v Markets v Global Economy ~ Lex~

‘Comment Management v Life & Arts v

Coumnists+ TheBigRead  Opinion  FTView _Instantnsight EM Squared _ The Exchange

PERSON IN THE NEWS March 11, 2016 3:14 pm
Demis Hassabis, master of the new
machine age
Murad Ahmed
N oy T

The creator of the AI game-playmg program makes all the right
moves, writes Murad Ahmed

o o @ @ The victories ha a h asem 15

Hassabis, co-founder and chief executive of DeepMind.

He describes Mr Lee as the “Roger Federer of Go”, and
More .. forsome thecomputer program’s achievement is akin
to a robot taking to the lawns of Wimbledon and
beating the legendary tennis champion.

PERSON IN THE NEWS
James Comey
Ali al-Naimi

“I think it is pretty huge but, ultimately, it will be for

Kyle Bass

Blogsv Leters  Coreclions  Obits

@ Swiss Re

Blast from the past: Messages from
forgotten catastrophes

THE BIG READ

EDF TUNISIA
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Real Engineering: Mobileye
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Moore-like Iaw for ML (1995-2018)
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DL and RL come from neuroscience

The /\ — TG w«/\/ 2N
Organization r\ wam ] |7
of Behavior SN

A Neuropsychological Theory Reticular _—
| | Formation
I\
-

RECEPTIVE FIELDS AND FUNCTIONAL ARCHI-
TECTURE IN TWO NONSTRIATE VISUAL 250.
AREAS (18 AND 19) OF THE CAT" “

DAVID H. HUBEL anp TORSTEN N. WIESEL

Neurophysiology Laboratory, Department of Pharmacology, «62 osee
Harvard Medical School, Boston, Massachusetts sors Sonl 9563 b0

77777777777777777777

(Received for publication August 24, 1964) Srtepeall i




Background: State-of-the-art Machines (“Deep Learning”) Have
Emerged From the Brain’s Visual Processing Architecture

Brains / Minds

(ventral visual stream)

STy

—
——

Desimone & Ungerleider 1989; vanEssen+Movshon
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What’s the engineering of the future?

C2b

-
\_» Complex cells

|
I
I — TUNING |
!_— Bypass routes === MAX

(O simple cells :

= Main routes

e

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19 34-layer plain 34-layer residual
image image image
pool, /2
| 33conv,128 | | x7conv,64,/2 | | 7x7conv,64,/2 |
v \
pool, /2 pool, /2 pool, /2
¥
| 33conv,256 | | 3x3com,64 | | 33conv,64 |
2 \ 2
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| 33cony,256 | | 3x3 conv, 64 | | 33 conv, 64
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\ 2
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2 4
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¥ L 2 Y
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A 4 | 2, iy
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| 33cony,512 | | 33conv, 128 | | 3x3conv, 128
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L 2
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L 2 2
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| 3x3conv,256 | | 3x3conv, 256
\ 2
| 3x3cony, 256 | | 3x3cony, 256
| 33conv,256 | | 3x3conv, 256
¥
| 33cony256 | | 3x3cony, 256
A2 2
| 3x3conv,256 | | 3x3conv, 256
A 2
| 3x3conv,256 | | 3x3conv, 256
| 33conv,256 | | 3x3conv, 256
[ | [
| ) L
| | |
| ] |
[ | [
[ ) L

w | 20 i rvounl
pool, /2 3x3 conv, 512, /2 X3cony,512,/2 |
L 2 L 2 Y
3x3 conv, 512 3x3 conv, 512 i
e s
3x3 conv, 512 3x3 conv, 512
3x3 cony, 512 3x3 conv, 512
313 conv, 512 3x3conv,512 |
L 2 L 2
3x3 conv, 512 3x3conv,512 |
4 A\ \ 2
fc4096 avg pool avg pool
| fc4096 | [ fc 1000 | | fc1000 |

Machines —m—mmmm ™ -

State of the Art ResNets

VGG (2014) - 6.8%
Baidu (2015) - 5.33%

AlexNet (2012) - 15.3%
Clarifai (2013) - 11.7%

Avg Pool 2x2

Avg Poal 2x2

 Basic block 256

Avg Pool 2x2

AVE Poal 2x2

NSF Site Visit, May 15-16, 2017



Convolutional networks

Sid

f‘Hube\—Wiese\” models
iINcluge

P - Hubel & Wiesel, 1959:
Fukushima, 1980, Wallis &
Rolls, 1997; Mel, 1997

C2b LeCun et al 1998:;

s3 Riesenhuber & Poggio,

b 1999; Thorpe, 2002; Ullman
co et al., 2002; Wersing and
Koerner, 2003; Serre et al.,

2007 Freeman and
Simoncelli, 2011....

C3

C1
S1

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007



Overview

Motivations: the greatest problem in science, CBMM, the MIT Quest
A bit of history: Neuroscience and Al, Science and Engineering

CBMM and the Quest

Al ethics and I1ts neural bases

Theory: explaining how deep networks work and what are their properties and
imitations.
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Visual Intelligence

MODULE FOUR

B. Katz, A. Barbu, S. Ullman, J. Tenenbaum
Towards Symbols

LONG-TERM PLANNING ABSTRACTION LANGUAGE

!

Depository of
|M0DULE TWO MODULE Ty vision routines...

- - _ 1/2 L. synthesizing
Running routines... Brain OS <—> S::( ch (—) COgnltIVQ Core routines as needed
WORKING MEMORY VISUAL ROUTINES ATTENTION e c INTUITIVE PHYSICS GEOMETRY (3D) INTUITIVE PSYCHOLOGY

J. Tenenbaum, N. Kanwisher, Spelke

G, Kreiman, M. Wilson, B. Desimone

MODULE ONE

Visual Stream

FOVEA DEEP FEED-FORWARD NETWORKS BACK PROJECTIONS T. Poggio, J. Dicarlo, M. Livingstone, S. Ullman







Within The CORE Intersection:
CBMM + additional “moonshot” projects

. . | |
e Visual Intelligence (CBMM) - o

» Development of Intelligence
* New circuits for deep nets in counter streams in cortical areas
* Planning and imagination

 Emotional Intelligence

e [ anguage



Overview

Motivations: the greatest problem in science, CBMM, the MIT Quest
A bit of history: Neuroscience and Al, Science and Engineering

CBMM and the Quest

Al ethics and Its neural bases

Theory: explaining how deep networks work and what are their properties and
imitations.



Al and ethics

» Too much about
- Al more dangerous than nuclear bombs
- the trolley problem

* More pressing ISSU€eS:
- What to publish/not publish
- Jobs lost to machines

e Future:
- how to build ethical machines
- can the brain teach us how?



Neuroscience of ethics

+16 mm
BA 9/10

p < 0.000001

p < 0.00001

BA 39 BA 7/40 BA 7/40

Studies with fMRI revealed that particular areas of the brain are associated with
particular cognitive events such as our moral emotions and ethical reasoning.


http://www.sciencemag.org/content/293/5537/2105.short

Overview

Motivations: the greatest problem in science, CBMM, the MIT Quest
A bit of history: Neuroscience and Al, Science and Engineering

CBMM and the Quest

Al ethics and I1ts neural bases

Theory: explaining how deep networks work and what are their properties and
imitations.



Computation in a neural net

( 2%

L
.

-

-

\A“ x ))
— "clown fish

f(x) = fo(... f2(f1(x)))



I'IIlife

container shig motor scooter
mite container ship mo't'{br scooter
black widow | lifeboat | go-kart|
cockroach amphibian| moped | cheetah
tick fireboat | bumper car snow leopard
starfish drilling platform | golfcart Egyptian cat

) L —

£ @If&\‘ta i
Y \.\ AR
3 oA R

"

rme

vertible
grille mushroom
pickup jelly fungus titi
beach wagon gill fungus indri
fire engine | dead-man's-fingers howler monkey

Krizhevsky et al. NIPS 2012



B C” WGBH X 2 1708.07120.pdf X ‘ﬂ Center for Brains, Minds and | X ' [% Theories of Deep Learning (5 X \= (*) tp@ai.mit.edu

(C & Secure | https://stats385.github.io & | A

Theories of Deep Learning (STATS 385)

Stanford University, Fall 2017

The spectacular recent successes of deep learning are purely empirical. Nevertheless intellectuals always try to explain important
developments theoretically. In this literature course we will review recent work of Bruna and Mallat, Mhaskar and Poggio, Papyan
and Elad, Bolcskei and co-authors, Baraniuk and co-authors, and others, seeking to build theoretical frameworks deriving deep
networks as consequences. After initial background lectures, we will have some of the authors presenting lectures on specific
papers. This course meets once weekly.

Instructors:

David Donoho  Hatef Monajemi  Vardan Papyan




Deep nets : a theory Is needed
(after alchemy, chemistry)
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Computation in a neural net

Rectified linear unit (RelLU)

8 QOO0

O—O
W O—O
O—O
O—0O  g(y)° |
O—CO
O—O
v g(y) Q(y) maX(O,y)



Deep nets architecture and SGD training

8 QOO0
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Rectified linear unit (RelLLU)
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Gradient descent

argmin Z@(zi, f(xi;w)) = L(w)

One Iteration of gradient descent:

t+1 t 8L(Wt)

=W — T B

W

learning rate



DLNNSs: three main scientific questions

Approximation theory: when and why are deep networks better - no curse of
dimensionality — than shallow networks®?

Optimization: what is the landscape of the empirical risk”?

Generalization on SGD: how can overparametrized networks generalize?

Work with Hrushikeshl Mhaskar+Lorenzo Rosasco+Fabio Anselmi+Chiyuan
Zhang+Qianli Liao +Sasha Rakhlin + Noah G + Xavier B



Theory I:
Why and when are deep networks better than shallow networks?

f(xl s X o 9°°°9x8) — g3(gz1(g11(x1 9-x2)9g12 (X3 s Xy ))gzz (811(x5 9~x6)9g12 (X7 > Xg )

X N Xx Xy Xp Xe B Xg 1 %248 R4 X5 AE 57 48

Theorem (informal statement)

Suppose that a function of d variables is compositional . Both shallow and deep network Can approximate f equally well.

The number of parameters of the shallow network depends exp%nenhally on d as 0(8 )vv|th the dimension whereas
for the deep network dance is dimension independent, i.e. O(€ )

CENTER FOR
“w. | Brains

.| Minds+ | |
Machines Mhaskar, Poggio, Liao, 2016




When can the curse of dimensionality be avoided



Generic functions

F(X] 5%, 5005 Xg)

Compositional functions

f(xl ,X2 9---9-x8) — g3(g21(g11(x1 9x2)9g12(x3 ,X4 ))gzz (gll(XS 9x6)9g12 (X7 9x8 )))

Mhaskar, Poggio, Liao, 2016



Microstructure of compositionality

%
target function
ES »
@ » . ®
Xi X; Xs X Xe Xe X5 Xg X, X, X KiKe Xe X &
: . > 5
approximating ‘ ‘
function/network '
00...0 0..0

0.0 O..0

0,0 0:00-0 0:0

N B X Xy B X X 5 X X XWX N B B

a b



Hierarchically local compositionality

f(xpxz 9°°°9x8) — 83(g21(g11(x19x2)9g12 (x3 s Xy ))gzz(g11(x5 ax6)ag12(x7 > Xg )

” N

/ / \
7\ 7\ FA I\
\ J \ /J \ J \
/ \ / \ / \ /

X X Xy Xy Xe X Xy Xy
Theorem (informal statement)

Suppose that a function of d variables is hierarchically, locally, compositional . Botr
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as  O(g™*) with the dimension
whereas for the deep network danceis O(de™)

GisiiiiE | CENTERFOR
...-".’. _'_......{?_o:‘.o"‘.(.)-'-';.':o':"-':'.-':':';::.::::::':} B r a i n S
sadion: | Minds+ | |
e | Machines Mhaskar, Poggio, Liao, 2016




squared error (12 loss)

Binary Tree NN vs Shallow NN 8D

Train errors for Shallow Neural Net (NN)

Train errors for Binary Tree (BT) Neural Net

14
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Locality of constituent functions is key not weight sharing: CIFAR

—d— ShallowC, 2 Layers, #arams 1577964 ——i— ShallowtC, 2 Layers, #Params 1577584
~———— DoapFC, 5 Layers, #Params 2364416 —— DoapFC, 5 Layers, #Params 2364416
~— DeapConv, No Sharing, # arams 563388 DeapConv, No Shanng, #Params 563868
07 I ' ~—#¥— DoopConv, Sharing, #Params 58480 065 - —#— DoapConv, Sharing, #Pacams 38480
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Training error on CFAR-10
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Validation error on CIFAR-10
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Why are compositional
functions important?

Which one of these reasons:

Physics (Max Tegmark)?
Neuroscience? <===tp
Evolution?

Locality of Computation

What is special about
locality of computation?

Locality in “space”™?
Locality in “time”™?

Expanded Edition

Perceptrons

Marvin L. Minsky
Seymour A. Papert



Theory lI:
What is the Landscape of the empirical risk?

Layer 5, Numbers are training errors

Theorem (informal statement) 35 2107
st
2.0
Replacing the RELUs with univariate polynomial | i
approximation, Bezout theorem implies that the 419
system of polynomial equations corresponding to =T 386023
zero empirical error has a very large number of tr ey

degenerate solutions. The global zero-minimizers
correspond to flat minima in many dimensions
(generically unlike local minima). Thus SGD is
biased towards finding global minima of the
empirical risk.
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Machines Liao, Poggio, 2017




Observation (theory and experiment): deep polynomial networks
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Poggio et al., 2017



Theory of Deep Learning 11b: Optimization Properties of SGD
by

Chiyuan Zhang' Qianli Liao'  Alexander Rakhlin? Brando Miranda! Noah Golowich! Tomaso Poggio?

ICenter for Brains, Minds, and Machines, McGovern Institute for Brain Research,
Massachusetts Institute of Technology, Cambridge, MA, 02139.

2 University of Pennsylvania

SGD Potential Function




Bezout theorem
px)—y. =0 tori=1,...,n

The set of polynomial equations above with k= degree of p(x) has a number of distinct zeros
(counting points at infinity, using projective space, assigning an appropriate multiplicity to each
intersection point, and excluding degenerate cases) equal to

Z=k"

the product of the degrees of each of the equations. As In the linear case, when the system
of equations is underdetermined — as many equations as data points but more
unknowns (the weights) — the theorem says that there are an infinite humber of
global minima, under the form of Z regions of zero empirical error.



Global and local zeros

f(x,)—y, =0 tori=1,...,n n equations in W unknowns with W >> n
N

VY (f(:)—5:)7) =0 W equations in W unknowns
1=1

There are a very large number of zero-error minima which are highly degenerate unlike the local non-zero minima.



Langevin equation

dw
dt

=—y VV(W(1),z(t))+ 7, 'dB(t)

with the Boltzmann equation as asymptotic “solution”

1 V(w)

wy~—=e
pw)~=~



SGD

fe+1 = fe = VV ([t, 2e), VV(ft,zt) = Iz_ltl' Ezezt VV(ft,z).

We define a noise “equivalent quantity™

€t o= VV(ft,Zt) =2 VISn (ft)a

and it 1s clear that [E¢, = 0.

We write Equation 6 as

fe+1 = fo —7e(Vis, (ft) + &)



GDL selects larger volume minima

as Histogram of w, for 1 D experiment 0.3 Histogram of W, for 2 D experiment Histogram of W, for 3 D experiment
g 0.3
g 0.2 0.2
% ’ 0.2
N
E 0.1 0.1 I 0.1
0 S 10 15 20 0 5 10 15 20 0 5 10 15 20
Weights. Weights Weights
Histogram of W, for 4 D experiment s Histogram of W_ for 5 D experiment Potential Function
0.3 |
.§. 0
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GDL ~ SGD (empirically)
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SGD
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GDL selects degenerate minima
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SGDL and SGD observation: summary

e [here are may zero minimizer with overparametrized deep
networks because of Bezout theorem

e SGDL finds with very high probabillity large volume, flat zero-
minimizers; empirically SGD behaves in a similar way

e Hat minimizers correspond to degenerate zero-minimizers and
thus to global minimizers;
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Theory lll: How can underconstrained solutions generalize?

Model #params: 9370
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Test Loss (Network Normalized)
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Three Theory Questions: Summary of Answers

» Approximation theorems: for compositional functions deep but not shallow
networks avoid the curse of dimensionality.

» Optimization remarks: SGD finds with high probability global minima which
are degenerate Training data size: 50000
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» Generalization: The gradient dynamics of deep
networks near global minima converges to

minimum norm solution for each layer of weights.
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Musings on Near Future Breakthroughs

* new architectures/class of applications from basic DCN block
(example GAN + RL/DL + ...)

* Nnew semisupervised training framework, avoiding labels: implicit
labeling...predicting next “frame”...

* new basic supervised block/circuit

* new learning algorithm (Shim) instead of SGD ...



General musings

The evolution of computer science

» there were programmers
 there are now labelers

» there may be schools for bots...



Today’s science, tomorrow’s engineering:
learn like children learn

The first phase (and successes) of ML:

from programmers...
...to labelers...
...to computers that learn like chilaren...

The next phase of ML: implicitly supervised learning,
learning like children do, small data: n — 1



