
Deep Learning Tutorial

Brains, Minds, and Machines Summer Course 2018

TA: Eugenio Piasini & Yen-Ling Kuo

Roadmap

● Supervised Learning with Neural Nets

● Convolutional Neural Networks for Object Recognition

● Recurrent Neural Network

● Other Deep Learning Models

Supervised Learning
with Neural Nets

General references:
Hertz, Krogh, Palmer 1991

Goodfellow, Bengio, Courville 2016

Supervised learning

Given example input-output pairs (X,Y),

learn to predict output Y from input X

Logistic regression, support vector machines, decision trees, neural networks...

Binary classification:
simple perceptron

g is a nonlinear activation function, in this case

(McCulloch & Pitts 1943)
Perceptron learning rule

(Rosenblatt 1962)

Linear separability

Simple perceptrons can only learn to solve linearly separable problems (Minsky and Papert 1969).

We can solve more complex problems by composing many units in multiple layers.

Multilayer perceptron (MLP)

MLPs are universal function approximators (Cybenko 1989; Hornik 1989).
(under some assumptions… exercise: show that if g is linear, this architecture reduces to a simple perceptron)

(“forward propagation”)

Deep vs shallow
Universality: “shallow” MLPs with one hidden layer can represent any continuous function to arbitrary

precision, given a large enough number of units. But:

● No guarantee that the number of required units is reasonably small (expressivity).
● No guarantee that the desired MLP can actually be found with our chosen learning method

(learnability).

Two motivations for using deep nets instead (see Goodfellow et al 2016, section 6.4.1):

● Statistical: deep nets are compositional, and naturally well suited to representing hierarchical

structures where simpler patterns are composed and reused to form more complex ones

recursively. It can be argued that many interesting structures in real world data are like this.

● Computational: under certain conditions, it can be proved that deep architectures are more

expressive than shallow ones, i.e. they can learn more patterns for a given total size of the network.

Backpropagation

Problem: compute all
Key insights: the loss depends
● on the weights w of a unit only through that unit’s

activation h
● on a unit’s activation h only through the activation of

those units that are downstream from h.

The “errors” being
backpropagated

These give the gradient of the loss with respect to the weights,
which you can then use with your favorite gradient descent method.

(Rumelhart, Hinton, Williams 1986)

Backpropagation - example

(exercise: derive gradient wrt bias terms b)

The Navy revealed the embryo of
an electronic computer today that it
expects will be able to walk, talk,
see, write, reproduce itself and
be conscious of its existence […]
Dr. Frank Rosenblatt, a research
psychologist at the Cornell
Aeronautical Laboratory, Buffalo,
said Perceptrons might be fired to
the planets as mechanical space
explorers.

The New York Times
July 8th, 1958

The perceptron has shown itself
worthy of study despite (and even
because of!) its severe limitations. It
has many features to attract
attention: its linearity; its intriguing
learning theorem; its clear
paradigmatic simplicity as a kind of
parallel computation. There is no
reason to suppose that any of
these virtues carry over to the
many-layered version.
Nevertheless, we consider it to be
an important research problem to
elucidate (or reject) our intuitive
judgement that the extension to
multilayer systems is sterile.

Minsky and Papert 1969
(section 13.2)

Convolutional Neural Networks
for Object Recognition

General (excellent!) reference:
“Convolutional Networks for Visual Recognition”, Stanford university

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Traditional Object Detection/Recognition Idea

● Match low-level

vision features

(e.g. edge, HOG,

SIFT, etc)

● Parts-based

models (Lowe 2004)

Learning the features - inspiration from neuroscience

Hubel and Wiesel:
● Topographic organization of

connections
● Hierarchical organization of

simple/complex cells

(Hubel and Wiesel 1962)
(Fukushima 1980)

“Canonical” CNN structure

INPUT -> [[CONV -> RELU]*K -> POOL?]*L -> [FC -> RELU]*M -> FC

Four basic operations:
1. Convolution
2. Nonlinearity (ReLU)
3. Pooling
4. Fully connected layers

Credit: cs231n.github.io

(LeCun et al 1998)

http://cs231n.github.io/

Example: blurring an image

Replacing each pixel with an
average of its neighbors

2D Convolution

2D Convolution

kernel / filter

Input image Output image

2D Convolution

kernel / filter

Input image Output image

2D Convolution

kernel / filter

Input image Output image

2D Convolution

kernel / filter

Input image Output image

2D Convolution

kernel / filter

Input image Output image

2D Convolution

kernel / filter

If N=input size, K=filter size, S=stride
(stride is the size of the step you take
on the input every time you move by
one on the output)

Output size = (N-K)/S + 1

Output imageInput image

3

32

32

3

32

32

5x5x3 filter

1

28

28

1

1
1

Output depth = # of filters
(feature maps)

More on convolution sizing
N=32, K=5, S=1 →(N-K)/S + 1 = 28

Input depth = # of channels in previous layer
(often 3 for input layer (RGB); can be arbitrary
for deeper layers)

Convolve with Different Filters

Ⓧ =

Convolution (with learned filters)

● Dependencies are local

● Filter has few parameters to learn

○ Share the same parameters

across different locations

...
input

Feature map

Multiple filters

Fully Connected vs. Locally Connected

Credit: Ranzato’s
CVPR 2014 tutorial

Non-linearity

● Rectified linear function (ReLU)

○ Applied per-pixel, output = max(0, input)

Input feature map Output feature map

input

output

Pooling

● Reduce size of representation in following layers
● Introduce some invariance to small translation

Image credit: http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

Learning

Key evolutionary steps

Neocognitron - Fukushima 1980
Inspired by Hubel and Wiesel
“Convolutional” structure,
alternating “pooling” layers

LeNet - LeCun et al 1998
Backpropagation, gradient descent

AlexNet - Krizhevsky et al 2012
Larger, deeper network (~10^7 params), much more data (ImageNet -
~10^6 images), more compute (incl. GPUs), better regularization (Dropout)

test
image smallest Euclidian distance to test image

But also object detection, image segmentation, captioning...

Image classification Image retrieval

Recurrent Neural Network

Handling Sequential Information

● Natural language processing: sentences, translations

● Speech / Audio: signal processing, speech recognition

● Video: action recognition, captioning

● Sequential decision making / Planning
● Time-series data

● Biology / Chemistry: protein sequences, molecule structures

● ...

Dynamic System / Hidden Markov Model

Classical form of a dynamic system Hidden Markov Model

With an external signal x

Recurrent Network / RNN

● A general form to process a sequence.
○ Applying a recurrence formula at each time step

● The state consists of a vector h.

It summarizes input up to time t.
RNN

y

x

h

New state Old state Input at time t
A function with
parameter W

Processing a Sequence: Unrolling in Time

I like this course

RNN RNN RNN RNN

predict predict predict predict

prediction prediction prediction prediction

Training: Backpropagation Through Time

I like this course

RNN RNN RNN RNN

predict predict predict predict

prediction prediction prediction prediction

PRP VBP DT NN

loss loss loss loss

Total loss

Parameter Sharing Across Time

● The parameters are shared and derivatives are accumulated.

● Make it possible to generalize to sequences of different lengths.

t

Vanishing Gradient

● expanded quickly!
○ |.| > 1, gradient explodes
○ |.| < 1, gradient vanishes

● Have problem in learning long-term dependency.

f f fX Loss

→ clipping gradients

→ introducing memory via LSTMs, GRUs

Long Short Term Memory (LSTM)

● Introducing gates to

optionally let information

flow through.

○ An LSTM cell has three
gates to protect and
control the cell state.

Forget the
irrelevant part of
previous state

Selected update
cell state values

Output certain
parts of the
cell state Image credit: http://harinisuresh.com/2016/10/09/lstms/

Flexibility of RNNs

Image
Captioning

Sentiment
Classification

Machine
Translation

POS
Tagging

Image credit: Andrej Karpathy

Other Deep Learning Models

Auto-encoder

● Learning representations
○ a good representation should keep the information well

○ → objective: minimize reconstruction error

Encoder Decoder

Original input Reconstructed
image

Learned
representation

[LeCun, 1987]

Generative Models

● What are the learned representations?

○ One view: latent variables to generate the observed data

● Goal of learning a generative model: to recover p(x) from data

Desirable properties

Sampling new data
Evaluating likelihood of data

Extracting latent features

Problem

Directly computing

is intractable!

latent variables:
color, shape, position, ...

observed data

Adapt from IJCAI 2018 deep generative model tutorial

Variational Autoencoder (VAE)

● Idea: approximate p(z|x)
with a simpler, tractable q(z|x)

Decoder

p(z)

x

p(x|z)

z

Encoder xz

q(z|x)

● Learning objective

[Kingma et al., 2013]

Reconstruction error

Measure how close q is to p

Generative Adversarial Network (GAN)

● An implicit generative model, formulated as a minimax game.
○ The discriminator is trying to distinguish real and fake samples.
○ The generator is trying to generate fake samples to fool the discriminator.

[Goodfellow et al., 2014]

Thanks & Questions?

Eugenio Piasini (epiasini@sas.upenn.edu)
Yen-Ling Kuo (ylkuo@mit.edu)

● Link to the slides
○ https://goo.gl/pUXdc1

● Hands-on session on

Monday!

mailto:epiasini@sas.upenn.edu
mailto:ylkuo@mit.edu
https://goo.gl/pUXdc1

