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● Convolutional Neural Networks for Object Recognition
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Supervised Learning 
with Neural Nets

General references:
Hertz, Krogh, Palmer 1991

Goodfellow, Bengio, Courville 2016



Supervised learning

Given example input-output pairs (X,Y), 

learn to predict output Y  from input X

Logistic regression, support vector machines, decision trees, neural networks...



Binary classification: 
simple perceptron

g is a nonlinear activation function, in this case

(McCulloch & Pitts 1943)
Perceptron learning rule 

(Rosenblatt 1962)



Linear separability

Simple perceptrons can only learn to solve linearly separable problems (Minsky and Papert 1969).

We can solve more complex problems by composing many units in multiple layers.



Multilayer perceptron (MLP)

MLPs are universal function approximators (Cybenko 1989; Hornik 1989).
(under some assumptions… exercise: show that if g is linear, this architecture reduces to a simple perceptron)

(“forward propagation”)



Deep vs shallow
Universality: “shallow” MLPs with one hidden layer can represent any continuous function to arbitrary 

precision, given a large enough number of units. But:

● No guarantee that the number of required units is reasonably small (expressivity).
● No guarantee that the desired MLP can actually be found with our chosen learning method 

(learnability).

Two motivations for using deep nets instead (see Goodfellow et al 2016, section 6.4.1):

● Statistical: deep nets are compositional, and naturally well suited to representing hierarchical 

structures where simpler patterns are composed and reused to form more complex ones 

recursively. It can be argued that many interesting structures in real world data are like this.

● Computational: under certain conditions, it can be proved that deep architectures are more 

expressive than shallow ones, i.e. they can learn more patterns for a given total size of the network.



Backpropagation

Problem: compute all 
Key insights: the loss depends 
● on the weights w of a unit only through that unit’s 

activation h
● on a unit’s activation h only through the activation of 

those units that are downstream from h.

The “errors” being 
backpropagated

These give the gradient of the loss with respect to the weights, 
which you can then use with your favorite gradient descent method.

(Rumelhart, Hinton, Williams 1986)



Backpropagation - example

(exercise: derive gradient wrt bias terms b)



The Navy revealed the embryo of 
an electronic computer today that it 
expects will be able to walk, talk, 
see, write, reproduce itself and 
be conscious of its existence […] 
Dr. Frank Rosenblatt, a research 
psychologist at the Cornell 
Aeronautical Laboratory, Buffalo, 
said Perceptrons might be fired to 
the planets as mechanical space 
explorers.

The New York Times
July 8th, 1958

The perceptron has shown itself 
worthy of study despite (and even 
because of!) its severe limitations. It 
has many features to attract 
attention: its linearity; its intriguing 
learning theorem; its clear 
paradigmatic simplicity as a kind of 
parallel computation. There is no 
reason to suppose that any of 
these virtues carry over to the 
many-layered version. 
Nevertheless, we consider it to be 
an important research problem to 
elucidate (or reject) our intuitive 
judgement that the extension to 
multilayer systems is sterile.

Minsky and Papert 1969
(section 13.2)



Convolutional Neural Networks 
for Object Recognition

General (excellent!) reference:
“Convolutional Networks for Visual Recognition”, Stanford university

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/


Traditional Object Detection/Recognition Idea

● Match low-level 

vision features 

(e.g. edge, HOG, 

SIFT, etc)

● Parts-based 

models (Lowe 2004)



Learning the features - inspiration from neuroscience

Hubel and Wiesel:
● Topographic organization of 

connections
● Hierarchical organization of 

simple/complex cells

(Hubel and Wiesel 1962)
(Fukushima 1980)



“Canonical” CNN structure

INPUT -> [[CONV -> RELU]*K -> POOL?]*L -> [FC -> RELU]*M -> FC

Four basic operations:
1. Convolution
2. Nonlinearity (ReLU)
3. Pooling
4. Fully connected layers

Credit: cs231n.github.io

(LeCun et al 1998)

http://cs231n.github.io/


Example: blurring an image

Replacing each pixel with an 
average of its neighbors

2D Convolution



2D Convolution

kernel / filter

Input image Output image



2D Convolution

kernel / filter

Input image Output image



2D Convolution

kernel / filter

Input image Output image



2D Convolution

kernel / filter

Input image Output image



2D Convolution

kernel / filter

Input image Output image



2D Convolution

kernel / filter

If N=input size, K=filter size, S=stride
(stride is the size of the step you take 
on the input every time you move by 
one on the output)

Output size = (N-K)/S + 1

Output imageInput image
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Output depth = # of filters 
(feature maps)

More on convolution sizing
N=32, K=5, S=1 →(N-K)/S + 1 = 28

Input depth = # of channels in previous layer 
(often 3 for input layer (RGB); can be arbitrary 
for deeper layers)



Convolve with Different Filters

Ⓧ =



Convolution (with learned filters)

● Dependencies are local

● Filter has few parameters to learn

○ Share the same parameters 

across different locations

...
input

Feature map

Multiple filters



Fully Connected vs. Locally Connected

Credit: Ranzato’s 
CVPR 2014 tutorial 



Non-linearity

● Rectified linear function (ReLU)

○ Applied per-pixel, output = max(0, input)

Input feature map Output feature map

input

output



Pooling

● Reduce size of representation in following layers
● Introduce some invariance to small translation

Image credit: http://cs231n.github.io/convolutional-networks/  

http://cs231n.github.io/convolutional-networks/


Learning



Key evolutionary steps

Neocognitron - Fukushima 1980
Inspired by Hubel and Wiesel
“Convolutional” structure, 
alternating “pooling” layers

LeNet - LeCun et al 1998
Backpropagation, gradient descent

AlexNet - Krizhevsky et al 2012
Larger, deeper network (~10^7 params), much more data (ImageNet - 
~10^6 images), more compute (incl. GPUs), better regularization (Dropout)



test 
image smallest Euclidian distance to test image

But also object detection, image segmentation, captioning...

Image classification Image retrieval



Recurrent Neural Network



Handling Sequential Information

● Natural language processing: sentences, translations

● Speech / Audio: signal processing, speech recognition

● Video: action recognition, captioning

● Sequential decision making / Planning
● Time-series data

● Biology / Chemistry: protein sequences, molecule structures

● ...



Dynamic System / Hidden Markov Model

Classical form of a dynamic system Hidden Markov Model

With an external signal x



Recurrent Network / RNN

● A general form to process a sequence. 
○ Applying a recurrence formula at each time step

● The state consists of a vector h. 

It summarizes input up to time t.
RNN

y

x

h

New state Old state Input at time t
A function with 
parameter W 



Processing a Sequence: Unrolling in Time

I like this course

RNN RNN RNN RNN

predict predict predict predict

prediction prediction prediction prediction



Training: Backpropagation Through Time

I like this course

RNN RNN RNN RNN

predict predict predict predict

prediction prediction prediction prediction

PRP VBP DT NN

loss loss loss loss

Total loss



Parameter Sharing Across Time

● The parameters are shared and derivatives are accumulated.

● Make it possible to generalize to sequences of different lengths.

t



Vanishing Gradient

●                  expanded quickly!
○ |.| > 1, gradient explodes
○ |.| < 1, gradient vanishes

● Have problem in learning long-term dependency.

f f fX Loss

→ clipping gradients

→ introducing memory via LSTMs, GRUs



Long Short Term Memory (LSTM)

● Introducing gates to 

optionally let information 

flow through.

○ An LSTM cell has three 
gates to protect and 
control the cell state.

Forget the 
irrelevant part of 
previous state 

Selected update 
cell state values

Output certain 
parts of the 
cell state Image credit: http://harinisuresh.com/2016/10/09/lstms/



Flexibility of RNNs

Image 
Captioning

Sentiment 
Classification

Machine 
Translation

POS 
Tagging

Image credit: Andrej Karpathy



Other Deep Learning Models



Auto-encoder

● Learning representations
○ a good representation should keep the information well

○ → objective: minimize reconstruction error 

Encoder Decoder

Original input Reconstructed 
image

Learned 
representation

[LeCun, 1987]



Generative Models

● What are the learned representations?

○ One view: latent variables to generate the observed data

● Goal of learning a generative model: to recover p(x) from data

Desirable properties
 

Sampling new data
Evaluating likelihood of data

Extracting latent features

Problem
 

Directly computing

 

is intractable! 

latent variables:
color, shape, position, ...

observed data

Adapt from IJCAI 2018 deep generative model tutorial



Variational Autoencoder (VAE)

● Idea: approximate p(z|x)
with a simpler, tractable q(z|x)

Decoder

p(z)

x

p(x|z)

z

Encoder xz

q(z|x)

● Learning objective

[Kingma et al., 2013]

Reconstruction error

Measure how close q is to p



Generative Adversarial Network (GAN)

● An implicit generative model, formulated as a minimax game.
○ The discriminator is trying to distinguish real and fake samples.
○ The generator is trying to generate fake samples to fool the discriminator.

[Goodfellow et al., 2014]



Thanks & Questions?

Eugenio Piasini (epiasini@sas.upenn.edu)
Yen-Ling Kuo     (ylkuo@mit.edu)

● Link to the slides
○ https://goo.gl/pUXdc1

● Hands-on session on 

Monday!

mailto:epiasini@sas.upenn.edu
mailto:ylkuo@mit.edu
https://goo.gl/pUXdc1

