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Supervised Learning
with Neural Nets
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Logistic regression, support vector machines, decision trees, neural networks...
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o o o. °
o0
e \ o N
° e ° ° e 0o
o %00 °* L2 ... y o o
°® o ¢ . ¢
° 9 ° °.
o® ° °
o o ..
X1 L1

Simple perceptrons can only learn to solve linearly separable problems (Minsky and Papert 1969).

We can solve more complex problems by composing many units in multiple layers.




Multilayer perceptron (MLP)
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(“forward propagation”)

MLPs are universal function approximators (Cybenko 1989; Hornik 1989).
(under some assumptions... exercise: show that if g is linear, this architecture reduces to a simple perceptron)



Deep vs shallow

Universality: “shallow” MLPs with one hidden layer can represent any continuous function to arbitrary
precision, given a large enough number of units. But:

e No guarantee that the number of required units is reasonably small (expressivity).
e Noguarantee that the desired MLP can actually be found with our chosen learning method
(learnability).

Two motivations for using deep nets instead (see Goodfellow et al 2016, section 6.4.1):

e Statistical: deep nets are compositional, and naturally well suited to representing hierarchical
structures where simpler patterns are composed and reused to form more complex ones
recursively. It can be argued that many interesting structures in real world data are like this.

e Computational: under certain conditions, it can be proved that deep architectures are more
expressive than shallow ones, i.e. they can learn more patterns for a given total size of the network.



Backpropagation

Problem: compute all 9L /0w,

Key insights: the loss depends

e on the weights w of a unit only through that unit’s
activation h

e on a unit’s activation h only through the activation of
those units that are downstream from h.
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These give the gradient of the loss with respect to the weights,
which you can then use with your favorite gradient descent method.
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(exercise: derive gradient wrt bias terms b)



The Navy revealed the embryo of
an electronic computer today that it
expects will be able to walk, talk,
see, write, reproduce itself and
be conscious of its existence |...]
Dr. Frank Rosenblatt, a research
psychologist at the Cornell
Aeronautical Laboratory, Buffalo,
said Perceptrons might be fired to
the planets as mechanical space
explorers.

The New York Times
July 8th, 1958

The perceptron has shown itself
worthy of study despite (and even
because of!) its severe limitations. It
has many features to attract
attention: its linearity; its intriguing
learning theorem; its clear
paradigmatic simplicity as a kind of
parallel computation. There is no
reason to suppose that any of
these virtues carry over to the
many-layered version.
Nevertheless, we consider it to be
an important research problem to
elucidate (or reject) our intuitive
judgement that the extension to
multilayer systems is sterile.

Minsky and Papert 1969
(section 13.2)



Convolutional Neural Networks
for Object Recognition


http://cs231n.stanford.edu/

Traditional Object Detection/Recognition Idea

e Match low-level
vision features
(e.g. edge, HOG,
SIFT, etc)

e Parts-based
models (Lowe 2004)



Learning the features - inspiration from neuroscience

Hubel and Wiesel:
e Topographic organization of
connections
e Hierarchical organization of
simple/complex cells

(Hubel and Wiesel 1962)
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Fig. 2. Schematic diagram illustrating the
interconnections between layers in the
neocognitron

(Fukushima 1980)



“Canonical” CNN structure

INPUT ->[[CONV -> RELUJ*K -> POOL?]*L -> [FC -> RELU]*M -> FC

Credit: cs231n.github.io

C3:f. maps 16@10x10

INPUT C1: feature maps S4:1. maps 16@5x5

32432 6@28x28

i Four basic operations:
1. Convolution
2. Nonlinearity (ReLU)
3. Pooling
|

Fullconr{ection | Gaussian connections 4 FU"y ConneCted |ayerS
Subsampling

Convolutions  Subsampling Full connection

Convolutions

(LeCun et al 1998)


http://cs231n.github.io/

2D Convolution

Example: blurring an image

>

Replacing each pixel with an
average of its neighbors
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2D Convolution fimnl=hog=> him—kn—1Igk1]
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If N=input size, K=filter size, S=stride
(stride is the size of the step you take
on the input every time you move by

one on the output)
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Output size = (N-K)/S + 1

kernel / filter ) ,
Input image Output image



. . . N=32, K=5, S=1 —»(N-K)/S + 1 =28
More on convolution sizing

32 5x5x3 filter

32 32

3

Input depth = # of channels in previous layer
(often 3 for input layer (RGB); can be arbitrary Output depth = # of filters
for deeper layers) (feature maps)




Convolve with Different Filters

&)




Convolution (with learned filters)

e Dependencies are local
e Filter has few parameters to learn
o Share the same parameters
across different locations

Multiple filters

Feature map



Fully Connected vs. Locally Connected

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Credit: Ranzato’s
CVPR 2014 tutorial




output A

Non-linearity

input

e Rectified linear function (ReLU)
o Applied per-pixel, output = max(0, input)

i
\

white ='positive values | Only non-negative values

Input feature map Output feature map



Pooling

e Reduce size of representation in following layers
e Introduce some invariance to small translation

Single depth slice

= 11124
max pool with 2x2 filters
SHNGN 7 | 8 and stride 2 6|8
3 | 2 [ENES ] 3|4
1| 2

Image credit: http://cs231n.qgithub.io/convolutional-networks/


http://cs231n.github.io/convolutional-networks/

Learning
back-propagation

I B R R BN RERRRRERRRRERRRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRENRRRENNNRRNRRNDNDREHS.H;

- : e .

L} - n n n L} -

|} | n - k=l L 2]

L}

\ 4 \ 4 \ 4 \ 4 Vv \ 4 .

L]

"

(‘w_ S| C; S: n n; [ ]

mput feature maps  feature maps feature maps feature maps output L X:W .
32x32 28x28 14x14  10x10 5x5 (y’f( ’ )) .

V\ ———————— \so_o_\
— \\% o5, : :
P = MO >| Loss [#¥error:

3 =L =—F \\ AN o9 f(X;W) A Assssmmnn

pdm;
L4

5x5 2x2 5x5 A (O N\

(o)
convolution \ subsampling convolution 2x2 \\ O fully \
subsampling \\ connected N




Key evolutionary steps

Neocognitron - Fukushima 1980
Inspired by Hubel and Wiesel
“Convolutional” structure,

alternating “pooling” layers

LeNet - LeCun et al 1998
Backpropagation, gradient descent
C3:f. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
INPUT
32432 et o S2: 1. maps

|
Full conAection I Gaussian connections
Subsampling Convolutions  Subsampling Full connection

Convolutions
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AlexNet - Krizhevsky et al 2012
Larger, deeper network (~10"7 params), much more data (ImageNet -
~1076 images), more compute (incl. GPUs), better regularization (Dropout)



Image classification

mite
black widow go-kart
cockroach moped
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
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fire i dead-man's-fingers currant L ? d N L ’ - \
test | Y )
image - . .
9 smallest Euclidian distance to test image

But also object detection, image segmentation, captioning...



Recurrent Neural Network



Handling Sequential Information

Natural language processing: sentences, translations
Speech / Audio: signal processing, speech recognition

Video: action recognition, captioning

Sequential decision making / Planning

Time-series data

Biology / Chemistry: protein sequences, molecule structures



Dynamic System / Hidden Markov Model

Classical form of a dynamic system Hidden Markov Model
St—1 St St+1
e N
™ ai2 a3
With an external signal x
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Recurrent Network / RNN

e Ageneral form to process a sequence.
o Applying arecurrence formula at each time step

e The state consists of a vector h.
It summarizes input up to time t.

T = fwlhe-1, )

New state | Old state Input at time t

A function with
X parameter W

Yt — W’ht




Processing a Sequence: Unrolling in Time

I like this course

| | l |

RNN RNN RNN RNN

predict predict predict predict

prediction prediction prediction prediction



Training: Backpropagation Through Time

I like this course

prediction prediction prediction prediction

!

} } }
loss loss loss loss
T \ Y / T
PRP VBP DT NN

Total loss



Parameter Sharing Across Time

e The parameters are shared and derivatives are accumulated.
e Make it possible to generalize to sequences of different lengths.

CNN j Filter RNN &/ —




Vanishing Gradient

dLoss __ OLoss Of(x3)

x W W Ws Loss oWs — 0f(x3) OW3
OLoss _ OLoss 0f(x3) 0f(x9) 0f(x1)
oWy Of(a3) 0f(x2) 0f(x1) OWy
Of (xt) .
® Jf(zi—1) expanded quickly!
o |.| > 1, gradient explodes — clipping gradients
o |.| <1, gradient vanishes — introducing memory via LSTMs, GRUs

e Have probleminlearning long-term dependency.



Long Short Term Memory (LSTM)

LSTM Memory Cell
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ht-1 ht-1 ht
Xt Xt

Forget the Selected update  Output certain

irrelevant part of  cell state values  parts of the

previous state cell state

- Ci optionally let information
flow through.

o AnLSTM cell has three
gates to protect and
control the cell state.

Image credit: http://harinisuresh.com/2016/10/09/Istms/



Flexibility of RNNs

one to one one to many many to one many to many many to many

Image Sentiment Machine POS
Captioning Classification Translation Tagging

Image credit: Andrej Karpathy



Other Deep Learning Models



Auto-encoder

e Learningrepresentations
o agood representation should keep the information well

Encoder

w1

%

Original input

Decoder

w2

Learned

representation

o — objective: minimize reconstruction error

M w, |2 — f(g(z; w); wZ)“%

Reconstructed
image

[LeCun, 1987]



latent variables:
color, shape, position, ...

Generative Models )’

e What are the learned representations? i j

observed data

o Oneview: latent variables to generate the observed data

e Goal of learning a generative model: to recover p(x) from data

Desirable properties Problem

Sampling new data Directly computing

Evaluating likelihood of data
X) = X|Z)py(z)dz
Extracting latent features p( ) fpe( | )P(;’( )
is intractable!

Adapt from IJCAI 2018 deep generative model tutorial



Variational Autoencoder (VAE)

p(z) p(x|z)

@—~ Decoder

e Idea: approximate p(z|x)
with a simpler, tractable g(z|x)

e Learningobjective

0
1i(0, 8) = ~Enay ety [log(po(wil2))]
—

Reconstruction error
Encoder

+ K L(qy(z|z;) || p(z)),

q(z|x) p(X) Measure how close g is to p

[Kingma et al., 2013]



Generative Adversarial Network (GAN)

e Animplicit generative model, formulated as a minimax game.

o The discriminator is trying to distinguish real and fake samples.
o The generator is trying to generate fake samples to fool the discriminator.

sanmenawens Doty distribution s .- = Discriminator

. -~
. : 4% ) O

. . 7N

(@) (b) ©
Current state Update discriminator Update generator

Generator

N\

©)
Convergence

[Goodfellow et al., 2014]



Thanks & Questions?

Eugenio Piasini (epiasini@sas.upenn.edu)
Yen-Ling Kuo (ylkuo@mit.edu)

Link to the slides
o https://goo.gl/pUXdcl

Hands-on session on
Monday!
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