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Machine Learning

The data deluge

0/]/)

%’””mnte\\\geﬂﬁg;%%é

1:&‘“
aag%%, 5
amﬂl g

\32 questions s,
mm al onthmtheoreuaal iy

=-machi

behavior

~~~~~~ interactions algOI“l !!:nm.sb:'ei?};sm
ada statistical

use amoums <&z @ social @xtract - analys1s

arln

fachine
s gl e

gfaphs CIuﬁgpzlng e

Siri

Use your voice to send
messages, set reminders,
search for information,
and more.

GOAL: Introduce key algorithms that you can use and
complicate when needed




¢].ocal methods

PART I ¢ Bias-Variance

e Cross Validation

e Linear Least Squares

PART II

e Features and Kernels

*Deep Neural Nets Mor ning

PART II1 e Variable Selection: OMP

e Dimensionality Reduction: PCA

PART IV * Matlab practical session
Afternoon




PART I

e] ocal methods
e Bias-Variance
e Cross Validation

GOAL: Investigate the trade-off between stability and fitting starting
from simple machine learning approaches



The goal of supervised learning is to find an underlying input-output relation

f(@new) ~ v,
given data.

The data, called training set, is a set of n input-output pairs,
S={(x1,y1),.-., (Tn,Yn)}
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Local Methods: Nearby points have similar labels

Nearest Neighbor
Given an input 7, let
|I°

i’ =arg min ||T — x;
1=1,..., n

and define the nearest neighbor (NN) estimator as

£(Z) =y

How does it work?



Demo



http://vision.stanford.edu/teaching/cs231n-demos/knn/

K-Nearest Neighbors

Consider
dy = (||Z — z:*)i=s
the array of distances of a new point Z to the input points in the training set. Let
Sz
be the above array sorted in increasing order and
Iz
the corresponding vector of indices, and
Ky ={I;,....15}
be the array of the first K entries of I;. The K-nearest neighbor estimator (KNN) is defined as,

f(z) = Z Yi s

eEKz



Demo



http://vision.stanford.edu/teaching/cs231n-demos/knn/

Remarks:

Generalization I: closer points should count more

P\ 22;1 yzk(fafvz)
f&) = Z?:l k(z,r;)

, e 2 /0 2
Gaussian k(a2 z) = e~ le=217/207,

Parzen Windows

Generalization II: other metric/similarities

1
X =10, 1}D dp(z,2) = D Z Lizs2a9)

J=1

There is one parameter controlling fit/stability



How do we choose it?

Is there an optimal value?

Can we compute it?



Is there an optimal value?

Ideally we would like to choose K that minimizes the expected error

ESEa:,y(y _ fK(w))Q

Next: Characterize corresponding minimization problem to uncover
one of the most
fundamental aspect of machine learning.



For the sake of simplicity we consider a regression model

yi = fu(T:) + 05, E51=0,E5Z-2=02 1=1,...,n

further let

fi(x) = Bfg(x Z f«(x0)

EEK

Error decomposition

E(y - fx(2))* = E(y — f.(2))* + E(f.(2) — fx(2))? + E(fx(2) — fx(2))’

/ / £

o

0 ——Zf*a?e Kn

: leK,
Irreducible error , ,
Bias Variance



Bias Variance Trade-Off

AN A

E(y — fx(2))" = E(y — f«(2))” + E(fu(2) — fx(2))* + E(fx(2) — fx(2))’

Total Error

Variance

Oplimum Mode! Complexily

Error

Eiasz

5 o
Model Complexity

Is there an optimal value? YES! Can we compute it?



Not quite...

| |

E(y — fx(2))" = E(y — f«(2))” + E(fu(2) — fx(2))* + E(fx(2) — fx(2))’

/ / £

;
1 -
o E(fo(x) = 2 D> fulz)’ Kn
leK,
Irreducibl
rreqauciple error Bias Variance

...enter Cross Validation

Split data: train on some, tune on some other



Cross Validation Flavors

L

| Training | Validation I

Hold-Out



Cross Validation Flavors

Data

Training Validation

Validation

Validation

Validation

Validation

V-Fold, (V=nis Leave-One-Out)



Actual protocol
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Perils of data mining

Test Training Test
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End of PART I

e] ocal methods
e Bias-Variance
e Cross Validation

Stability - Overfitting - Bias/ Variance - Cross-Validation

End of the Story?



High Dimensions and Neighborhood

—

tell me the length of the edge
of a cube containing 1% of the
volume of a cube with edge 1
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Cubes and Dth-roots

Curse of dimensionality!




PART II

e[inear Least Squares
eFeatures and Kernels
*Deep Neural Nets

GOAL: Introduce the basic (global) regularization methods with linear
and non linear models

Going Global + Impose Smoothness



Of all the principles which can be proposed for that purpose, |
think there is none more general, more exact, and more easy of
application, that of which we made use in the preceding
researches, and which consists of rendering the sum of squares

of the errors a minimum.
(Legendre 1805)

1 n
min — Z(yz —whz)? 4+ wtw, A>0
i=1

weRP N

Tikhonov ‘62  Phillips ‘62 ~ Hoerl et al. 62




Of all the principles which can be proposed for that purpose, |
think there is none more general, more exact, and more easy of
application, that of which we made use in the preceding
researches, and which consists of rendering the sum of squares

of the errors a minimum.
(Legendre 1805)

1
min — Z(yz —whz)? 4+ wtw, A>0

Tikhonov ‘62  Phillips ‘62 ~ Hoerl et al. “62




1
min — Z(yz — wTa:i)z + A dwlw, A>0

Computations? Statistics?



n

u])fnln ZE 1 (y; — w' ;)" + Aw” w

Computations?

. ] — 1
Notation = —wt e ) = 2V — Xowll?
=S (4 — ') = —[[Ya — X

1=1

2
— XY, — X,w), and, 2w  Setting gradients...
n

...to zero (XX, + nDw = XY,

OK, but what is this doing?



Interlude: Linear Systems

e If M is a diagonal M = diag(o,...,0p) where g; € (0,00) for all i = 1,..., D, then

M~ =diag(1/o1,...,1/op), (M + X' =diag(l/(o1 +N),...,1/(cp + N

o If M is symmetric and positive definite, then considering the eigendecomposition
M7 =vyvt ¥ =diag(o,...,op), VVI =1,

then
M_1 :VZ_lvT, 2—1 :diag(l/()'l,...,l/O-D)7

and
(M 4+ X))t =VE\ =V, 2, =diag(1/(c1 +N),...,1/(op + )



1
min — Z(yz —whz)* +  wlw, A>0

Statistics?

(XPX, + nlw=X"Y,

another story that shall be told another time
(Stein ’56, Tikhonov’61)

1
min — Z(yz —whz)* + wlw, A>0

v D .
fulz) =wlz = ija:j Z(w3)2
i=1 —

g=1

Shrinkage - Regularization



Demo



https://cs.stanford.edu/people/karpathy/svmjs/demo/

Why a linear decision rule?



Dictionaries
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(XPX, + nDw=X'Y, (XIX, + nY)w= XY,

What About Computational Complexity?



Complexity Vademecum

M n by p matrix and v, v’ p dimensional vectors
e viv' — O(p)

e Mv' — O(np)

o MM*' s O(np?)

o (MM™*)™t — O(n?)



(XX, + nDw=X'Y, (XIX, + nY)w= XY,

What About Computational Complexity?

O(p®) + O(p*n)

What if p is much larger than n? ‘

(XIX, + D) ' X = XX, X + D)™

w=X1 (X, X+ I)"Y, = Za:;rcz
i=1

C
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(XIPX, + D)X = XX, X 4+ anl)™t

w=X"(X, X'+ DY, = Zx?cz
~~ i=1

Kernels w = Z rc; = f(x) = Z z C;

(w 55'2)
(Kp+Mnl)c=Y,, (K,)i=K(z;z;)

e the linear kernel K (z,2') = a2/,

e the polynomial kernel K (z,2') = (212’ + 1)¢,
. o —a)|?
o the Gaussian kernel K (z,2") = e~ 2%




things I won't tell you about

* Reproducing Kernel Hilbert Spaces
* Gaussian Processes

*Integral Equations

e Sampling Theory/Inverse Problems

[ oss functions- SVM,, Logistic...
e Multi - task, labels, outputs, classes



Demo



https://cs.stanford.edu/people/karpathy/svmjs/demo/




Neural Networks

= Z ﬂja(wépw + b;) ‘

f(x)
(w z+ b;) Zwkajk—l—b @

i1, LAM ANEURON




Deep Neural Networks

fw (@) =BLoWro(Wr_1...0(Wiz)))

=

P
N

i1, LAM ANEURON




Newton method/Gradient descent

min >~ (fw () ~ )’

Wipr = Wi =V > (fw, (@) — i)’

1=1

f(x)

|‘ ';
\\ /'l
_@_.—/ -~ 4 Mmimum Value
>

0] X




n Stochastic gradient

[.ocal minima

Global minima

linear regression/logisitc/svm neural nets



Demo



https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.75704&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

End of PART II

e[inear Least Squares
eKernel and features
*Deep Neural Nets



PART III

*a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to learn interpretable models
from data



n patients p gene expression measurements




D
fo(lr) =wlz = Zﬁjwj
j=1

Which variables are important for prediction?

or
Torture the data until they confess

Sparsity: only some of the coefficients are non zero



Brute Force Approach

check all individual variables, then all couple, triplets.....

] — ,
. T 1~ Jw ') )\ 9
it o3 (0 = Ful))” + Ml

Jwllo = [{j | w’ # 0}



Greedy approaches/Matching Pursuit

1

(1) initialize the residual, the coefficient vector, and the index set,
(2) find the variable most correlated with the residual,

(3) update the index set to include the index of such variable,

(4) update/compute coefficient vector,

(5) update residual.




ro=Y,, .wyg=0, Iy=0. Matching Pursuit

(Mallat Zhang '93)
for: =1,...,7 — 1
k=arg max a;, a;= (riy A7) ®
j=1,.,p 77 | X2
I; =1; 1 U{k}
W; = Wi—1 + Wk, WEk = vieg
;s — T's—1 —ka.
end
. ri X7 . .
@ v = ||Z)_(1jH2 — aI‘gIgIGi%&l lrics = X70[%, [lrics = X707 |1° = [lrica||® = qy



Basis Pursuit/Lasso

(Chen Donoho Saunders ~95, Tibshirani “96)

D
Jwlly = ) v
j=1

Problem is now convex and can be solved using convex optimization,
in particular so called proximal methods



T x 1
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things I won’t tell you about

*5Solving underdetermined systems

e Sampling theory

* Compressed Sensing

e Structured Sparsity

e From vector to matrices- from sparsity to low rank



End of PART III a)

*a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy & Convex Relaxation Approaches



PART III b)

®a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

GOAL: To introduce methods that allow to reduce data dimensionality
in absence of labels, namely unsupervised learning



Dimensionality Reduction for Data Visualization




Dimensionality Reduction

M:X=RP 5R* k<D,



Dimensionality Reduction

M:X =R 5 R k<D,

Consider first k = 1



Dimensionality Reduction

M:X=RP 5R* k<D,

Consider first k = 1 t
min 13" oy — (07wl
PCA weSP—-1 n 4 ! ! 7
/ 1=1
wlw =1

Computations? Statistics?



Statistics?




Statistics?

|zi = (whz)wl]* = [l = (w”z:)*,



Statistics?

T T

|z = (wz)wl® = [l — (w”z;)*

n

1 T \2
— wreré%gln;(w T;)°.



1=1
Statistics?
| — (W' zs)wl]® = ||z4]| = (w' 2;)*
f
1 n
L T \2
e max S (s - 7))
max — w(x;, — T
weSP—-1 n — !

>



Computations?



w1 max eigenvector of C,

1 n
max —Z(wTa:i)Q. o max w Cow, C,=— E TiX;
T -

weSP—1



Dimensionality Reduction
M:X=RP 5R* k<D,

What about k£ = 2?

ws second eigenvector of C,,

/ n
1
max w' C,w, C, = — g T
weSP—1 n n
1=

w L wq



M:X =R’ 5RF k<D,

things I won’t tell you about

e Random Maps: Johnson-Linderstrauss Lemma
e Non Linear Maps: Kernel PCA, Laplacian/
Ditfusion maps




End of PART III b)

®a) Variable Selection: OMP
*b) Dimensionality Reduction: PCA

Interpretability - Sparsity - Greedy & Convex Relaxation Approaches



The End

PART IV e Matlab practical session
Afternoon




