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Prediction in artificial neural networks is inspired by the brain.
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Figure 8. Circuit diagram of the back propagation model: In addition to the processing
levels Fi, F., Fs, there are also levels F., Fs, F,, and F; to carry out the computations which
control the learning process. The transport of learned weights from the F.—F, pathways to
the F.—Fs pathways shows that this algorithm cannot represent a learning process in the

brain.
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Such a physical transport of weights has no plausible physical interpreta-
tion. The weights in the F,— F; pathways must be computed within these
pathways in order to multiply signals from F:; to F;. These weights cannot
also exist within the pathways from F, to Fs in order to multiply signals
from £, to F; without being physically transported from (F,— F;) to (Fi— F)
pathways, thereby violating basic properties of locality. Moreover, the
levels F; and F, cannot be lumped together, because F; must record actual
outputs, whereas F, must record differences between expected and actual
outputs. The BP model is thus not a model of a brain process.
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Nope.

[ hope you enjoyed my talk!
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Random synaptic feedback weights support error
backpropagation for deep learning
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Random feedback weights support learning in deep neural networks

Timothy P. Lillicrap, Daniel Cownden, Douglas B. Tweed, Colin J. Akerman

Difference Target Propagation
Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, Yoshua Bengio

Towards Biologically Plausible Deep Learning

Yoshua Bengio, Dong-Hyun Lee, Jorg Bornschein, Thomas Mesnard, Zhouhan Lin

The weight symmetry problem
[is] arguably the crux of BP's

biological implausibility.

~N

o

How Important is Weight Symmetry in Backpropagation?

Qianli Liao, Joel Z. Leibo, Tomaso Poggio

Equivalence of Equilibrium Propagation and Recurrent Backpropagation

Benjamin Scellier, Yoshua Bengio
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NeurlPs 2018 Assessing the Scalability of Biologically-Motivated

Deep Learning Algorithms and Architectures

Sergey Bartunov Adam Santoro Blake A. Richards Luke Marris
DeepMind DeepMind University of Toronto DeepMind
Geoffrey E. Hinton Timothy P. Lillicrap
Google Brain DeepMind, University College London

Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we
find that TP and FA variants perform significantly worse than BP, especially for
networks composed of locally connected units, opening questions about whether
new architectures and algorithms are required to scale these approaches.
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Theorem: Lo-regularized linear autoencoders are symmetric at all critical points.

On Sun, Feb 10, 2019 at 2:16 PM Yoshua Bengio <yoshua.bengio@mila.quebec> wrote:

Thanks for reaching out, this is interesting.

The question of obtaining the transpose is actually pretty important for research on a
biologically plausible version of backprop, because if you obtain approximate transposes,
then several local learning rules give rise to gradient estimator analogues of backdrop.

Cheers,
-- Yoshua
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Yes.

By pure logic.
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Maybe.

And wouldn't it be fun to build
toward statements that could be
verified or falsified with rigor?
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cell

Organoid cell-types and activities
GEP usage Hypoxia

g che Identity GEP

Astro-1 ¢ FB-3
Astro-2 * Dop-1
® Astro-3  Dop-2
® Astro-4  NE-1
® Astro-5 ® NE-2
® Astro-6 © Stem-like
® Ret-1 e PP
® Ret-2 Musc-T1
®Ret-3  ® Musc-Im
®Ret-4 o Musc-T2

RNA molecules for “Ret5 - C61

® Ret-6 ® C6-2

that gene In that cell 81 -7

FB-2 *(C8




Representation Learning of Cell

cell

gene I l .




Representation Learning of Cell++

Non-linear
gene Singular Value
module Decomposition
X =UxXV"

cell type




Linear Autoencoder
WolWWi X

I.» [ all

LV, W) = || X — W1 X ||?

X =UXVT Wy = U} WaWi = UkU;;r
XXT=Ux*UT W, ="U.



Linear Autoencoder

WolWWi X
I .b T GI .
LV, Wy) = || X — Wl X||? = || X — V(G W) X7

X =UXV"T Wi :G'lUg WoW, = UpU,,
XXT=UZ*UT W, =U.G

Fact: Linear autoencoders are pseudoinverses at all critical points: W2 — W1_|_



Topology of PCA

Problem
Find the k-plane closest to a
point cloud in R™

Domalin
The manitold vvhose points are
K-planes In

|.e., the Grassmannian manifold:

Criy(R™) =2 {P=P* P=PT trP=k} Cc R™*™

Lx:Grp(R™) >R  Lx(P)=|X - PX]|]



Topology of PCA

—V_Lx



Topology of PCA




Topology of PCA

LX : GTQ( 4) —

d | uy | ups | us | ug 4

4 ® ®

3 ° °

2 ° ° 2 5
2| e °

1 | o °

O| e ®

0

dim Grg (R™) = k(m — k)

*To visualize 4 dimensions, first visualize n dimensions and then letn = 4.



Topology of PCA

Lx : Grig(R™) — R is Morse iff singular values are positive and distinct

T
(k) critical points are the principal k-planes.

Critical values are sums of eigenvalues => toy model for random matrix theory.

Gradient trajectories between principal planes in adjacent index rotate one
principal direction in first plane to another in second plane fixing the rest.

There are exactly two such trajectories > perfect [f'5-Morse function.

This rabbit hole goes tar deeper...
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Linear Autoencoder

WolWWi X
I .b T GI .
LV, Wy) = || X — Wl X||? = || X — V(G W) X7

X =UxXV" Wi :G'lUg WoW, = U,U,,
Wy =UrG

Fact: Linear autoencoders are pseudoinverses at all critical points: W2 — W1_|_



> of  min[[Al} st det(4)? =1 []oF

* Orthogonal matrices are the inverse matrices of minimum total Frobenius norm.

> (0 +0i%) min||Al}+ B} st AB=1

In particular, A = BT



L Inear Autoencoder

* OTW, X
| G

L,(Wi,Wy) = || X —WolV1 X

X =UXVT W,
WoWy = Ui (I — AU W,

Theorem: Lo-regularized linear autoencoders
are symmetric at all critical points.

*+ A(

Wi

Wo =

= OT(I —
— U (I —

WoWi X




log||Wy — W ||%

Linear Autoencoder

— Unregularized
——  Product
—  Sum

1000 2000 3000 4000
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| Inear Autoencoder
X =USVT = Wy =Ui(I =AY ?)z0

Theorem: Lo-regularized linear autoencoders are symmetric at all critical points.

Theorem: The loss is strictly saddle (Morse-Bott). All minima are global,

Theorem: The top principal directions of X with eigenvalue greater than A
coincide with the left singular vectors of the trained decoder Ws.
These eigenvalues are determined by the singular values of Wy .

PCA algo: Fit a regularized LAE and SVD the decoder. @ +
>

weight
decay




Scalar Autoencoder

B [ B

wy W2

(x — wgwla:)z

unregularized  L(w1q, wo)

product L(wr,ws) = (& — wowi2)® + Mwawy )*

(x — wgwla?)Q + )\(w% + w%)

SUIM EO’ (wlv wQ)

Scalar AE Visualization



https://danielkunin.github.io/Regularized-Linear-Autoencoders/

(a) Unregularized

Figure 1. Scalar loss landscapes with ® = 4. Yellow points are saddles and red curves and points are global minima.

Scalar Autoencoder
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Theorem 4.2 (Landscape Theorem).

The critical landscape is diffeomorphic to the space of pairs (Z, G) or (Z, O) with

« T CHAL,...,m}ofsize 0 <[ <k,

. G € R™ ! with independent columns,

. O € R**! \with orthonormal columns.

Wz Wl
UzG GU]

1 1

L
L. Ur(I; +XX7°)"2GT G+ \2;°)"2U]
Lo Ur(I; —A272)z0T7 O(I, — \X72)z2U7
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Theorem 3.1 (pPCA Theorem). With 0 = )\, the critical
points of

LOWo) = L,(WI(XXT)72,(XXT) "2 W)

coincide with the critical points of pPCA.

Bayesian L, pPCA
Wl,WQT NNka(O,A_l) <4 NNk(O,l)
Eq NNm(O,l) €; NNm(O,O'Q)

L, = WQWl.CEi E; L, — W()Zq; + €;
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Prediction
Supervised

Representation
Unsupervised

Efficiency
Sparsity

Self-amplification
Feedback control

Loved = ||y — WiWoz||*

Linto = ||h — WaW1h||?

Lreg

Lself

(W7 + (W27

—Ztr(W2W1)
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Lpp = Lpred T »Creg / :J

LIA — »Cpred T [’info T »Creg h

['SA — [fpred - [’self 1 [’reg .

|Wo — W]||?



Linear, 1 hidden layer

MNIST Test Accuracy
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Backpropagation
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MNIST Test Accuracy
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- 30 epochs
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In silico
- architecture search for less-biologically-implausible learning at scale
- adversarial robustness, information bottleneck, multitask learning

N puro
| 7 l - LAE from X to Y: closely related to PLS, CCA
- derive and study continuous flows on linear alignment networks

In algo
E : - bio-inspired take down of randomized SVD

N VIVO
- dynamics of representation teleportation in development and learning

- neural implementation factored through genomic / molecular ontogeny
IN space and time

in categorico / physico
- ground learning in functors between algebra, topology, and geometry
(Morse homology, ensemble and consensus learning, TQFT)
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Cellular interactions

Input

output

gating

Circuit motifs

Feedforward

Ao

Feedback

Ao

Disinhibition

el

Connectivity across regions

[BATB}- 7al =
rvp-'l L [ -
=
|
i oo
! o < )
%\Q e
LGN
RGC

Felleman and Van Essen, Cer. Cor. 1991






Thanks!

| AE: github.com/danielkunin/Regularized-Linear-Autoencoders

homepage: broadinstitute.org/mia
M playlist; pit.ly/2[18EVO
overview: youtube.com/watch?v=gWcEJiYZNZO

homepage: hail.is/about.html
code: github.com/hail-is/halil

article: thecrimson.com/article/2019/2/28/broad-institute-scrut/



https://github.com/danielkunin/Regularized-Linear-Autoencoders
http://broadinstitute.org/mia
https://bit.ly/2I18EvO
https://www.youtube.com/watch?v=gWcFJiYZNZ0&list=PLlMMtlgw6qNjROoMNTBQjAcdx53kV50cS
https://hail.is/about.html
https://github.com/hail-is/hail
https://www.thecrimson.com/article/2019/2/28/broad-institute-scrut/
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Statistical Genetics Tools

~

e (Call de novo variants

e Dominance-encoded GWAS

\_

Custom Python/R scripts

* Filter genotypes with bad allele balance
 Compute transmission disequilibrium

 Gene count permutation tests

~

Doesn’t
Scale

(

PLINK

e (Call Mendelian violations

e Relatedness
e« GWAS

 Detect sample duplicates or ID swaps

~

Doesn’t
Scale

SNPSift

 Genotype concorda
\_

(

EMMAX

 Sequence kernel

Doesn’t
Scale
associlation test

e Rare variant burden t

-

f "
bcftools

e Split multiallelic variants

* Filter on GQ, AD, PAS
\_ Doesn’t
Scale

-
tabix

» Subset VCFs to interyGyyees

-

~

vcffilterjdk

* Filter variants ,
Doesn’t

- Scale

=

bedtools

e Interval annotation ey

& Scale

-

Eigenstrat
 PCA

\_

Doesn’t
Scale
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Topology of PCA: Proof options

 Reduce to a simpler problem.

» Replace X with X for analysis or |2 | -22| for symmetry. h

 Reduce to a harder problem that's already been solved: the LAE!
m:0—Im(OO0T)

Vk(Rm) » Grk(]Rm) ‘
L:O—(0OT7,0) ﬂ L x
Rka ¢ Rmxk s R



LAE-SVD optimization

e Algorithm: optimize Lo-regularized LAE and then take SVD of the decoder.

Rate of convergence Rate of convergence
— LAE-PCA (untied) — LAE-PCA (untied)
2.5 - w ——— LAE-PCA (sync) 2 5 f \ ——— LAE-PCA (sync)
—— LAE-PCA (0ja) —— LAE-PCA (0ja)
— LAE-PCA (exact) — LAE-PCA (exact)
2.0 - 2.0 -
- -_ -
S S
= =
= 1.5 + - 1.5 -
a) a)
> >
(V) wn
= =
§ 1.0 - § 1.0 -
(L] L] |
N & i K
0.0 - T | 00{ - k
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 5000 10000 15000 20000
Time (sec) lteration

e Using SGD, algorithm resembles randomized SVD.



Morse theory

e |dea: Study the topology of a space via smooth functions on the space.

o A function is Morse if all critical points are non-degenerate;:

f(xl,...,xm):c—x%—...—x?i—l—x?iﬂ—l—...—l—m?n

« The Morse index d is number of negative eigenvalues of Hessian.

> 2 2
o

® o

0 0




Morse theory

e |dea: Study the topology of a space via smooth functions on the space.

o A function is Morse if all critical points are non-degenerate;:

f(xl,...,xm):c—x%—...—x?i—l—x?iﬂ—l—...—l—m?n

« The Morse index d is number of negative eigenvalues of Hessian.

0 2 2
¢ Fuler characteristic
d;
X =y (-1)
® .
0 0 l1-0+1=2=2—-1+1










LAE-SVD optimization

e Algorithm: optimize Lo-regularized LAE and then take SVD of the decoder.

XXt = X @ X.T

while np.linalg.norm(W1l - W2.T) > epsilon:
Wl -= alpha * ((W2.T @ (W2 @ W1 - I)) @ XXt + lamb * W1)
W2 -= alpha * (((W2 @ W1 - I) @ XXt) @ W1.T + lamb * W2)

principal directions, s, = np.linalg.svd(W2, full matrices = False)

eigenvalues = np.sqrt(lamb / (1 - s**2))

* This is a regularized version of Oja’s rule.



LAE-SVD optimization

e Algorithm: optimize Lo-regularized LAE and then take SVD of the decoder.

XXt = X @ X.T

diff = np.inf

while diff > epsilon:
update = alpha * (((W2 @ W2.T - I) @ XXt) @ W2 + lamb * W2)
W2 -= update
diff = np.linalg.norm(update)

principal directions, s, = np.linalg.svd(W2, full matrices = False)

eigenvalues = np.sqrt(lamb / (1 - s*%*2))

* This is a regularized version of Oja’s rule.



