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Instructions: Go through the below exercises. TAs will cover the solutions to the exercises. 
 

Part 1: Matrix operations for a feedforward network 
 

We will construct a 2 layer feedforward linear network, and use matrix operations to calculate its 

outputs, given its inputs and weights.  We’ll call the output neurons y1, …, yM and input neurons 

x1, …, xN.  Wij is the connection strength (weight) onto neuron yi from neuron xj.  We refer to W 

as the weight matrix. 

 

 
 

1) What does each row of the weight matrix represent? Each column? 

2) Write an expression for calculating yi, the response of the ith output neuron. 

3) Write an expression for calculating the contribution of input neuron xj to the network 

output (this should be a vector of length M).  Note that the total network output is the sum 

of the contributions from each input neuron.  

 

Matrix notation gives us a compact way of expressing all of this information: 

 

 
 

4) Convince yourself that the equation above captures what you found in parts 2) and 3).  

 

Now we’ll use MATLAB to construct an example network, with N = 50 and M = 10.  

 

 

 

 

 

 

 

 

 

 



5) Generate a weight matrix.  Assume the weights are random and uniform between -1 and 1 

(use rand). 

6) Generate a 50-dimensional pattern of inputs consisting of Gaussian entries (use randn). 

7) Calculate the network output.   

 

Part 2: Logical operations, for-loops, and plotting (random walk) 
 

We will construct a biased random walk with a reflecting barrier and reset.  You can think of this 

as a simple model of the voltage of a neuron.  The voltage increases, with some fluctuations, 

until it reaches a threshold, at which point it spikes then resets to a resting value, and starts the 

process again.   

 

Specifically, the voltage of the cell is given by: V(t+1) = V(t) +dV(t), where dV(t) is 1 with 

probability p, and -1 with probability 1 - p.  We want the system to reset once it hits a maximum 

ceiling, so we will add the condition: V(t+1) = Vreset if Y(t) > Vthres.   

 

1) Make a function generatevoltage(p,T,Vreset,Vthresh,V0) that takes as 

input the probability of going up, p, the number of time steps to simulate, T, the reset 

voltage, Vreset, the spike threshold, Vthres, and the initial voltage, V0. Your 

function should return a vector V, the voltage at all time steps from 1 to T.  To create the 

function, make a new file generatevoltage.m with the following syntax:  

 
function V = generatevoltage(p,T,Vreset,Vthresh,V0) 

 % your code here 

end 

 

2) Inside the function, create the vector V = zeros(1,T); that will hold voltage values at each 

step of the process:  

 
for t = 1:T-1 

 % update V(t+1) 

end 

 

3) Run your function to simulate a neuron with initial voltage of -65mV, threshold of -

45mV, and reset voltage of -70mV.  Choose p so that your neuron has an average firing 

rate of approximately 10Hz, assuming each time step corresponds to 1ms (feel free to try 

several values of p).  Calculate the voltage values for 1 second 

4) Plot the voltage as a function of time using plot.   Label your axes using xlabel and 

ylabel.  

 

 

Part 3: Convolution to estimate voltage response to a spike train 
 

A convolution is a mathematical operation on two functions that expresses the amount of overlap 

of one function as it is shifted over the other. Mathematically, it is defined as  

 



We will use convolution to estimate the voltage response of a neuron to an incoming spike train.   

 

1) Generate 3 seconds of a Poisson spike train with firing rate 20Hz.  Use spiketrain = 

rand(1,N)>(1-p); where N is the total number of time steps (each time step should 

1 ms) and p is the probability of spiking in any given time step (you need to calculate N 

and p).  

2) Construct a kernel, the response of the neuron to one spike at t=0.  We assume the neuron 

is linear, that is, the response to multiple spikes is the sum of the responses to each 

individual spike. For the kernel, use an exponential with mean mu of 5ms.  Calculate the 

kernel for values between -50 and 50ms: k = exppdf(-50:50, mu); Plot the 

kernel.  

3) Use conv to estimate the voltage response of the cell to the spike train by convolving 

your spike train from 1) with the kernel from 2).  (Hint: convert spiketrain to a 

double from a logical: spiketrain = double(spiketrain); ).   

4) Plot the voltage and the spike train on two separate panels using subplot.  Make sure 

to align them properly in time (type doc conv to see how conv works). Zoom in to 

see what happens to the voltage when incoming spikes occur in rapid succession.  It may 

help to use linkaxes to align the two panels when you zoom.  

 

 

Part 4: Convolution to detect edges in images 
 

In an image, edges are where the image is different from its neighbors. Convolution in two 

dimensions is often used for edge detection in image processing.  The output of this operation is 

very similar to the response of cells in primary visual cortex, which respond selectively to 

oriented edges. The following kernel will be zero in regions of the image where neighboring 

pixels have the same value, and nonzero for edges: k = [0 0 0; 0 1.125 0; 0 0 0]-

.125*ones(3,3);  

  

 Load the octopus image (from http://www.bbc.co.uk/nature/life/Octopus).  Plot it 

using imagesc(octopus); colormap gray;  

 

1) Use conv2 to convolve the image with the kernel k, and plot the result using imagesc.  

Notice that edges can be darker and/or lighter than the gray background.   

2) Plot the absolute value of the convolution (this will show both positive and negative 

edges as lighter than the background). You’ve built a simple edge detector!   

3) If you have time, try modifying your filter, and try it on different images.  See 

http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html for 

importing different data formats into MATLAB.  Hint: usually, importdata works.  

 

 

Part 5: Correlation to analyze premotor neural data.  
 

We’ll use cross-correlation to analyze the timing relation between the song of a juvenile zebra 

finch and neural data recorded while he was singing.   

http://www.bbc.co.uk/nature/life/Octopus
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html


 

1) Load the file MackeviciusData.mat, which includes an extracellular recording, units, 

and raw sound data, song, simultaneously recorded at the sampling frequency fs.  

 

2) In two panels, plot the song data and the neural data, with the correct time axes.  Listen to 

the song using sound(song,fs);  

 

You’ll notice that both the sound data and the neural trace have a lot of fluctuations.  We want to 

ignore the fast fluctuations, and instead focus on whether broad bursts in neural activity precede 

song syllables (broad bursts of sound).  Therefore, we will compute the log power of each signal, 

so we’re left with signals showing the broad changes in power of each signal.  

 

3) To smooth the power of each signal by a 2.5 ms Gaussian run the following: 
10*log10(conv(signal.^2, gausswin(ceil(fs*.025)), 'same')); 

Plot these new traces.  What does the 10*log10 transformation means? 

4) Compute the cross correlation between the song and the neural activity using xcorr.  

Plot the cross correlation as a function of the time lag.  Does it look like bursts of neural 

activity precede song syllables? Use findpeaks to find the exact temporal relation 

between spike firing and song production. 

 

 

Part 6: Singular Value Decomposition (SVD) on images of faces 

 
We’ll perform SVD on images of faces.  SVD decomposes a matrix X into the product USV’, 

where U and V are square matrices and S is diagonal.  If X is n x m, columns of U are a basis in 

n-dimensional space, and columns of V are a basis in m-dimensional space.  If you’ve mean-

subtracted your data, these are the same bases you get in PCA (the eigenvectors of the 

covariance matrices, XX’ and X’X respectively). S contains the squared eigenvalues of these 

covariance matrices on the diagonal (XX’ and X’X have the same eigenvalues).   Using SVD, we 

can look at the principal modes in both the pixel space (in our case 137 x 86 pixels) and in the 

image space (in our case 213 total images).  

 

We’ll use faces from the JAFFE database, which contains images of several subjects each 

displaying several facial expressions (Michael J. Lyons, Miyuki Kamachi, Jiro Gyoba. Japanese 

Female Facial Expressions (JAFFE), Database of digital images (1997). 

http://www.kasrl.org/jaffe_info.html).  The file jaffe.mat contains a matrix IMS of image 

data, where rows represent images and columns represent pixels.  Each image has been flattened 

into a vector of pixels.  To see the ith image, use the command: 
imagesc(reshape(IMS(i,:), 137, 86)); colormap gray; 
 

1) Mean-subtract your data so that the mean of each pixel is 0 and the mean of each image is 

zero.  

2) Use the command svd to compute U, S and V. Which is a basis for the space of pixels? 

Which is a basis for the space of images? Plot the singular values and estimate how many 

dimensions are needed to capture most of the dataset.  

http://www.kasrl.org/jaffe_info.html


3) Use reshape, imagesc and subplot to visualize the first 9 elements of the pixel-

space basis.  

4) Experiment with how the images look restricted to a lower dimensional basis.  Remember 

that X = USV’, and set all but the first n columns of V to zero for n = 5, 20, 50, 137*86.  

5) U is a basis for the space of images, of which there are 213.  The variable EMind 

indicates the emotion of each image, and IDind indicates the subject id of each image.  

Plot the first column of U as a function of the emotion, and also as a function of the 

subject id.  Does this direction seem to better capture differences between subjects or 

between emotions?  

 

 

Part 7: Estimation of spectro-temporal receptive fields with spike-triggered 

averaging  

 
In this exercise, we will demonstrate how to estimate the spectro-temporal receptive field 

(STRF) using spike-triggered averaging (STA).  First, we will generate a spike train from a 

model neuron with a spectro-temporal kernel that we will provide. Whenever the stimulus is 

sufficiently correlated with the kernel, the neuron will fire.  Next, we will compute the STA (the 

average stimulus that precedes a spike).  We will compare the STA with the kernel used to 

generate the spike train, note that they look similar, and comment on the limitations that prevent 

us from perfectly estimating the STRF.   

 

We begin by constructing a stimulus to present to the neuron.  We know the neuron is selective 

to time-varying sound, but we want to know which sound best excites the neuron.  Therefore, we 

want a stimulus that will try many different sequences of sounds with equal probability.  The 

MATLAB file generatestimulus.m generates such a stimulus in the form of a 2D matrix where 

the rows represent 50 logarithmically spaced tone frequencies and the columns represent time 

bins of width 1ms. Entry (i, j) of the matrix is the amplitude of tone i at time step j.  The stimulus 

is constructed so that tones turn on and last for 30 ms, with a slight ramping at the onset and 

offset to make transitions sound less abrupt.  Each tone has a 10% probability of turning on in a 

given 30 ms window.   

 

1) Run generatestimulus.m to construct the stimulus.  The code will plot the stimulus 

matrix. Listen to the stimulus using the provided function playstim.m. Just listen to a few 

seconds of the stimulus, because the whole stimulus is 1000 s long, and may crash your 

computer if you try to play it. Make sure playstim.m is in your MATLAB path, and your 

speakers or headphones are working and execute the following:  

 
freq = logspace(2,4,50);% 50 log-spaced freqs 100-10000Hz 

dt=0.01;% sampling interval in seconds 

PlayStim(Stimulus(:,1:(3/dt)),freq, dt);% play first 3s 

 



Next we will construct an STRF for our model neuron. The file generatekernel.m returns an 

array of 100 time bins by 50 frequency bins, containing the STRF. The STRF is the sum of 

bivariate Gaussian distributions.  

2) Run generatekernel.m to construct the STRF.  The code will plot the kernel matrix. 

Listen to STRF using playstim.m. This is the stimulus that best excites our model neuron. 

Plot the STRF using imagesc. Is this receptive field separable? Briefly explain why or 

why not. 

 

Now we are ready to simulate how the neuron responds to the stimulus.  To do this, you will 

slide the kernel across the stimulus, and at each time bin t calculate the integral (sum) of the 

element-wise product between the kernel and the stimulus that occurred between time (t - 100) 

and time (t – 1).  This is our estimate of how strongly the neuron is excited by the stimulus at 

each time.  Our simulated neuron should spike whenever this excitatory drive exceeds some 

threshold.    

 

3) Write code to calculate the excitatory drive to the neuron at each time in the stimulus.  

You can start 100ms into the stimulus (the STRF is 100 ms long). Your code should 

record a spike whenever excitatory drive to the neuron exceeds a threshold.  Choose a 

threshold such that the neuron spikes approximately 10,000 times over the entire 

stimulus.  

4) Make a figure with the following three subplots: 5 seconds of the stimulus; the excitatory 

drive to the neuron during this part of the stimulus; and the spiking response of the 

neuron to this part of the stimulus.  

 

Now you are ready to compute the STA from the spike train.   

 

5) Write code to calculate the average 150 ms of stimulus that precedes each spike.  Plot this 

recovered STA using ‘surf’ (see generatekernel.m for an example of how to plot a 

matrix using ‘surf’). Listen to the STA and the stimulus with playstim.m and briefly 

comment on how they sound. 

6) The kernel is 100ms long, and we computed a STA that is 150ms long.  What do you 

notice in the part of the STA corresponding to 150-100 ms prior to a spike?  How well 

did the STA recover the neuron’s receptive field? What parts of the kernel did the STA 

fail to recover? Why do you think this is? Think of the number of spikes, the type of 

stimulus needed to perform this analysis, and the baseline firing rate of the neuron. 

 


