Programming Tutorial
Brain, Minds and Machines Summer Course
Woods Hole, 2018

TA’s: Karolina Marcyniak, Francisco J. Flores.
Exercises by Emily Mackevicius.

Adapted from Woods Hole and MIT Computational Neuroscience courses

Instructions: Go through the below exercises. TAs will cover the solutions to the exercises.
Part 1: Matrix operations for a feedforward network

We will construct a 2 layer feedforward linear network, and use matrix operations to calculate its
outputs, given its inputs and weights. We’ll call the output neurons yi, ..., ym and input neurons
X1, ..., xn. Wij is the connection strength (weight) onto neuron y; from neuron xj. We refer to W
as the weight matrix.

1) What does each row of the weight matrix represent? Each column?

2) Write an expression for calculating y;, the response of the ith output neuron.

3) Write an expression for calculating the contribution of input neuron x; to the network
output (this should be a vector of length M). Note that the total network output is the sum
of the contributions from each input neuron.

Matrix notation gives us a compact way of expressing all of this information:

(%1 Win Wi -+ Win T
Y2 Way Way - Wan T2
YM Wyr Wae -+ Wun TN

4) Convince yourself that the equation above captures what you found in parts 2) and 3).

Now we’ll use MATLAB to construct an example network, with N = 50 and M = 10.

5) Generate a weight matrix. Assume the weights are random and uniform between -1 and 1
(use rand).

6) Generate a 50-dimensional pattern of inputs consisting of Gaussian entries (use randn).

7) Calculate the network output.

Part 2: Logical operations, for-loops, and plotting (random walk)

We will construct a biased random walk with a reflecting barrier and reset. You can think of this
as a simple model of the voltage of a neuron. The voltage increases, with some fluctuations,
until it reaches a threshold, at which point it spikes then resets to a resting value, and starts the
process again.

Specifically, the voltage of the cell is given by: V(t+1) = V(t) +dV(t), where dV(t) is 1 with
probability p, and -1 with probability 1 - p. We want the system to reset once it hits a maximum
ceiling, so we will add the condition: V(t+1) = Vreset if Y(t) > Vthres.

1) Make a function generatevoltage (p, T,Vreset,Vthresh,V0) that takes as
input the probability of going up, p, the number of time steps to simulate, T, the reset
voltage, Vreset, the spike threshold, vthres, and the initial voltage, V0. Your
function should return a vector V, the voltage at all time steps from 1 to T. To create the
function, make a new file generatevoltage.m with the following syntax:

function V = generatevoltage (p,T,Vreset,Vthresh,V0)

% your code here
end

2) Inside the function, create the vector V = zeros(1,T); that will hold voltage values at each
step of the process:

for t = 1:T7T-1
% update V(t+1)
end

3) Run your function to simulate a neuron with initial voltage of -65mV, threshold of -
45mV, and reset voltage of -70mV. Choose p so that your neuron has an average firing
rate of approximately 10Hz, assuming each time step corresponds to 1ms (feel free to try
several values of p). Calculate the voltage values for 1 second

4) Plot the voltage as a function of time using plot. Label your axes using xlabel and
ylabel.

Part 3: Convolution to estimate voltage response to a spike train

A convolution is a mathematical operation on two functions that expresses the amount of overlap
of one function as it is shifted over the other. Mathematically, it is defined as

“+o0o
f*gl(t) = / f(r)g(t - 7)dr

— o0

+oo
_ / g(r)f(t — 7)dr

— o0

We will use convolution to estimate the voltage response of a neuron to an incoming spike train.

1) Generate 3 seconds of a Poisson spike train with firing rate 20Hz. Use spiketrain =
rand (1,N)>(1-p) ; where N is the total number of time steps (each time step should
1 ms) and p is the probability of spiking in any given time step (you need to calculate N
and p).

2) Construct a kernel, the response of the neuron to one spike at t=0. We assume the neuron
is linear, that is, the response to multiple spikes is the sum of the responses to each
individual spike. For the kernel, use an exponential with mean mu of 5ms. Calculate the
kernel for values between -50 and 50ms: k = exppdf (-50:50, mu); Plot the
kernel.

3) Use conv to estimate the voltage response of the cell to the spike train by convolving
your spike train from 1) with the kernel from 2). (Hint: convert spiketrain to a
double from a logical: spiketrain = double (spiketrain) ;).

4) Plot the voltage and the spike train on two separate panels using subplot. Make sure
to align them properly in time (type doc conv to see how conv works). Zoom in to
see what happens to the voltage when incoming spikes occur in rapid succession. It may
help to use 1inkaxes to align the two panels when you zoom.

Part 4: Convolution to detect edges in images

In an image, edges are where the image is different from its neighbors. Convolution in two
dimensions is often used for edge detection in image processing. The output of this operation is
very similar to the response of cells in primary visual cortex, which respond selectively to
oriented edges. The following kernel will be zero in regions of the image where neighboring
pixels have the same value, and nonzero foredges: k = [0 0 0; 0 1.125 0; 0 0 0]-
.125*ones (3, 3) ;

e Load the octopus image (from http://www.bbc.co.uk/nature/life/Octopus). Plot it
using imagesc (octopus); colormap gray;

1) Use conv2 to convolve the image with the kernel k, and plot the result using imagesc.
Notice that edges can be darker and/or lighter than the gray background.

2) Plot the absolute value of the convolution (this will show both positive and negative
edges as lighter than the background). You’ve built a simple edge detector!

3) If you have time, try modifying your filter, and try it on different images. See
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html for
importing different data formats into MATLAB. Hint: usually, importdata works.

Part 5: Correlation to analyze premotor neural data.

We’ll use cross-correlation to analyze the timing relation between the song of a juvenile zebra
finch and neural data recorded while he was singing.

http://www.bbc.co.uk/nature/life/Octopus
http://www.mathworks.com/help/matlab/import_export/supported-file-formats.html

1) Load the file MackeviciusData.mat, which includes an extracellular recording, units,
and raw sound data, song, simultaneously recorded at the sampling frequency fs.

2) Intwo panels, plot the song data and the neural data, with the correct time axes. Listen to
the song using sound (song, fs) ;

You’ll notice that both the sound data and the neural trace have a lot of fluctuations. We want to
ignore the fast fluctuations, and instead focus on whether broad bursts in neural activity precede
song syllables (broad bursts of sound). Therefore, we will compute the log power of each signal,
so we’re left with signals showing the broad changes in power of each signal.

3) To smooth the power of each signal by a 2.5 ms Gaussian run the following:
10*1ogl0 (conv(signal.”2, gausswin(ceil (fs*.025)), 'same')):;
Plot these new traces. What does the 10*10g10 transformation means?

4) Compute the cross correlation between the song and the neural activity using xcorr.
Plot the cross correlation as a function of the time lag. Does it look like bursts of neural
activity precede song syllables? Use findpeaks to find the exact temporal relation
between spike firing and song production.

Part 6: Singular Value Decomposition (SVD) on images of faces

We’ll perform SVD on images of faces. SVD decomposes a matrix X into the product USV”,
where U and V are square matrices and S is diagonal. If X is n x m, columns of U are a basis in
n-dimensional space, and columns of V are a basis in m-dimensional space. If you’ve mean-
subtracted your data, these are the same bases you get in PCA (the eigenvectors of the
covariance matrices, XX’ and X’X respectively). S contains the squared eigenvalues of these
covariance matrices on the diagonal (XX’ and X’X have the same eigenvalues). Using SVD, we
can look at the principal modes in both the pixel space (in our case 137 x 86 pixels) and in the
image space (in our case 213 total images).

We’ll use faces from the JAFFE database, which contains images of several subjects each
displaying several facial expressions (Michael J. Lyons, Miyuki Kamachi, Jiro Gyoba. Japanese
Female Facial Expressions (JAFFE), Database of digital images (1997).
http://www.kasrl.org/jaffe_info.html). The file jaffe.mat contains a matrix IMS of image
data, where rows represent images and columns represent pixels. Each image has been flattened
into a vector of pixels. To see the ith image, use the command:
imagesc (reshape (IMS(i,:), 137, 86)); colormap gray;

1) Mean-subtract your data so that the mean of each pixel is 0 and the mean of each image is
zero.

2) Use the command svd to compute U, S and V. Which is a basis for the space of pixels?
Which is a basis for the space of images? Plot the singular values and estimate how many
dimensions are needed to capture most of the dataset.

http://www.kasrl.org/jaffe_info.html

3) Use reshape, imagesc and subplot to visualize the first 9 elements of the pixel-
space basis.

4) Experiment with how the images look restricted to a lower dimensional basis. Remember
that X = USV”’, and set all but the first n columns of V to zero for n =5, 20, 50, 137*86.

5) U is a basis for the space of images, of which there are 213. The variable EMind
indicates the emotion of each image, and IDind indicates the subject id of each image.
Plot the first column of U as a function of the emotion, and also as a function of the
subject id. Does this direction seem to better capture differences between subjects or
between emotions?

Part 7. Estimation of spectro-temporal receptive fields with spike-triggered
averaging

In this exercise, we will demonstrate how to estimate the spectro-temporal receptive field
(STRF) using spike-triggered averaging (STA). First, we will generate a spike train from a
model neuron with a spectro-temporal kernel that we will provide. Whenever the stimulus is
sufficiently correlated with the kernel, the neuron will fire. Next, we will compute the STA (the
average stimulus that precedes a spike). We will compare the STA with the kernel used to
generate the spike train, note that they look similar, and comment on the limitations that prevent
us from perfectly estimating the STRF.

We begin by constructing a stimulus to present to the neuron. We know the neuron is selective
to time-varying sound, but we want to know which sound best excites the neuron. Therefore, we
want a stimulus that will try many different sequences of sounds with equal probability. The
MATLAB file generatestimulus.m generates such a stimulus in the form of a 2D matrix where
the rows represent 50 logarithmically spaced tone frequencies and the columns represent time
bins of width 1ms. Entry (i, j) of the matrix is the amplitude of tone i at time step j. The stimulus
is constructed so that tones turn on and last for 30 ms, with a slight ramping at the onset and
offset to make transitions sound less abrupt. Each tone has a 10% probability of turning on in a
given 30 ms window.

1) Run generatestimulus.m to construct the stimulus. The code will plot the stimulus
matrix. Listen to the stimulus using the provided function playstim.m. Just listen to a few
seconds of the stimulus, because the whole stimulus is 1000 s long, and may crash your
computer if you try to play it. Make sure playstim.m is in your MATLAB path, and your
speakers or headphones are working and execute the following:

freq = logspace(2,4,50);% 50 log-spaced fregs 100-10000Hz
dt=0.01;% sampling interval in seconds
PlayStim(Stimulus(:,1:(3/dt)), freq, dt);% play first 3s

Next we will construct an STRF for our model neuron. The file generatekernel.m returns an
array of 100 time bins by 50 frequency bins, containing the STRF. The STRF is the sum of
bivariate Gaussian distributions.

2) Run generatekernel.m to construct the STRF. The code will plot the kernel matrix.
Listen to STRF using playstim.m. This is the stimulus that best excites our model neuron.
Plot the STRF using imagesc. Is this receptive field separable? Briefly explain why or
why not.

Now we are ready to simulate how the neuron responds to the stimulus. To do this, you will
slide the kernel across the stimulus, and at each time bin t calculate the integral (sum) of the
element-wise product between the kernel and the stimulus that occurred between time (t - 100)
and time (t — 1). This is our estimate of how strongly the neuron is excited by the stimulus at
each time. Our simulated neuron should spike whenever this excitatory drive exceeds some
threshold.

3) Write code to calculate the excitatory drive to the neuron at each time in the stimulus.
You can start 100ms into the stimulus (the STRF is 100 ms long). Your code should
record a spike whenever excitatory drive to the neuron exceeds a threshold. Choose a
threshold such that the neuron spikes approximately 10,000 times over the entire
stimulus.

4) Make a figure with the following three subplots: 5 seconds of the stimulus; the excitatory
drive to the neuron during this part of the stimulus; and the spiking response of the
neuron to this part of the stimulus.

Now you are ready to compute the STA from the spike train.

5) Write code to calculate the average 150 ms of stimulus that precedes each spike. Plot this
recovered STA using ‘surf’ (see generatekernel.m for an example of how to plot a
matrix using ‘surf’). Listen to the STA and the stimulus with playstim.m and briefly
comment on how they sound.

6) The kernel is 100ms long, and we computed a STA that is 150ms long. What do you
notice in the part of the STA corresponding to 150-100 ms prior to a spike? How well
did the STA recover the neuron’s receptive field? What parts of the kernel did the STA
fail to recover? Why do you think this is? Think of the number of spikes, the type of
stimulus needed to perform this analysis, and the baseline firing rate of the neuron.

