
Bayesian inference
in generative models

Luke Hewitt and Maddie Cusimano
BCS Computational Tutorial

2018-11-13

1. Intro to generative models (5 min)
2. Exact inference (10 min)
3. Sampling-based methods (25 min)
4. Variational inference (20 min)
5. Probabilistic programming languages (5 min)
6. Exercises (Last hour)

Overview

What is a generative model?
A probability distribution over observable variables

P(S → NP VP) = 1.0
P(VP → V NP) = 0.7
P(VP → VP PP) = 0.3

…
P(N → dog) = 0.02
P(N → fish) = 0.01
P(N → man) = 0.01

The dog saw a man in the park

P(sentence) P(face)P(rain)

e.g. P(pixel1)
ｘP(pixel2|pixel1)
ｘ...

Common to describe distribution through unobservable latent variables

e.g. directed causal model:
Prior distribution of latent variables
Likelihood of observations given latent variables

What is a generative model?

Male Facing right
Short hair

Shadow

Common to describe distribution through unobservable latent variables

e.g. directed causal model:
Prior distribution of latent variables
Likelihood of observations given latent variables

Bayes rule:
Given observations, infer latent variables

p(shadow | img) ∝ p(shadow) p(img | shadow)

More generally: p(shadow | img) ∝ p(shadow, img)
(e.g. undirected models)

What is a generative model?

Male Facing right
Short hair

Shadow? Moustache?

prior likelihood

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

 z

 x

p(z) = N(z; µ=0, σ=1)

p(x | z) = N(x; µ=z, σ=1)

0

z

z

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

 z

 x

p(z) = N(z; µ=0, σ=1)

p(x | z) = N(x; µ=z, σ=1)

0

Latent variable

Observed variable

p(z | x) ?

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Directed causal model: p(z, x1, x2, x3) = p(z) p(x1 | z)p(x2 | z) p(x3 | z)

 z

x1

p(z) = N(z; µ=0, σ=1)

For i = [1, 2, 3]:
p(xi | z) = N(x; µ=z, σ=1)

0

Latent variable

Observed
variables

p(z | x1, x2, x3) ?

x2 x3

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Directed causal model: p(z, x1, x2, x3) = p(z) p(x1 | z)p(x2 | z) p(x3 | z)

 z

 x

p(z) = N(z; µ=0, σ=1)

For i = [1, 2, 3]:
p(xi | z) = N(x; µ=z, σ=1)

0

Latent variable

Observed variables

p(z | x1, x2, x3) ?

N = 3

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Probabilistic programs: an extension of graphical models that express uncertainty
over the structure of the graph itself

p(sun, friend, raise, hot, happy, shirt)
= p(sun)p(friend)p(raise)

*p(happy | sun, friend, raise)
*p(hot | sun) p(shirt | hot, happy)

Exact Inference

Exact Inference

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

● When latent variable is discrete with finite support,
○ Can enumerate all possibilities

p(z|x) = p(z, x) / ∑z p(z, x)

● When latent variable is continuous:
○ Some likelihood functions p(x | z) have conjugate priors, which allow the

posterior to be computed analytically
○ If a conjugate prior is used, p(z | x) and p(z) will be the same type of

probability distribution: simply update the prior parameters

z

x

Graphical models
Generative model for which the conditional dependence structure between random
variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

 z

 x

p(z) = N(z; µ=0, σ2=1)

p(x | z) = N(x; µ=z, σ2=1)

0

Gaussian conjugate prior on µ

Gaussian likelihood

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

Posterior is also Gaussian!
N(z; µ=½(x + 0), σ2=½)

Conjugate priors

Likelihood Conjugate prior Posterior update

x ~ Normal(µ=z, 1) z ~ Normal(µ0, σ0
2)

z | x ~ Normal(,)

x ~ Normal(µ=0, σ2=z) z ~ InvGamma(ɑ, β) z | x ~ InvGamma(ɑ + ½, β + ½ x2)

x ~ Bernoulli(p=z) z ~ Beta(ɑ, β) z | x ~ Beta(ɑ + x, β + 1 - x)

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

x + µ0/σ0
2

1 + σ0
2

1

1 + σ0
2

Belief propagation (‘Sum-product algorithm’)

z1

x1

z2

x2

z3

x3

z4

x4

...

If latent variables form a sequence (or a tree) can find marginals p(zi) exactly
(Also ‘max-product’ for finding MAP)

discrete, or
(zi, xi) conjugate pair

e.g. Hidden Markov Models, Linear Gaussian State Space Models

Junction Tree Algorithm

z1

x1

z2

x2

z3

x3

z4

x4

If cyclic, must first group latent variables together.
(Still exact, but exponentially expensive...)

z1, z2,
z3

x1 x2 x3

z4

x4

...

Only possible...

1. For simple distributions which are either finite or conjugate
2. In small models, where you can enumerate all possible latent variables
3. In large models, if latent variables are not cyclic

(see also, Junction Tree Algorithm)

Not very often…, BUT exact inference is often used as part of an approximate
algorithm

Exact Inference

Approximate Inference

Approximate Inference
To approximate the posterior, two main ideas (both from physicists):

● Monte Carlo (1946, 1953, 1970, ...)
 Represent posterior as collection of (weighted) samples, {z1, z2, ...}

● Variational Inference (~1990s+)
 Represent posterior as a parametric distribution, Q(z) (e.g. gaussian)

To supplement these ideas (2000s):

● Amortized Inference: Learn to do inference quickly.
(‘bottom-up’, ‘data driven’, ‘pattern-recognition’)

Monte Carlo Methods

Stanisław Ulam

● We want to sample from some distribution
○ In this case, a posterior p(z|x)

● We can’t sample from p directly, but maybe we can evaluate it
○ Or maybe we can only evaluate an unnormalised version of it, e.g. p(z, x)

Take samples from some other distribution (e.g. prior) and transform/reweight/etc.
them so that they become samples from the posterior

Monte Carlo inference

● Basic example: Sample from prior and weight by likelihood

Likelihood Weighting

X

● Basic example: Sample from prior and weight by likelihood

Likelihood Weighting

X

X

X

X

X

XX

X

XX X
X

X X

X
X

X

● Basic example: Sample from prior and weight by likelihood

Likelihood Weighting

X

X

X

X

X

XX

X

XX X X

X X

X
X

X

● Sample from guide q(z), weight by w = p(z,x)/q(z)

Importance Sampling

● Sample from guide q(z), weight by w = p(z,x)/q(z)

Importance Sampling

X

X

X

X

X XX

X
X

X

X
X

X X

X
X

X
X

X
X

X

X

XX
X

X

X

X
X

XX

● Sample from guide q(z), weight by w = p(z,x)/q(z)

Importance Sampling

X

X

X

X

X XX

X

X

X
X

X X

X
X

X
X

X

X

XX

X

X

X
X

XX

● Sample from guide q(z), weight by w = p(z,x)/q(z)

Importance Sampling

X

X
X XX

X
X

X

X

XX

● Sample from guide q(z), weight by w = p(z,x)/q(z)
Learn q with a neural network

Importance Sampling

X

X

X

X

X XX

X
X

X

X
X

X X

X
X

X
X

X
X

X

X

XX
X

X

X

Importance Sampling

Cusumano-Towner et al. (2017)

● Works well if you can design, or learn, a guide distribution close to the true
posterior

■ Should put a reasonable amount of probability mass on the true posterior
■ Much better to overshoot than undershoot!

● Usually terrible in high dimensional spaces

Importance Sampling

Rather than independent samples from a pre-determined guide distribution, take
correlated samples that form a Markov Chain

New sample based on feedback from previous sample

Those samples are based on a random walk over Z, such that the proportion of
samples equal to z* is proportional to p(z* | x)

Neet to meet conditions:
1. Markov chain is ergodic (eventually get to any possible z)
2. Posterior distribution is stationary

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC)
E.g. Mixture of Gaussians

µ

K

z

x
N

zi ~ Categorical(...)
μj ~ Normal(...)
xi ~ Normal(μzi)

Markov Chain Monte Carlo (MCMC)
E.g. Mixture of Gaussians

“If we knew the zs, we could just sample mu” (because mu has a conjugate prior)
“If we knew the μs, we could just sample z” (because z has a finite prior)

µ

K

z

x

N

zi ~ Categorical(...)
μj ~ Normal(...)
xi ~ Normal(μzi)

Gibbs Sampling
● If we can’t sample from p(A,B) but we can sample from p(A|B) and p(B|A)
● Algorithm:

1. Initialise A and B
2. Repeat

Sample A ~ p(A|B)
Sample B ~ p(B|A)

Collapsed Gibbs Sampling
E.g. Mixture of Gaussians

Dirichlet is conjugate prior for Categorical.
So: don’t sample π, but marginalise

we can evaluate p(z|μ) exactly!

µ

K

z

x
N

ππ ~ Dirichlet(...)
zi ~ Categorical(π)
μj ~ Normal(...)
xi ~ Normal(μzi)

← cluster proportions

← high proportion

Low proportion →

Markov Chain Monte Carlo (MCMC)
What if we don’t know the conditional distributions exactly?
Similar idea to importance sampling:

1. Propose from a ‘guide’ distribution, and
2. Accept/reject proposal using feedback from model

Metropolis-Hastings (MH)
General algorithm for obtaining MH samples to approximate p(z | x). animation

1 Initialize z0

2 for s = 0, 1, 2, ... do
3 Define z = z s
4 Sample z’ ~ q(z’|z)
5 Compute acceptance ratio:

 r = p(z’, x)q(z|z’)
 p(z, x)q(z’|z)
6 Compute a = min(1, r)
7 Sample u ~ U(0, 1)
8 Set new sample to:

 zs+1 = z’ if u < a
 zs if u >= a

← Proposal distribution (may be a mixture distribution)

← Accept
← Reject

← Satisfies “detailed-balance”

← Only an unnormalized posterior p is necessary

Some other MCMC ideas (mix ‘n match)
Data-driven proposals e.g. Tu & Zhu (2002), Kulkarni et al. (2015)
Sample (z, x) pairs from generative model, train neural network q(z|x). Proposal
distribution can be a mixture of ‘global’ network proposals and ‘local’ (e.g. gaussian)
proposals

Hamilton Monte Carlo animation
Use gradient information, follow the energy landscape

Annealing
e.g. start with a ‘smoothed’ likelihood (“high temperature”) and “cool” to true likelihood

Parallel tempering
Use multiple chains at different temperatures. Proposals jump between chains.

MCMC
Benefits
● Can be applied to any probability distributions including:

High dimensionality
Discrete variables / unknown dimensionality (probabilistic programs)

● Can use unnormalized posterior

Difficulties
● ‘Burn in’ - Find region of high probability, with only local information
● ‘Mixing’ - How to move between modes?
● Difficult to assess convergence

When your latent variables and
observations form a sequence
(so you get feedback over time)

Like importance sampling but
reweight and resample
at each timestep

Particle Filtering / Sequential Monte Carlo (SMC)

z1

x1

z2

x2

z3

x3

z4

x4

...

Particle Filtering / Sequential Monte Carlo (SMC)

X

X

X

X X

X X

X
X

Particle Filtering / Sequential Monte Carlo (SMC)

X

Particle Filtering / Sequential Monte Carlo (SMC)

X
X

Particle Filtering / Sequential Monte Carlo (SMC)

X
X

Particle Filtering / Sequential Monte Carlo (SMC)

X
X

Particle Filtering / Sequential Monte Carlo (SMC)

X
X

X

Particle Filtering / Sequential Monte Carlo (SMC)

X
X

X

X

Particle Filtering / Sequential Monte Carlo (SMC)

X

X

X

Particle Filtering / Sequential Monte Carlo (SMC)

X

X
X

X

Particle Filtering / Sequential Monte Carlo (SMC)

X

X
X

Particle Filtering / Sequential Monte Carlo (SMC)

X

X

X

X X

X X

X X

Particle Filtering / Sequential Monte Carlo (SMC)

X

X

X

X X

X X

X X

Rejuvenation

MCMC steps to update the whole state sequence

Particle Filtering / Sequential Monte Carlo (SMC)

X

X

X

X X

X X

X X

Neural network proposal functions

● Neural Adaptive Sequential Monte Carlo (Gu et al. 2015)
● Neurally Guided Procedural Models (Ritchie et al. 2016)

Particle Filtering / Sequential Monte Carlo (SMC)

z1

x1

z2

x2

z3

x3

...

Neurally Guided Procedural Models (Ritchie et al. 2016)

Neural net Neural net

Monte Carlo inference: summary
- Basic idea illustrated with importance sampling

- MCMC algorithms:
- MH: General purpose
- Gibbs sampling: when you have exact conditional distributions
- HMC: when you have the gradients of the (unnormalised) posterior
- SMC: when you have sequential observations
- Many, many others!

- Use neural networks to learn proposal distributions

Variational Inference

Leonard Euler Joseph-Louis Lagrange

Monte-Carlo: Obtain samples from posterior
Variational: Approximate posterior with a parametric distribution (e.g. Gaussian)

● Optimise parameters to most closely match posterior: minimise DKL(Q||P)
● Trade off between ease of optimisation and accuracy of approximation

Variational Inference (Inference as optimisation)

μ

σ

P≅Q

Matching the true posterior
Kullback-Leibler divergence KL(Q||P) = measure of distance* between Q and P
● Non-negative; zero only when P and Q are equal

DKL[Q(z) || p(z|x)] = -Ez~Q[log]

= -Ez~Q[log p(z,x) - log Q(z)] + const.

Q(z)
p(z|x)

ELBO (evidence lower bound)
Lower bound on log p(x)

Matching the true posterior

How to choose and optimise the variational distribution, Q?

● ‘Classical’ variational inference (1990s, 2000s)
Find a variational family that you can optimise analytically
(with the calculus of variations)

● Stochastic gradient variational Bayes (2014)
Find a variational family that you can optimise with gradient descent

Ez~Q[log p(z,x) - log Q(z)]
ELBO

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions

q(z1, …, zn) ~ ∏ q(zi)

n

i=1

p(π,µ,z,x) = p(π) ∏p(µk) ∏p(zi|π) p(x|µz)

P: Gaussian mixture model

µ

K

z

x
N

π

Σ

π ~ Dirichlet(...)
zi ~ Categorical(π)
μj ~ Normal(...)
Σj ~ InvWishart(...)
xi ~ Normal(μzi,Σzi)

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions

q(z1, …, zn) ~ ∏ q(zi)

n

i=1

p(π,µ,z,x) = p(π) ∏p(µk) ∏p(zi|π) p(x|µz)

P: Gaussian mixture model

µ

K

z

x
N

π

Σ

π ~ Dirichlet(...)
zi ~ Categorical(π)
μj ~ Normal(...)
Σj ~ InvWishart(...)
xi ~ Normal(μzi,Σzi)

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions

q(z1, …, zn) ~ ∏ q(zi)

n

i=1

p(π,µ,z,x) = p(π) ∏p(µk) ∏p(zi|π) p(x|µz)

P: Gaussian mixture model

µ

K

z

x
N

π

Σ

π ~ Dirichlet(...)
zi ~ Categorical(π)
μj ~ Normal(...)
Σj ~ InvWishart(...)
xi ~ Normal(μzi,Σzi)

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions

q(z1, …, zn) ~ ∏ q(zi)

n

i=1

p(π,µ,z,x) = p(π) ∏p(µk) ∏p(zi|π) p(x|µz)

P: Gaussian mixture model

µ

K

z

x
N

π

Σ

π ~ Dirichlet(...)
zi ~ Categorical(π)
μj ~ Normal(...)
Σj ~ InvWishart(...)
xi ~ Normal(μzi,Σzi)

‘Classical’ variational inference
1. Choose conjugate prior distributions in P and choose Q from the same family,

so that we will be able to derive analytical solutions
2. Mean-field approximation: make all latent variables independent in Q

q(z1, …, zn) ~ ∏ q(zi)

n

i=1

p(π,µ,z,x) = p(π) ∏p(µk) ∏p(zi|π) p(x|µz)

Q(z1, …, zn) = ∏ q(zi)
n

i=1

Q(π,µ,Σ,z) =q(π) ∏q(µk)q(Σk) ∏q(zi)

Mean-field variational inference:
“Find the closest match to the posterior without allowing any correlations”

‘Classical’ variational inference

z1

z2

P

Mean-field variational inference:
“Find the closest match to the posterior without allowing any correlations”

‘Classical’ variational inference

z1

z2

P, Q

‘Classical’ variational inference

Argmax E [log p(z,μ,x) - log q(z)q(μ)]

Ez~Q[log p(z,x) - log Q(z)]
ELBO

Gaussian mixture model

µ

K

z

x
N

zi ~ Categorical(π)
μj ~ Normal(...)
xi ~ Normal(μzi)

q(z), q(μ) z~q(z)
μ~q(μ)

Mean field approximation: Q(z, μ) = q(z)q(μ)

‘Classical’ variational inference

Argmax E [log p(z,μ,x) - log q(z)q(μ)]

Ez~Q[log p(z,x) - log Q(z)]
ELBO

Gaussian mixture model

µ

K

z

x
N

zi ~ Categorical(π)
μj ~ Normal(...)
xi ~ Normal(μzi)

q(z), q(μ)

“If we knew q(z) we could find the best q(μ)”
q*(μ) ∝ exp[Eq(z) log p(z,μ,x)]

“If we knew q(μ) we could find the best q(z)”
q*(z) ∝ exp[Eq(μ) log p(z,μ,x)]

So: Alternate updates to q(z) and q(μ)

z~q(z)
μ~q(μ)

Mean field approximation: Q(z, μ) = q(z)q(μ)

‘Classical’ variational inference
● Algorithm:

1. Initialise q(A) and q(B)
2. Repeat

Update q(A) to minimise DKL[q(A)q(B) || P(A,B)]
Update q(B) to minimise DKL[q(A)q(B) || P(A,B)]

Until convergence

“But can’t we just do
ArgmaxQ Ez~Q[log p(z,x) - log Q(z)]

with gradient descent?”
- Kingma et al. (2014), Rezende et al. (2014)

● Answer: Yes, if we use samples to approximate the expectation (SGD)!
But only if:

○ Unnormalized posterior p(z,x) is differentiable in z (no discrete random variables, unless you can
marginalise them out)

○ Q(z) is ‘reparametrisable’ (e.g. multivariate Normal)

● No need for conjugate priors!
● No need for mean-field approximation!

Stochastic Gradient Variational Bayes

p(z) = Gamma(z; 1,1)

Stochastic Gradient Variational Bayes

z

x p(x|z) ∝ exp[-(z-x)4]

q(z) = Gamma(z; a, b)

1. Normalizing flows (Rezende and Mohamed, 2016)
○ To make an expressive variational distribution Q, start with a

simple distribution (e.g. Normal) and then run it through a bunch
of invertible transformations.

2. Amortized variational distribution
○ Use a neural network fθ to parametrize Q(z)

Variational Autoencoders (Kingma et al, 2014)
○ Afterwards, you not only solve your inference problem, but

you also have a recognition model for future observations

More stochastic variational inference

z

x

q(zi) = Normal(zi; fθ(xi))

i = 1..N

Variational inference: summary
Can mix methods: some latents stochastic, others analytical (e.g. Belief Propagation)
Benefits

- Fast and easy to assess convergence
- Provides model evidence log P(X)
- Normalising flows: Can handle multimodality

Limitations
- Unlike MH, restrictions on model:

- Classical VI: Mean-field approximation and conjugate priors
 Often can’t express multimodal posteriors

- SGVB: everything has to be differentiable/enumerable
- Unlike MCMC, not exact in the limit, convergence =/= exact posterior

Probabilistic Programming Languages
Programming languages which contain useful abstractions and functions for
defining generative models and performing inference in them

PPL Strengths

Stan (Carpenter, Gelman et al.) Optimised for graphical models

+ Edward (Tran, Blei et al.) + Deep generative models, SVI

WebPPL (Goodman & Stuhlmüller) Universal (dynamic computation graph)

+ Pyro (Bingham, Goodman et al.) + Deep generative models, SVI

Gen (Cusumano-Towner & Mansinghka) Programmable Inference

Learn ourselves Pyro - This Thursday @ 2:30pm, 46-5165

Exercises: Bayesian polynomial regression

x

i = 1..N

y

σ2

y ~ Normal(β0 + β1x + β2x2 + β3x3, σ2)

k = 1..K

β
k

Inference exercises
1. Metropolis Hasting sampler
2. ‘Classical’ Variational Inference
3. Stochastic Gradient Variational Bayes

Defining the model

x

i = 1..N

y

τ

Fix prior parameters a0, b0, μ0.
τ ~ Gamma(a0,b0) → σ2 = 1/τ
βk ~ Normal(μ0, 1/τ)
y ~ Normal(β0 + β1x + β2x2 + β3x3, 1/τ)

k = 1..K

β
k

Exact inference
For details see: https://en.wikipedia.org/wiki/Bayesian_linear_regression

Metropolis-Hastings (MH)
1 Initialize z0

2 for s = 0, 1, 2, ... do
3 Define z = z s
4 Sample z’ ~ q(z’|z)
5 Compute acceptance ratio:

 r = p(z’, x)q(z|z’)
 p(z, x)q(z’|z)
6 Compute a = min(1, r)
7 Sample u ~ U(0, 1)
8 Set new sample to:

 zs+1 = z’ if u < a
 zs if u >= a

← Accept
← Reject

1. propose samples z’ and computes
these probabilities:
a. q(z’ | z) and q(z | z’)
b. p(z’) and p(z)

2. propose requires
transition_dist q(z’ | z)
a. p(z) is already defined for you

Metropolis-Hastings (MH)
1 Initialize z0

2 for s = 0, 1, 2, ... do
3 Define z = z s
4 Sample z’ ~ q(z’|z)
5 Compute acceptance ratio:

 r = p(z’, x)q(z|z’)
 p(z, x)q(z’|z)
6 Compute a = min(1, r)
7 Sample u ~ U(0, 1)
8 Set new sample to:

 zs+1 = z’ if u < a
 zs if u >= a

← Accept
← Reject

3. p(z’, x) needs to be calculated
a. p(z’, x) = p(z’)p(x | z)
b. E.g., p(z, x)

4. Combine outputs of propose and
unnormalized posteriors to calculate
acceptance ratio

5. Apply Metropolis-Hastings to accept
or reject the sample

6. Do inference!

Classic Variational Inference
1. Write out the mean-field approximation
2. Derive the evidence lower bound (ELBO)
3. Derive analytical latent variable updates by either:

a. Directly optimizing the ELBO
b. Through the calculus of variations

4. Iterate updating each latent variable

Classic Variational Inference
1. Write out the mean-field approximation

Model P
τ ~ Gamma(a0,b0) → σ2 = 1/τ
βk ~ Normal(μ0, 1/τ)
y ~ Normal(β0 + β1x + β2x2 + β3x3, 1/τ)

Variational Posterior Q
Q(τ, β) = Q(τ)∏KQ(βk)
τ ~ Gamma(a,b)
βk ~ Normal(𝜈k, 1/ωk)

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

To compute the first term:

Gamma distribution

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

To compute the first term:

Gamma distribution

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

To compute the second term:

Gamma distribution

Normal distribution

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

To compute the second term:

Gamma distribution

Normal distribution

Classic Variational Inference
2. Derive the evidence lower bound (ELBO)

We won’t compute the third term today, it has long (but manageable) integrals.

Classic Variational inference
3. Derive analytical latent variable updates by:

a. Directly optimizing the ELBO

Take the partial derivatives of the ELBO with respect to 𝜈k and ωk to derive each of
their updates. (Remember to sum over N and K in deriving the entire ELBO!)

This will not lead to closed form solutions for a and b, though.

Classic Variational inference
3. Derive analytical latent variable updates by:

b. Through the calculus of variations (we won’t do this today)

Doing these expectations and folding anything constant with respect to τ into Const.
eventually gets you to an expression with the form:

This is log of a Gamma distribution with a = f1 & b = f2, which are the updates.

Classic Variational inference
4. Enter your iterative updates and do inference!

Stochastic Gradient Variational Bayes
The ELBO is:

For each SGD iteration, we need a unbiased (monte-carlo) estimate of the ELBO, so:

1. Sample (τ, β) from q
○ Note: use dist.rsample() for a ‘reparametrized’ (differentiable) sample

2. Evaluate the term inside the expectation
3. Repeat until convergence!

 E [log p(τ, β, y | x) - log q(τ)q(β)]
z~q(z)
μ~q(μ)

