Bayesian inference in generative models

Luke Hewitt and Maddie Cusimano BCS Computational Tutorial 2018-11-13

Overview

- 1. Intro to generative models (5 min)
- 2. Exact inference (10 min)
- 3. Sampling-based methods (25 min)
- 4. Variational inference (20 min)
- 5. Probabilistic programming languages (5 min)
- 6. Exercises (Last hour)

What is a generative model?

A probability distribution over observable variables

P(face)

e.g. P(pixel1) **x**P(pixel2|pixel1)

What is a generative model?

Common to describe distribution through unobservable latent variables

What is a generative model?

Common to describe distribution through unobservable latent variables

(e.g. undirected models)

Generative model for which the conditional dependence structure between random variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

Generative model for which the conditional dependence structure between random variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

Generative model for which the conditional dependence structure between random variables is expressed as a graph

Directed causal model: $p(z, x_1, x_2, x_3) = p(z) p(x_1 | z)p(x_2 | z) p(x_3 | z)$

Generative model for which the conditional dependence structure between random variables is expressed as a graph

Directed causal model: $p(z, x_1, x_2, x_3) = p(z) p(x_1 | z)p(x_2 | z) p(x_3 | z)$

Generative model for which the conditional dependence structure between random variables is expressed as a graph

p(sun, friend, raise, hot, happy, shirt)
= p(sun)p(friend)p(raise)
 *p(happy | sun, friend, raise)
 *p(hot | sun) p(shirt | hot, happy)

Probabilistic programs: an extension of graphical models that express uncertainty over the structure of the graph itself

Exact Inference

Exact Inference

Ζ

Х

- When latent variable is discrete with finite support,
 Can enumerate all possibilities p(z|x) = p(z, x) / ∑_z p(z, x)
- When latent variable is **continuous**:
 - Some likelihood functions p(x | z) have **conjugate priors**, which allow the posterior to be computed analytically
 - If a conjugate prior is used, p(z | x) and p(z) will be the same type of probability distribution: simply update the prior parameters

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

Generative model for which the conditional dependence structure between random variables is expressed as a graph

Simplest directed causal model: p(z, x) = p(z) p(x | z)

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

Conjugate priors

Likelihood	Conjugate prior	Posterior update
x ~ Normal(µ=z, 1)	$z \sim Normal(\mu_0, \sigma_0^{-2})$	$z \mid x \sim Normal \left(\frac{x + \mu_0 / {\sigma_0}^2}{1 + {\sigma_0}^2}, \frac{1}{1 + {\sigma_0}^2} \right)$
x ~ Normal(μ =0, σ^2 =z)	z ~ InvGamma(α, β)	z x ~ InvGamma(α + $\frac{1}{2}$, β + $\frac{1}{2}$ x ²)
x ~ Bernoulli(p=z)	z ~ Beta(α, β)	$z \mid x \sim Beta(\alpha + x, \beta + 1 - x)$

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior

Belief propagation ('Sum-product algorithm')

If latent variables form a sequence (or a tree) can find marginals $p(z_i)$ exactly (Also 'max-product' for finding MAP)

e.g. Hidden Markov Models, Linear Gaussian State Space Models

Junction Tree Algorithm

If cyclic, must first group latent variables together. (Still exact, but exponentially expensive...)

Exact Inference

Only possible...

- 1. For simple distributions which are either **finite** or **conjugate**
- 2. In small models, where you can enumerate all possible latent variables
- 3. In large models, if latent variables are not cyclic (see also, Junction Tree Algorithm)

Not very often..., BUT exact inference is often used as part of an approximate algorithm

Approximate Inference

Approximate Inference

To approximate the posterior, two main ideas (both from physicists):

• Monte Carlo (1946, 1953, 1970, ...)

Represent posterior as collection of (weighted) samples, $\{z_1, z_2, ...\}$

• Variational Inference (~1990s+)

Represent posterior as a parametric distribution, Q(z) (e.g. gaussian)

To supplement these ideas (2000s):

• Amortized Inference: Learn to do inference quickly. ('bottom-up', 'data driven', 'pattern-recognition')

Monte Carlo Methods

Stanisław Ulam

Monte Carlo inference

- We want to sample from some distribution
 - \circ In this case, a posterior p(z|x)
- We can't sample from p directly, but maybe we can evaluate it
 - Or maybe we can only evaluate an unnormalised version of it, e.g. p(z, x)

Take samples from some other distribution (e.g. prior) and transform/reweight/etc. them so that they become samples from the posterior

Likelihood Weighting

• Basic example: Sample from prior and weight by likelihood

Likelihood Weighting

• Basic example: Sample from prior and weight by likelihood

Likelihood Weighting

• Basic example: Sample from prior and weight by likelihood

Sample from guide q(z), weight by w = p(z,x)/q(z)
 Learn q with a neural network

Cusumano-Towner et al. (2017)

- Works well if you can design, or learn, a guide distribution close to the true posterior
 - Should put a reasonable amount of probability mass on the true posterior
 - Much better to overshoot than undershoot!
- Usually **terrible** in high dimensional spaces

Markov Chain Monte Carlo (MCMC)

Rather than independent samples from a pre-determined guide distribution, take correlated samples that form a Markov Chain

New sample based on feedback from previous sample

Those samples are based on a random walk over Z, such that the proportion of samples equal to z^* is proportional to $p(z^* | x)$

Neet to meet conditions:

- 1. Markov chain is **ergodic** (eventually get to any possible z)
- 2. Posterior distribution is **stationary**

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC)

"If we knew the zs, we could just sample mu" (because mu has a conjugate prior) "If we knew the μs, we could just sample z" (because z has a finite prior)

Gibbs Sampling

- If we can't sample from p(A,B) but we can sample from p(A|B) and p(B|A)
- Algorithm:
 - 1. Initialise A and B
 - 2. Repeat

Sample A ~ p(A|B) Sample B ~ p(B|A)

Collapsed Gibbs Sampling

E.g. Mixture of Gaussians

 $\begin{aligned} \pi &\sim \text{Dirichlet}(...) \leftarrow \text{cluster proportions} \\ z_i &\sim \text{Categorical}(\pi) \\ \mu_j &\sim \text{Normal}(...) \\ x_i &\sim \text{Normal}(\mu_{zi}) \end{aligned}$

Dirichlet is **conjugate prior** for Categorical. So: don't sample π, but marginalise we can evaluate p(z|μ) exactly!

Markov Chain Monte Carlo (MCMC)

What if we don't know the conditional distributions exactly? Similar idea to importance sampling:

- 1. Propose from a 'guide' distribution, and
- 2. Accept/reject proposal using feedback from model

Metropolis-Hastings (MH)

General algorithm for obtaining MH samples to approximate p(z | x).

animation

1 Initialize z^0 **2** for $s = 0, 1, 2, \ldots$ do Define $z = z^s$ 3 4 Sample $z' \sim q(z' | z) \leftarrow$ Proposal distribution (may be a mixture distribution) 5 Compute acceptance ratio: $r = \frac{\hat{p}(z', x)q(z|z')}{\hat{p}(z, x)q(z'|z)} \leftarrow \text{Only an unnormalized posterior } \hat{p} \text{ is necessary}$ Compute $a = \min(1, r) \leftarrow \text{Satisfies "detailed-balance"}$ 6 7 Sample $u \sim U(0, 1)$ 8 Set new sample to: $z^{s+1} = \int z'$ if $u < a \leftarrow Accept$ z^s if $u \ge a \leftarrow Reject$

Some other MCMC ideas (mix 'n match)

Data-driven proposals e.g. Tu & Zhu (2002), Kulkarni et al. (2015)

Sample (z, x) pairs from generative model, train neural network q(z|x). Proposal distribution can be a mixture of 'global' network proposals and 'local' (e.g. gaussian) proposals

Hamilton Monte Carlo animation

Use gradient information, follow the energy landscape

Annealing

e.g. start with a 'smoothed' likelihood ("high temperature") and "cool" to true likelihood

Parallel tempering

Use multiple chains at different temperatures. Proposals jump between chains.

MCMC

Benefits

- Can be applied to any probability distributions including: High dimensionality
 Discrete variables / unknown dimensionality (probabilistic programs)
- Can use unnormalized posterior

Difficulties

- 'Burn in' Find region of high probability, with only local information
- 'Mixing' How to move between modes?
- Difficult to assess convergence

When your latent variables and observations form a sequence (so you get feedback over time)

Like importance sampling but reweight and resample **at each timestep**

MCMC steps to update the whole state sequence

- Neural Adaptive Sequential Monte Carlo (Gu et al. 2015)
- Neurally Guided Procedural Models (Ritchie et al. 2016)

Neurally Guided Procedural Models (Ritchie et al. 2016)

Monte Carlo inference: summary

- Basic idea illustrated with importance sampling
- MCMC algorithms:
 - **MH**: General purpose
 - **Gibbs sampling**: when you have exact conditional distributions
 - **HMC**: when you have the gradients of the (unnormalised) posterior
 - SMC: when you have sequential observations
 - Many, many others!
- Use neural networks to learn proposal distributions

Variational Inference

Leonard Euler

Joseph-Louis Lagrange

Variational Inference (Inference as optimisation)

Monte-Carlo: Obtain samples from posterior

Variational: Approximate posterior with a parametric distribution (e.g. Gaussian)

- Optimise parameters to most closely match posterior: minimise D_{κ1} (Q||P)
- Trade off between ease of optimisation and accuracy of approximation

Matching the true posterior

Kullback-Leibler divergence $KL(Q||P) = measure of distance^*$ between Q and P

• Non-negative; zero only when P and Q are equal

$$D_{KL} \left[\mathbf{Q}(\mathbf{z}) || \mathbf{p}(\mathbf{z}|\mathbf{x}) \right] = -E_{z \sim \mathbf{Q}} \left[\log \frac{\mathbf{p}(\mathbf{z}|\mathbf{x})}{\mathbf{Q}(\mathbf{z})} \right]$$

Matching the true posterior

ELBO E_{z~Q}[log **p(z,x)** - log **Q(z)**]

How to choose and optimise the variational distribution, Q?

- **'Classical' variational inference (1990s, 2000s)** Find a variational family that you can optimise analytically (with the calculus of variations)
- Stochastic gradient variational Bayes (2014) Find a variational family that you can optimise with gradient descent

- 1. Choose **conjugate** prior distributions in **P** and choose **Q** from the same family, so that we will be able to derive analytical solutions
- 2. Mean-field approximation: make all latent variables independent in Q

$$Q(z_1, ..., z_n) = \prod_{i=1}^{n} q(z_i)$$

Mean-field variational inference:

"Find the closest match to the posterior without allowing any correlations"

Mean-field variational inference:

"Find the closest match to the posterior without allowing any correlations"

Gaussian mixture model

Mean field approximation: $Q(z, \mu) = q(z)q(\mu)$ Argmax $\underset{q(z), q(\mu)}{E} \left[\log p(z,\mu,x) - \log q(z)q(\mu) \right]$

Gaussian mixture model

Mean field approximation: $Q(z, \mu) = q(z)q(\mu)$

Argmax $\underset{\substack{z \sim q(z) \\ \mu \sim q(\mu)}}{\text{E}} \left[\log p(z,\mu,x) - \log q(z)q(\mu) \right]$

"If we knew q(z) we could find the best q(µ)" $q^{*}(\mu) \propto \exp[E_{q(z)} \log p(z,\mu,x)]$

"If we knew q(µ) we could find the best q(z)" $q^{*}(z) \propto \exp[E_{q(\mu)} \log p(z,\mu,x)]$

So: Alternate updates to q(z) and $q(\mu)$

- Algorithm:
 - 1. Initialise q(A) and q(B)

2. Repeat

Update q(A) to minimise D_{KL}[q(A)q(B) || P(A,B)] Update q(B) to minimise D_{KL}[q(A)q(B) || P(A,B)] **Until convergence**

Stochastic Gradient Variational Bayes

"But can't we just do

 $\operatorname{Argmax}_{\mathsf{Q}} \mathsf{E}_{\mathsf{z}\sim\mathsf{Q}} \left[\log \mathbf{p}(\mathbf{z},\mathbf{x}) - \log \mathbf{Q}(\mathbf{z}) \right]$

with gradient descent?"

- Kingma et al. (2014), Rezende et al. (2014)

- Answer: Yes, if we use samples to approximate the expectation (SGD)! But only if:
 - Unnormalized posterior p(z,x) is differentiable in z (no discrete random variables, unless you can marginalise them out)
 - Q(z) is 'reparametrisable' (e.g. multivariate Normal)
- No need for conjugate priors!
- No need for mean-field approximation!
Stochastic Gradient Variational Bayes

$$\mathbf{z} \quad p(z) = \text{Gamma}(z; 1, 1)$$
$$\mathbf{q}(z) = \text{Gamma}(z; a, b)$$
$$\mathbf{x} \quad p(x|z) \mathbf{x} \quad \exp[-(z-x)^4]$$

```
import torch
 2 theta = torch.nn.Parameter(torch.zeros(2))
 3 optimizer = torch.optim.Adam([theta], lr=1e-3)
 4
 5 for i in range(100000):
      # Model
       log_prior = torch.distributions.gamma.Gamma(1,1).log_prob
       log_likelihood = lambda z, x: -(z-x)**4
      # Variational Distribution
11
       a, b = torch.exp(theta)
       Q = torch.distributions.gamma.Gamma(a, b)
12
13
       # Optimise ELBO
14
       z = Q.rsample()
       elbo = log_prior(z) + log_likelihood(z, 10) - Q.log_prob(z)
       (-elbo).backward(); optimizer.step(); optimizer.zero_grad()
17
19 print(Q.mean, Q.variance) #Returns (9.73, 1.18)
20
```

More stochastic variational inference

1. Normalizing flows (Rezende and Mohamed, 2016)

• To make an expressive variational distribution Q, start with a simple distribution (e.g. Normal) and then run it through a bunch of invertible transformations.

2. Amortized variational distribution

- Use a neural network f₀ to parametrize Q(z)
 Variational Autoencoders (Kingma et al, 2014)
- Afterwards, you not only solve your inference problem, but you also have a recognition model for future observations

 $q(z_i) = Normal(z_i; f_{\theta}(x_i))$

Variational inference: summary

Can mix methods: some latents stochastic, others analytical (e.g. Belief Propagation) **Benefits**

- Fast and easy to assess convergence
- Provides model evidence log P(X)
- Normalising flows: Can handle multimodality

Limitations

- Unlike MH, restrictions on model:
 - Classical VI: Mean-field approximation and conjugate priors Often can't express multimodal posteriors
 - SGVB: everything has to be differentiable/enumerable
- Unlike MCMC, not exact in the limit, convergence =/= exact posterior

Probabilistic Programming Languages

Programming languages which contain useful abstractions and functions for defining generative models and performing inference in them

PPL	Strengths
Stan (Carpenter, Gelman et al.)	Optimised for graphical models
+ Edward (Tran, Blei et al.)	+ Deep generative models, SVI
WebPPL (Goodman & Stuhlmüller)	Universal (dynamic computation graph)
+ Pyro (Bingham, Goodman et al.)	+ Deep generative models, SVI
Gen (Cusumano-Towner & Mansinghka)	Programmable Inference

Learn ourselves Pyro - This Thursday @ 2:30pm, 46-5165

Exercises: Bayesian polynomial regression

y ~ Normal($\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \mathbf{x} + \boldsymbol{\beta}_2 \mathbf{x}^2 + \boldsymbol{\beta}_3 \mathbf{x}^3$, $\boldsymbol{\sigma}^2$)

Inference exercises

- 1. Metropolis Hasting sampler
- 2. 'Classical' Variational Inference
- 3. Stochastic Gradient Variational Bayes

Defining the model

Fix prior parameters
$$a_0, b_0, \mu_0$$
.
 $\tau \sim Gamma(a_0, b_0) \rightarrow \sigma^2 = 1/\tau$
 $\beta_k \sim Normal(\mu_0, 1/\tau)$
 $\gamma \sim Normal(\beta_0 + \beta_1 \times + \beta_2 \times^2 + \beta_3 \times^3, 1/\tau)$

Exact inference

For details see: https://en.wikipedia.org/wiki/Bayesian_linear_regression

Metropolis-Hastings (MH)

1 Initialize z⁰ **2** for $s = 0, 1, 2, \ldots$ do Define $z = z^s$ 3 4 Sample $z' \sim q(z' | z)$ 5 Compute acceptance ratio: $r = \hat{p}(z', x)q(z|z')$ $\hat{p}(z, x)q(z'|z)$ Compute $a = \min(1, r)$ 6 7 Sample $u \sim U(0, 1)$ 8 Set new sample to: $z^{s+1} = \begin{cases} z' \text{ if } u < a \leftarrow \text{Accept} \\ z^s \text{ if } u >= a \leftarrow \text{Reject} \end{cases}$

- 1. propose samples z' and computes these probabilities:
 - a. $q(z' \mid z)$ and $q(z \mid z')$
 - b. p(z') and p(z)

2. propose requires transition_dist q(z' | z)
a. p(z) is already defined for you

Metropolis-Hastings (MH)

1 Initialize z⁰ **2** for $s = 0, 1, 2, \ldots$ do Define $z = z^{s}$ 3 4 Sample $z' \sim q(z' | z)$ 5 Compute acceptance ratio: $\mathbf{r} = \widehat{\mathbf{p}}(\mathbf{z'}, \mathbf{x})\mathbf{q}(\mathbf{z}|\mathbf{z'})$ $\widehat{p}(z, x)q(z'|z)$ 6 Compute $a = \min(1, r)$ 7 Sample $u \sim U(0, 1)$ 8 Set new sample to: $z^{s+1} = \begin{cases} z' \text{ if } u < a \leftarrow \text{Accept} \\ z^s \text{ if } u >= a \leftarrow \text{Reject} \end{cases}$ 3. p(z', x) needs to be calculated a. p(z', x) = p(z')p(x | z)

a.
$$p(z', x) = p(z')p(x | z)$$

- b. E.g., p(z, x)
- 4. Combine outputs of propose and unnormalized posteriors to calculate acceptance ratio
- 5. Apply Metropolis-Hastings to accept or reject the sample

6. Do inference!

- 1. Write out the mean-field approximation
- 2. Derive the evidence lower bound (ELBO)
- 3. Derive analytical latent variable updates by either:
 - a. Directly optimizing the ELBO
 - b. Through the calculus of variations
- 4. Iterate updating each latent variable

1. Write out the mean-field approximation

 $\begin{array}{l} \textbf{Model P} \\ \textbf{T} \sim Gamma(a_0, b_0) \longrightarrow \boldsymbol{\sigma}^2 = 1/\textbf{T} \\ \boldsymbol{\beta}_k \sim Normal(\mu_0, 1/\textbf{T}) \\ \textbf{y} \sim Normal(\boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \textbf{x} + \boldsymbol{\beta}_2 \textbf{x}^2 + \boldsymbol{\beta}_3 \textbf{x}^3, 1/\textbf{T}) \end{array}$

Variational Posterior Q $Q(\tau, \beta) = Q(\tau) \prod^{K} Q(\beta_{k})$ $\tau \sim \text{Gamma}(a,b)$ $\beta_{k} \sim \text{Normal}(\nu_{k}, 1/\omega_{k})$

2. Derive the evidence lower bound (ELBO)

$$\log P(x) \ge \mathbb{E}_{\tau \sim Q} \left[\log P(\tau) - \log Q(\tau) \right] + \sum_{k=1}^{K} \mathbb{E}_{\tau, \beta_k \sim Q} \left[\log P(\beta_k | \tau) - \log Q(\beta_k | \tau) \right] + \sum_{i=1}^{N} \mathbb{E}_{\tau, \beta \sim Q} \left[\log P(y_i | \beta, x_i, \tau) \right]$$

2. Derive the evidence lower bound (ELBO)

To compute the first term:

$$\mathbb{E}_{\tau \sim Q} \left[\log P(\tau) - \log Q(\tau) \right] = -D_{KL}(Q_{\tau} || P_{\tau})$$

Gamma distribution

2. Derive the evidence lower bound (ELBO)

To compute the first term:

$$\mathbb{E}_{\tau \sim Q} \left[\log P(\tau) - \log Q(\tau) \right] = -D_{KL}(Q_{\tau} || P_{\tau})$$

Gamma distribution

$$= (a_0 - a)\Psi(a) + \log \Gamma(a) - \log \Gamma(a_0)$$

$$-a_0(\log(b) - \log(b_0) - a(\frac{b_0 - b}{b}))$$

2. Derive the evidence lower bound (ELBO)

To compute the second term:

$$\mathbb{E}_{\beta,\tau\sim Q} \left[\log P(\beta_k) - \log Q(\beta_k) \right] = \mathbb{E}_{\tau\sim Q} \left[-D_{KL}(Q_{\beta_k|\tau}||P_{\beta_k|\tau}) \right]$$

Gamma distribution

Normal distribution

2. Derive the evidence lower bound (ELBO)

To compute the second term:

$$\mathbb{E}_{\beta,\tau \sim Q} \left[\log P(\beta_k) - \log Q(\beta_k) \right] = \mathbb{E}_{\tau \sim Q} \left[-D_{KL}(Q_{\beta_k|\tau}||P_{\beta_k|\tau}) \right]$$

Gamma distribution

$$= -\frac{1}{2} \left[\frac{a(\nu_k - \mu_0)^2}{b} + \left(\frac{a}{\omega_k b} - 1 - \Psi(a) + \log(b) + \log(\omega_k) \right) \right]$$

Normal distribution

2. Derive the evidence lower bound (ELBO)

We won't compute the third term today, it has long (but manageable) integrals.

$$\begin{split} \mathbb{E}_{\tau,\beta\sim Q} \left[\log P(y_i|\beta, x_i, \tau) \right] &= \mathbb{E}_{\tau\sim Q} \left[\mathbb{E}_{\beta\sim Q} \left(\log P(y_i|\beta, x_i, \tau) \right) \right] \\ &= \mathbb{E}_{\tau\sim Q} \left[\frac{1}{2} (\log(\tau) - \log(2\pi)) - \frac{y_i^2 \tau}{2} + y_i \tau \sum_{k=0}^K x_{ik} \nu_k \right. \\ &- \frac{\tau}{2} \left[\sum_{k=0}^K x_{ik}^2 (\frac{1}{\omega_k} + \nu_k^2) + 2 \sum_{k=0}^K \sum_{j=0}^{k-1} x_{ik} x_{ij} \nu_k \nu_j \right] \right] \\ &= \frac{1}{2} (\Psi(a) - \log(b) - \log(2\pi)) - \frac{y_i^2 a}{2b} + \frac{y_i a}{b} \sum_{k=0}^K x_{ik} \nu_k \\ &- \frac{a}{2b} \left[\sum_{k=0}^K x_{ik}^2 (\frac{1}{\omega_k} + \nu_k^2) + 2 \sum_{k=0}^K \sum_{j=0}^{k-1} x_{ik} x_{ij} \nu_k \nu_j \right] \end{split}$$

- 3. Derive analytical latent variable updates by:
 - a. Directly optimizing the ELBO

Take the partial derivatives of the ELBO with respect to v_k and ω_k to derive each of their updates. (Remember to sum over N and K in deriving the entire ELBO!)

This will not lead to closed form solutions for a and b, though.

- 3. Derive analytical latent variable updates by:
 - b. Through the calculus of variations (we won't do this today)

$$Q(\tau) \propto \exp\left(\underset{\beta \sim Q}{\mathbb{E}} \left[\log P(\tau, \beta, y, x) \right] \right)$$
$$\log Q(\tau) = \underset{\beta \sim Q}{\mathbb{E}} \left[\log(P(\tau)) + \log(P(\beta|\tau)) \log(P(y|\beta, \tau, x)) \right] + Const.$$

Doing these expectations and folding anything constant with respect to \mathbf{T} into Const. eventually gets you to an expression with the form:

$$\log Q(\tau) = f_1(\nu, \omega, y, x) \log(\tau) - f_2(\nu, \omega, y, x)\tau + Const.$$

This is log of a Gamma distribution with $a = f_1 \& b = f_2$, which are the updates.

4. Enter your iterative updates and do inference!

Stochastic Gradient Variational Bayes

The ELBO is: $E \left[\log p(\mathbf{T}, \boldsymbol{\beta}, \mathbf{y} \mid \mathbf{x}) - \log q(\mathbf{T})q(\boldsymbol{\beta}) \right] \\ \underset{\mu \sim q(\mu)}{\overset{}{\underset{\mu \sim q(\mu)}{\underset{\mu \sim q(\mu)}{\underset$

For each SGD iteration, we need a unbiased (monte-carlo) estimate of the ELBO, so:

- 1. Sample (**T**, **β**) from **q**
 - Note: use dist.rsample() for a 'reparametrized' (differentiable) sample
- 2. Evaluate the term inside the expectation
- 3. Repeat until convergence!