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Overview - Encoding Models
• Why studying vision? 

• What do we know about brain’s representation of 
the visual world? 

• What models are are there for these processes? 



Why Models?
• Why do we need models? 

• How can we use models in science? 

"Truth will sooner come out from error than from confusion.” Francis Bacon


Models Falsifiable 
Predictions Errors Fix/Reinvent 

Models 
(hypotheses)



Why Vision? 
1. A window into how neural networks build a 

compact representation of the world.

2. How the encoded image is represented by the 
neural response within the peripheral and early 
cortical visual pathways.

3. What’s the role of these representations in 
efficient image coding.  



What we know about 
vision in primates



Visual Processing Streams

Figure 3
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Image Formation - Retina
Only one layer 

Cone photoreceptors

adapted from A. Hendrickson

Rods and Cones: encode the 
image in different intensity 
ranges. 

Adapted from Hubel

1. There is only a narrow region of high visual 
acuity in the fovea.

2. Dynamic range of sensors is very small.

3. Representation of wavelength is coarse. 



Things We Know 
Lateral Geniculate Nucleus (LGN)
• Receives input from Retina through the optic 

nerve 

• Two major streams: 

1. Parvocellular: high-spatial freq + low-
temporal-freq 

2. Magnocellular: low-spatial freq + high-
temporal-freq



Primary Visual Cortex - V1

Simple 
cell

Complex 
cell

Orientation 
selectivity

Orientation 
selectivity with 
some position 

tolerance

Adapted from Bosking 1997Adapted from Kandel , Schwartz and Jessell

Cells are topographically 
mapped according to their 

preferred pattern.



Primary Visual Cortex - V2
Area V2 (first cortical area after V1):
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orientations, positions and spatial scales. The resulting synthetic 
images had the same overall orientation and spatial-frequency con-
tent as the original (that is, the same spectral properties) but lacked 
its higher-order statistical dependencies (Fig. 1a). Naturalistic tex-
ture images were generated by also matching correlations between 
filter responses (and their energies) across orientations, positions and 
spatial scales (Fig. 1b). We used an iterative procedure (Fig. 1c) to 
match the spatially averaged filter responses, the correlations between 
filter responses, and the mean, variance, skewness and kurtosis of the 
pixel luminance distribution (‘marginal statistics’). Synthetic images 
matched for these properties contain many complex naturalistic 
structures seen in the original photograph19, readily recognizable by 
human observers22.

We synthesized images based on 15 original texture photographs, 
yielding 15 different ‘texture families’; for each original, we made 
ensembles of self-similar naturalistic texture samples, each different in 
detail but all having identical statistical dependencies and containing 
similar visual properties (Supplementary Fig. 1). Since each of these 
15 texture families was based on a different original photograph, they 
varied in their appearance and in the form and extent of their higher-
order statistical dependencies.

Differentiating V2 from V1 in macaque
We recorded in 13 anesthetized macaque monkeys the responses of 
102 V1 and 103 V2 neurons to a sequence of texture stimuli, presented 
in suitably vignetted 4° patches centered on each neuron’s receptive 
field. The sequence, which was identical for all cells, included 20 rep-
etitions for each of 15 samples of naturalistic and 15 samples of noise 
stimuli from 15 different texture families (9,000 stimuli in total). The 
textures were each presented for 100 ms and were separated by 100 ms 
of a blank gray screen, so the entire sequence lasted 30 min.

V1 neurons responded similarly to both stimulus types, whereas 
V2 neurons often responded more vigorously to naturalistic textures 
than to spectrally matched noise. This distinction between V2 and 
V1 was evident when examining individual responses as a function 
of time from stimulus onset (averaged over all samples of all texture 
families) (Fig. 2a) and when the responses were averaged over the cell 
populations (Fig. 2b). We use the term ‘modulation’ to capture the 
differential responses to textures and noise, and index its magnitude 
by taking the difference of responses divided by the sum (Fig. 2c). The 
average modulation index of neurons in V1 was near zero for most of 
the response time course, except for a modest late positive modula-
tion (Fig. 2c). Neurons in V2 showed a substantial modulation that 
was evident soon after response onset and persisted throughout the 

duration of the response (Fig. 2c). The late modulation in V1 might 
reflect feedback from V2 or other higher areas23.

V2 responses were substantially modulated by naturalistic struc-
ture on average, but the modulation was typically more pronounced 
for some texture families than for others. We examined responses as 
a function of texture family, averaged over all samples. There was a 
consistent trend across the V2 population for some texture families to 
evoke stronger modulation than others, although the most effective 
families varied from cell to cell (Fig. 2d,e). By contrast, all families 
yielded negligible modulation of V1 responses (Fig. 2d,e). In V2, the 
modulation strength across texture families was not significantly cor-
related with the response magnitude (r = 0.42, P = 0.12, correlation 
computed after averaging across cells). An analysis of the distribution 
and ranking of modulation across individual neurons ruled out the 
possibility that modulation in V1 was present but concealed by the 
process of taking means (Supplementary Fig. 2).

Some neurons were more sensitive overall to naturalistic structure 
than others. We computed a modulation index for each neuron, averaged 
over the response duration and over all samples of all texture families 
(Fig. 2f). Significant positive modulation was observed in 15% of V1 
neurons and 63% of V2 neurons (P < 0.05, randomization test for each 
neuron). The difference in modulation between V1 and V2 was signifi-
cant (P < 0.0001, t-test on signed modulation; P < 0.0001, t-test on mod-
ulation magnitude ignoring sign). Results were similar when examining 
firing rates instead of modulation index (Supplementary Fig. 3).

The receptive fields of V2 neurons are larger than those of V1, but 
this distinction did not explain the observed differences in sensitiv-
ity to naturalistic structure (Fig. 3). The stimuli presented to V1 and 
V2 cells were of the same diameter, roughly twice that of a typical V2 
receptive field and four times that of a typical V1 receptive field. There 
was no evidence of a correlation between receptive field size and 
modulation in either visual area (V1, r = 0.13, P = 0.23; V2, r = –0.13,  
P = 0.26, Fig. 3a,b). When we restricted our analysis to subsets of neu-
rons matched for average receptive field size, the difference in modu-
lation index between areas was reduced by only 9% and remained 
significant (P < 0.0001, randomization test).
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Figure 1 Analysis and synthesis of naturalistic textures. (a) Original 
texture photographs. (b) Spectrally matched noise images. The original 
texture is analyzed with linear filters and energy filters (akin to V1 simple 
and complex cells, respectively) tuned to different orientations, spatial 
frequencies and spatial positions. Noise images contain the same spatially 
averaged orientation and frequency structure as the original but lack many 
of the more complex features. (c) Naturalistic texture images. Correlations 
are computed by taking products of linear and energy filter responses 
across different orientations, spatial frequencies and positions. Images 
are synthesized to match both the spatially averaged filter responses 
and the spatially averaged correlations between filter responses. The 
resulting texture images contain many more of the naturalistic features 
of the original. More examples in Supplementary Figure 1. (d) Synthesis 
of naturalistic textures begins with Gaussian white noise, and the noise is 
iteratively adjusted using gradient descent until analysis of the synthetic 
image matches analysis of the original (see ref. 19). Initializing with 
different samples of Gaussian noise yields distinct but statistically  
similar images.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
computed on firing rates averaged in a 100-ms window following response onset, and modulation was then averaged across families.
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We also made measurements on a subset of cells in which the stim-
uli were confined to each neuron’s classical receptive field. In V1, 
the modulation was near 0 for both classical receptive field–matched 
and large stimuli, though there was a small but significant reduction 
in modulation for the smaller stimuli (P < 0.05, t-test, Fig. 3c). In 
V2, there was a robust but incomplete reduction in modulation for 
the smaller stimuli (P < 0.0001, t-test, Fig. 3d), suggesting that the 
modulation in V2 depended partly, but not entirely, on interactions 
between receptive field center and surround. We found no evidence 
for a relationship in V2 between the modulation and commonly char-
acterized properties of early visual neurons, including surround sup-
pression, orientation tuning bandwidth, preferred spatial frequency, 
spatial frequency tuning bandwidth or parameters of the contrast 

sensitivity function (c50 and exponent) (all correlations P > 0.05). We 
therefore believe that our measurements reveal a hitherto unrecog-
nized dimension of visual processing in macaque V2.

Differentiating V2 from V1 in human
Given the reliable effect of higher-order image statistics on the 
responses of V2 neurons, we wondered if similar effects could be 
observed in humans using fMRI, which can capture large-scale 
 differential responses across visual areas24. We presented alternat-
ing blocks of naturalistic and noise stimuli, one texture family at 
a time, in the near-peripheral visual field while measuring blood-
oxygenation level dependent (BOLD) fMRI responses in visual 
cortex. Subjects performed a demanding task at the center of gaze 

Figure 2 Neuronal responses to naturalistic textures differentiate V2 from V1 in macaques. (a) Time course of firing rate for three single units in V1 
(green) and V2 (blue) to images of naturalistic texture (dark) and spectrally matched noise (light). Thickness of lines indicates s.e.m. across texture 
families. Black bar indicates the presentation of the stimulus; gray bar indicates the presentation of the subsequent stimulus. (b) Time course of firing 
rate averaged across neurons in V1 and V2. Each neuron’s firing rate was normalized by its maximum before averaging. Thickness of lines indicates 
s.e.m. across neurons. (c) Modulation index, computed as the difference between the response to naturalistic and the response to noise, divided by  
their sum. Modulation was computed separately for each neuron and texture family, then averaged across all neurons and families. Thickness of blue 
and green lines indicates s.e.m. across neurons. Thickness of gray shaded region indicates the 2.5th and 97.5th percentiles of the null distribution  
of modulation expected at each time point due to chance. (d) Firing rates for three single units in V1 (green) and V2 (blue) to naturalistic (dark dots) 
and noise (light dots), separately for the 15 texture families. Families are sorted according to the ranking in e. Gray bars connecting points are only  
for visualization of the differential response. Modulation indices (averaged across texture families) are reported in the upper right of each panel. Error 
bars indicate s.e.m. across the 15 samples of each texture family. (e) Diversity in modulation across texture families, averaged across all neurons.  
Error bars indicate s.e.m. across neurons. Gray bar indicates 2.5th and 97.5th percentiles of the null distribution of modulation expected due to 
chance. (f) Distributions of modulation indices across single neurons in V1 and V2. For each neuron, the modulation index for each texture family was 
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Interpretation:   

- V2 neurons apply “and-like” 
operators on V1 outputs   

- those “ands” are tuned 
toward natural co-occurring 
V1 statistics

Adapted from Freeman, Ziemba, Heeger, Simoncelli, & Movshon, Nature Neuro  (2013)

Noise images with matching  
spectral properties

Synthetic images with  
matched correlation 

in V1 responses



Primary Visual Cortex - V4

?Are these regularities tuned to 
behavior or not? 

Ventral Stream: Captures visual 
regularities of increasing 

complexity

V1: Edges

V2: Curved Lines (texture like)

V4: Complex Gratings



Primary Visual Cortex - IT
IT neurons can be tuned to 
specific combinations of 
features (high “selectivity”)

Adapted from Tanaka 

Adapted from Yamane, Connor Nature (2008) 

As we go deeper it becomes 
harder and harder to discover 

the optimal stimuli for neurons.
Adapted from Desimone et al. (1984) 



Models of Vision



Vision Models 
Retina
• Spike-Triggered Averaging (STA) 

• Linear-Nonlinear Method (LN) 

• Generalized Linear Models (GLM) 

• Convolutional models (CNN)

Adapted from McIntosh et al. (2017)

Adapted from Simoncelli et al. (2004)



Vision Models - V1
• Gabor filter banks - 

Wavelet transforms 

• LN-LN Cascade model 

• CNNs

Adapted from Cadena et al. 2017



Vision Models - V2
• Hierarchy  

• Spatially local filters 

• Convolution 

• Normalization  

• …

Serre, Kouh, Cadieu, Knoblich, Kreiman & Poggio 2005

HMAX Model



Vision Models - CNNs
• Stack of Convolutions and Max-Pooling Layers 

with nonlinearities and normalization 

• Parameters tuned on 1.28 M labeled images to 
minimize the error on object classification task.

Adapted from Krizhevsky et al. NIPS 2012



Models of Higher Visual Areas 
CNNs

Cat

(C+
P)1

(C+
P)2 C3 C4 (C+

P)5

FC6 FC7
FC8

Cat

(C+
P)1

(C+
P)2 C3 C4 (C+

P)5

FC6 FC7
FC8



Vision Models - CNNs

Adapted from Yamins, DiCarlo PNAS 2014

Higher layers of CNNs explain 
50-60% of the explainable 

variance in IT neural activity.



Vision Models - CNNs

Adapted from Yamins, DiCarlo PNAS 2014

Are these regularities related 
to behavior or not? 

Behavioral performance and 

representation similarities are 

Correlated.



Applications-Automation
• Face recognition 

• Self-driving Cars 

• Security 

• Many forms of intelligence…

Vision is necessary to make 
sense of the visual world.

What about  in 
neuroscience?



Neuroscience Applications 
Prediction
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Predictions of single site IT responses from layer 4 of HMO 1.0 model

Response* of 
IT neural site 

Prediction of 
HMO model 

These are predictions:  All of these objects and images were never 
previously seen by the HMO model  

Yamins, Hong, Solomon, Seibert and DiCarlo PNAS (2014)  

(* mean rate 70-170 ms after image onset) 
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Neuroscience Applications 
Control

N1 N2

• As a stronger model test, we here asked 
can we use a model to generate new 
visual images to drive a recorded neural 
population response into any desired 
state?


• We started with two specific goals: 


1. “Maximal drive” (Stretch): Drive 
any single neuron’s response 
beyond the maximum response 
observed thus far. 


2. “One hot population” (OHP):   
Drive any given neuron’s response 
up while holding the responses of all 
other (recorded) neurons at baseline 
(a test of independent control).

Yamins et al. PNAS 2014

Bashivan, Kar, DiCarlo (in prep) 



Neural Population Control 

1) Stretch the firing rates 
beyond previously observed

2) Suppress other neurons  
activity while driving  

the target neuron.

Neuron 

Receptive Field

Bashivan, Kar, DiCarlo (in prep) 



Questions

“The only stupid question is the one that is never asked.”

Ramon Bautista


