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Understanding neural algorithms


How	can	we	convert	messy	data	useful	informa4on?	
•  Neural	content:	what	informaBon	is	in	a	brain	region	at	a	given	Bme	
•  Neural	coding:		what	features	of	neural		acBvity	contain	informaBon	
	

Understanding	neural	algorithms	
that	underlie	behavior		



InformaBon	is	contained	in	pa#erns	of	neural	acBvity		

We	can	use	neural	decoding	to	understand	how	informaBon	is	being	
transformed	as	it	travels	through	the	brain	
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Understanding neural algorithms
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Neural popula>on decoding


Neural	decoding	predict	sBmuli/behavior	from	neural	acBvity		
	
	

f(neural	acBvity)				
	

	
Decoding	has	been	used	for	30	years:	
	

Motor	system/BCIs	
•  e.g.,	Georgopoulos	et	al,	1986	

	
Hippocampus											 		

•  e.g.,	Wilson	and	McNaughton,	1993	

ComputaBonal	work			
•  			e.g.,	Salinas	and	AbboY,	1994	

	
Decoding	is	called	MulBvoxel	PaYern		
Analysis	(MVPA)	by	the	fMRI	community	

sBmulus	



Training the classifier
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Using the classifier
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Using the classifier


PaYern	Classifier	
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Using the classifier
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Pseudo-popula>ons




Maximum Correlation Coefficient Classifier 
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Decoding can be viewed as assessing the 
informa>on available to downstream neurons




Decoding basics: A simple experiment


Zhang,	Meyers,	Bichot,	Serre,	Poggio,	and	Desimone,	PNAS,	2011	

Seven	objects:	

132	neurons	recorded	from	IT	



Applying decoding 


Test	Train	



Test	Train	

Applying decoding 


100	ms	bins,	sample	every	10	ms	



Basic decoding results




Basic results are similar to other methods
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Generally robust to the choice of classifier




Generally robust to the choice of classifier
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Abstract/invariant representa>ons


The	ability	to	form	abstract	representaBons	is	essenBal	for	complex	behavior	



Example: posi>on invariance


Hung,	Kreiman,	Poggio,	and	DiCarlo,	Science,	2005	



SBmulus	set:		25	individuals,	8	head	poses	per	individual	

Meyers,	Borzello,	Freiwald,	Tsao,	J	Neurosci,	2015	

Face iden>fica>on invariant to head pose




Face iden>fica>on invariant to head pose


Train	
Le\	Profile	

...	

Test		
Pose	Invariance	

...	

Test		
Same	Pose	

...	



Face iden>fica>on invariant to head pose


Anterior	Posterior	



Learning abstract category informa>on


Meyers,	Freedman,	Kreiman,	Poggio,	Miller,	J	Neurphys,	2008	
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AKen>on's effects on visual representa>ons


The	ability	to	rapidly	recognize	objects	is	degraded	by	visual	cluYer	
	

Visual	aYenBon	can	improve	recogniBon	cluYer	

+	



AKen>on's effects on visual representa>ons


Basic	idea:	
	

•  Objects	are	represented	in	IT	by	paYerns	of	acBvity	across	a	populaBon	neurons	

•  CluYer	degrades	these	neural	representaBons	

•  AYending	to	an	object	restores	its	neural	representaBon			

n1	 n2	 n3	 n4	 n5	 n6	



+

Experiment design




+

Experiment design


					SBmulus	set		



Train	Test	

TesBng	using	150ms	bins	used,	sampled	at	50ms	intervals	Training	using	500ms	bin	in	the	array	period	

Popula>on decoding aKen>on experiment 




Popula>on decoding aKen>on experiment 


Train	Test	

Area	under	ROC	curve	measure	used	
					1					=		Perfect	classificaBon		
			0.5				=		Chance	classificaBon	



Decoding results


+



Decoding results


+



+

How does the color change of a distractor 
influence informa>on in IT?




Decoding the distractor
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Learning new tasks changes neural processing


Meyers,	Qi,	ConstanBnidis,	PNAS,	2012	



Monkeys were first trained to passively fixate
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Monkeys were first trained to passively fixate
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Time	(ms)	

FixaBon	 1st	sBmulus	 2nd	sBmulus	1st	delay	 2nd	delay	 Choice	targets/	
							saccade	

Test	

Decoding applied 


500	ms	bins,	sample	every	50	ms	
Decoding	is	based	on	750	neurons	

Train	



Decoding match/nonmatch informa>on
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Decoding match/nonmatch informa>on




Is the new informa>on widely distributed?


Passive	fixaBon	 					DMS	task				



Compact/sparse coding of informa>on
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Compact/sparse coding of informa>on


Test	set	

…	…	Neuron	1	
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Using	only	the	8	most	selecBve	neurons	

Is the new informa>on widely distributed?


Excluding	the	128	most	selecBve	neurons	



Using	only	the	8	most	selecBve	neurons	 Excluding	the	128	most	selecBve	neurons	

Is the new informa>on widely distributed?




Is informa>on contained in a dynamic 
popula>on code?


Meyers	et	al,	2008;	King	and	Dehaene	2014;	Meyers	2018	in	press			

Time	
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Dynamic popula>on coding 




Dynamic popula>on coding 



Passive	fixaBon	 DMS	task	



The dynamics can be seen in individual neurons


Neuron	1	 Neuron	2	 Neuron	3	
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A	useful	approach	to	understanding	complex	problems:	start	
with	simpler	systems	and	build	up	from	there	
	
	
	
	
	
	

A	rela4vely	simple	behavior:		locaBng	a	‘pop-out’	item	

	
	
	
	
	

Toward and understanding of neural algorithms




Rela>ng neural ac>vity to behavior


Meyers,	Liang,	Katsuki	and	ConstanBnidis	(2017)	

Isolated	cue	

15°	

MulB-item	
displays	



Firing rate analysis


Firing	rates	in	LIP	increase	(~15	ms)	before	PFC	
This	is	consistent	with	feed-forward	increases	in	firing	rates	 LIP	

PFC	

LIP	

PFC	

Isolated	 Mul5	



Comparing isolated and mul>-item displays


MulB-item	displays	are	processed	slower	than	
isolated	sBmuli	



Rela>ng informa>on to firing rates (PFC)




Informa>on analysis: isolated cue displays




Informa>on analysis: isolated cue displays


Informa5on	in	LIP	increase	(~15	ms)	before	PFC	
This	is	consistent	with	feed-forward	increases	in	informaBon	

LIP	 dlPFC	



Informa>on analysis: mul>-item displays




Informa>on analysis: mul>-item displays


Informa5on	in	PFC	increase	(~15	ms)	before	LIP	
This	is	consistent	with	feed-back	increases	in	informaBon	

LIP	 dlPFC	
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Rela>ng neural ac>vity to behavior
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Model that summarizes the results


PFC	

V1	

LIP	 V4	?	

Firing	rate	increases	
Cue	locaBon	informaBon		



Model that summarizes the results
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Results from human brain ac>vity and behavior


c	

mulB-item	



Decoding can be applied to other types of data
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MEG	Decoding	

Isik,	Meyers,	Liebo,	Poggio,	J.	Neurophys,		2014	



EEG results average across subjects


Monkeys	 Hampshire	Students	



Next step: examining an>cipa>on effects


Pre-cuing	causes	top-down	anBcipatory	
filtering	in	early	visual	areas	Green	

Iso	 MulB	

Humans	–	reacBon	Bmes	
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Try this at home: The Neural Decoding Toolbox (NDT)


The	neural	decoding	toolbox	makes	it	easy	to	do	decoding	in	MATLAB:	

  1   binned_file = ‘Binned_data.mat’; 

  2   ds = basic_DS(binned_file, ‘stimulus_ID’, 20); 

  3   cl = max_correlation_coefficient_CL; 

  4   fps{1} = zscore_normalize_FP; 

  5   cv = standard_resample_CV(ds, cl, fps) 

  6   DECODING_RESULTS = cv.run_cv_decoding; 

	
	
Open	Science	philosophy:	open	source	for	reproducible	results	

•  The	code	open	source	for	reproducible	results	
•  Hope	to	encourage	open	science	culture,	so	please	share	your	data	

	
www.readout.info	

Meyers,	Font	Neuroinfo,		2013	



The Neural Decoding Toolbox Design


Toolbox	design:	4	abstract	classes	

1.	Datasource:		creates	training	and	test	splits	
•  E.g.,	can	examine	the	effects	from	different	binning	schemes	

2.	Preprocessors:		learn	parameters	from	training	data	apply	them	to	
	the	training	and	test	data	

•  E.g.,	can	examine	sparse/compact	coding	
	

3.	Classifiers:	learn	from	training	data	and	make	predicBons	on	test	data	
•  E.g.,	can	examine	whether	informaBon	is	in	high	firing	rates	or	paYerns	

4.	Cross-validators:		run	the	training/test	cross-validaBon	cycle		



GeYng started with your own data


You	can	use	the	NDT	on	your	own	data	by	puxng	your	data	into	‘raster	format’	



www.readout.info	 neuraldata.net	

Coming soon: The Neural Decoding Toolbox in R (NDTr)




Coming soon: The Neural Decoding Toolbox in R (NDTr)


Tony	Zhang	 Lily	
Rithichoo	Priscilla	Lu	 Cindy	Fang	Demo	
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