Decoding the neural algorithms that underlie behavior

Ethan Meyers

CENTER FOR Brains Minds+ Machines

Beyond feedforward processing

Homunculus in the Cartesian theater

Understanding neural algorithms

Understanding neural algorithms that underlie behavior

How can we convert messy data useful information?

- <u>Neural content</u>: what information is in a brain region at a given time
- Neural coding: what features of neural activity contain information

Understanding neural algorithms

Information is contained in *patterns* of neural activity

We can use *neural decoding* to understand how information is being transformed as it travels through the brain

Talk outline

- 1. The basics of neural decoding
- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Talk outline

1. The basics of neural decoding

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Neural population decoding

Neural decoding predict stimuli/behavior from neural activity

f(neural activity) ----> stimulus

Decoding has been used for 30 years:

Motor system/BCIs

• e.g., Georgopoulos et al, 1986

Hippocampus

• e.g., Wilson and McNaughton, 1993

Computational work

e.g., Salinas and Abbott, 1994

Decoding is called Multivoxel Pattern Analysis (MVPA) by the fMRI community

Training the classifier

Training the classifier

Using the classifier

Using the classifier

Using the classifier

Pseudo-populations

Maximum Correlation Coefficient Classifier

Maximum Correlation Coefficient Classifier

Decoding can be viewed as assessing the information available to downstream neurons

Decoding basics: A simple experiment

Zhang, Meyers, Bichot, Serre, Poggio, and Desimone, PNAS, 2011

Applying decoding

Applying decoding

Basic decoding results

Basic results are similar to other methods

Confusion matrices

True classes

Generally robust to the choice of classifier

Generally robust to the choice of classifier

Talk outline

1. Neural decoding is a powerful way to analyze data

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Talk outline

1. Neural decoding is a powerful way to analyze data

2. The sensory pathways create abstract representations

- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Abstract/invariant representations

The ability to form abstract representations is essential for complex behavior

Example: position invariance

Train Upper

Hung, Kreiman, Poggio, and DiCarlo, Science, 2005

Face identification invariant to head pose

Stimulus set: 25 individuals, 8 head poses per individual

Meyers, Borzello, Freiwald, Tsao, J Neurosci, 2015

Face identification invariant to head pose

Face identification invariant to head pose

Learning abstract category information

Meyers, Freedman, Kreiman, Poggio, Miller, J Neurphys, 2008

Talk outline

1. Neural decoding is a powerful way to analyze data

2. The sensory pathways create abstract representations

- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Talk outline

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Attention's effects on visual representations

The ability to rapidly recognize objects is degraded by visual clutter

Visual attention can improve recognition clutter

Attention's effects on visual representations

Basic idea:

- Objects are represented in IT by patterns of activity across a population neurons
- Clutter degrades these neural representations
- Attending to an object restores its neural representation

Experiment design

Experiment design

Population decoding attention experiment

Testing Trainging Opins go 5000 use disample data 50 presion tervals

Population decoding attention experiment

Area under ROC curve measure used

- 1 = Perfect classification
- 0.5 = Chance classification

Decoding results

Decoding results

How does the color change of a distractor influence information in IT?

Decoding the distractor

Talk outline

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Talk outline

1. The basics of neural decoding

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Learning new tasks changes neural processing

Meyers, Qi, Constantinidis, PNAS, 2012

Monkeys were first trained to passively fixate

Monkeys were first trained to passively fixate

Monkeys then engaged in a delayedmatch-to-sample task (DMS task)

Monkeys then engaged in a delayedmatch-to-sample task (DMS task)

Decoding applied

Decoding applied

Decoding is based on 750 neurons

Decoding match/nonmatch information

Talk outline

1. The basics of neural decoding

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded sparsely and dynamically
- 6. The flow of information can be traced through the brain

Talk outline

1. The basics of neural decoding

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information

5. Information often is coded sparsely and dynamically

6. The flow of information can be traced through the brain

Decoding match/nonmatch information

Is the new information widely distributed?

Is the new information widely distributed?

Using only the 8 most selective neurons

Is the new information widely distributed?

Using only the 8 most selective neurons

Excluding the 128 most selective neurons

Is information contained in a dynamic population code?

Meyers et al, 2008; King and Dehaene 2014; Meyers 2018 in press

Temporal generalization method

Temporal generalization method

Dynamic population coding

Dynamic population coding

Passive fixation

DMS task

The dynamics can be seen in individual neurons

Neuron 1

Talk outline

Task-relevant information is coded dynamically

Abstract representations are modified by attention

- 1. The basics of neural decoding
- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information

5. Information often is coded dynamically and sparsely

6. The flow of information can be traced through the brain

Talk outline

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded dynamically and sparsely
- 6. The flow of information can be traced through the brain

Toward and understanding of neural algorithms

A useful approach to understanding complex problems: start with simpler systems and build up from there

A relatively simple behavior: locating a 'pop-out' item

Relating neural activity to behavior

Meyers, Liang, Katsuki and Constantinidis (2017)

Firing rate analysis

Firing rates in LIP increase (~15 ms) before PFC This is consistent with feed-forward increases in firing rates

Comparing isolated and multi-item displays

Multi-item displays are processed slower than isolated stimuli

Relating information to firing rates (PFC)

Information analysis: isolated cue displays

Isolated cue displays

Information analysis: isolated cue displays

Isolated cue displays

Information in LIP increase (~15 ms) before PFC This is consistent with feed-forward increases in information

Information analysis: multi-item displays

Multi-item displays

Information analysis: multi-item displays

Multi-item displays

Information in PFC increase (~15 ms) before LIP This is consistent with **feed-back** increases in information

Relating neural activity to behavior

Model that summarizes the results

Firing rate increases Cue location information

Model that summarizes the results

Cue location information

Results from human brain activity and behavior

Decoding can be applied to other types of data

MEG Decoding

Isik, Meyers, Liebo, Poggio, J. Neurophys, 2014

EEG results average across subjects

Monkeys

Hampshire Students

Next step: examining anticipation effects

Pre-cuing causes top-down anticipatory filtering in early visual areas

Talk outline

- 2. The sensory pathways create abstract representations
- 3. "Top-down attention" can modify these representations
- 4. Higher areas selectively represent task-relevant information
- 5. Information often is coded dynamically and sparsely
- 6. The flow of information can be traced through the brain

Try this at home: The Neural Decoding Toolbox (NDT)

The neural decoding toolbox makes it easy to do decoding in MATLAB:

- 1 binned_file = 'Binned_data.mat';
- 2 ds = basic_DS(binned_file, `stimulus_ID', 20);
- 3 cl = max_correlation_coefficient_CL;
- 4 fps{1} = zscore_normalize_FP;
- 5 cv = standard resample CV(ds, cl, fps)
- 6 DECODING_RESULTS = cv.run_cv_decoding;

Open Science philosophy: open source for reproducible results

- The code open source for reproducible results
- Hope to encourage open science culture, so please share your data

www.readout.info

The Neural Decoding Toolbox Design

Toolbox design: 4 abstract classes

- **1. Datasource**: creates training and test splits
 - E.g., can examine the effects from different binning schemes
- **2. Preprocessors:** learn parameters from training data apply them to the training and test data
 - E.g., can examine sparse/compact coding
- 3. Classifiers: learn from training data and make predictions on test data
 - E.g., can examine whether information is in high firing rates or patterns
- **4. Cross-validators:** run the training/test cross-validation cycle

Getting started with your own data

You can use the NDT on your own data by putting your data into 'raster format'

Coming soon: The Neural Decoding Toolbox in R (NDTr)

NDT						
Run deco	ding	Data Source	Feature Preprocessors	Classifiers	Cross-Validators	
Plot Resu	lts 👻					
Binned data file name						
ZD_binned_data_150ms_bins_50ms_sa 🔻						
Run Decoding						
						^
Decoding Analysis						
Load the necessary packages and files						
	#lib libr	rary('tictoc') ary('fields')				

www.readout.info

neuraldata.net

Coming soon: The Neural Decoding Toolbox in R (NDTr)

<u>Funding</u>: The Center for Brains, Minds and Machines, NSF STC award CCF-1231216 and MathWorks

Acknowledgements:

Narcisse Bichot, Mia Borzello, Christos Constantinidis, Jennie Deutsch, Jim DiCarlo, Robert Desimone, David Freedman, Winrich Freiwald, Leyla Isik, Fumi Katsuki, Gabriel Kreiman, Andy Leung, Joel Liebo, Earl Miller, Ami Patel, Tomaso Poggio, Xue-Lian Qi, Doris Tsao, Ying Zhang

Email: emeyers@mit.edu

www.readout.info

neuraldata.net