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Some problemsSome problems

A means to capture uncertainty

You have data from two sources, are they different?

How can you generate data or fill in missing data?

What explains the observed data?
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UncertaintyUncertainty

Every event has a probability of occurring, some event always occurs, and
combining separate events adds their probabilities.

Why these axioms? Many other choices are possible:
Possibility theory, probability intervals

Belief functions, upper and lower probabilities
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Probability is special: Dutch booksProbability is special: Dutch books

I offer that if X happens I pay out R, otherwise I keep your money.

Why should I always value my bet at pR, where p is the probability of X?

Negative p

I’m offering to pay R for −pR dollars.

Probabilities don’t sum to one

Take out a bet that always pays off.
If the sum is below 1, I pay R for less than R dollars.
If the sum is above 1, buy the bet and sell it to me for more.

When X and Y are incompatible the value isn’t the sum

If the value is bigger, I still pay out more.
If the value is smaller, sell me my own bets.

Decisions under probability are “rational”.
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Experiments, theory, and fundingExperiments, theory, and funding
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DataData

Mean µX = E[X] =
∑

x
xp(x)

Variance σ2
X = var(X) = E[(X − µ)2]

Covariance cov(X,Y) = E[(X − µx)(Y − µY)]

Correlation ρX,Y =
cov(X,Y)
σXσY
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Mean and varianceMean and variance

Often implicitly assume that our data comes from a normal
distribution.

That our samples are i.i.d. (independent indentically distributed).

Generally these don’t capture enough about the underlying data.

Uncorrelated does not mean independent!
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Correlation vs independenceCorrelation vs independence

V = N(0, 1), X = sin(V), Y = cos(V)

Correlation only measures linear relationships.
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Data dinosaursData dinosaurs
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DataData

Mean

Variance

Covariance

Correlation

Are two players the same?

How do you know and how certain are you?

What about two players is different?

How do you quantify which differences matter?

Here’s a player, how good will they be?

What is the best information to ask for?

What is the best test to run?

If I change the size of the board, how might
the results change?

. . .
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Probability as an experimentProbability as an experiment

A machine enters a random state, its current state is an event.

Events, x, have probabilities associated, p(X = x) (p(x) shorthand)
Sets of events, A
Random variables, X, are a function of the event

The probability of two events p(A ∪ B)
The probability of either event p(A ∩ B)
p(¬x) = 1− p(x)
Joint probabilities P(x, y)
Independence P(x, y) = P(x)P(y)

Conditional probabilities P(x|y) = P(x,y)
p(y)

Law of total probability
∑

A a = 1 when events A are a disjoint cover
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Beating the lotteryBeating the lottery
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Analyzing a testAnalyzing a test

You want to play the lottery, and have a method to win.

0.5% of tickets are winners, and you have a test to verify this.

You are 85% accurate (5% false positives, 10% false negatives)

Is this test useful? How useful? Should you be betting?
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Is this test useful?Is this test useful?

(D−,T+) (D−,T−) (D+,T+) (D+,T−)
What percent of the time when my test comes up true am I winner?
D+ ∩T+

T+

= 0.9×0.005
0.9×0.005+0.995×0.05 = 8.3% =

P(T + |D+)P(D+)
P(T+)

P(A|B) =
P(B|A)P(A)

P(B)
posterior =

likelihood× prior
probability of data
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Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Bernoulli Distribution

• Given a Bernoulli experiment, that is, a yes/no 
experiment with outcomes 0 (“failure”)
or 1 (“success”)

• The Bernoulli distribution is a discrete proba-
bility distribution, which takes value 1 with 
success probability      and value 0 with failure 
probability 1 – 

• Probability mass function 

• Notation

0 1
0

0.5

1

1−h

h

Parameters
•      : probability of 

observing a success

Expectation
•  

Variance
•  
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Binomial Distribution

• Given a sequence of Bernoulli experiments

• The binomial distribution is the discrete 
probability distribution of the number of 
successes m in a sequence of N indepen-
dent yes/no experiments, each of which 
yields success with probability

• Probability mass function

• Notation 

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

0 10 20 30 40
0

0.1

0.2

 

 

h = 0.5, N = 20
h = 0.7, N = 20
h = 0.5, N = 40

m

Parameters
• N : number of trials
•      : success probability

Expectation
•  

Variance
•  
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Gaussian Distribution

• Most widely used distribution for 
continuous variables

• Reasons: (i) simplicity (fully represented 
by only two moments, mean and variance) 
and (ii) the central limit theorem (CLT)

• The CLT states that, under mild conditions, 
the mean (or sum) of many independently 
drawn random variables is distributed 
approximately normally, irrespective of 
the form of the original distribution

• Probability density function  

−4 −2 0 2 4
0

0.5

1

 

 

 µ =  0,  m = 1
 µ = −3, m = 0.1
 µ =  2,  m = 2

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Parameters
•      : mean
•       : variance

Expectation
•  

Variance
•  
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Gaussian Distribution

• Notation

• Called standard normal distribution 
for µ = 0 and      = 1

• About 68% (~two third) of values 
drawn from a normal distribution are 
within a range of ±1 standard 
deviations around the mean 

• About 95% of the values lie within a 
range of ±2 standard deviations 
around the mean

• Important e.g. for hypothesis testing

Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Parameters
•      : mean
•       : variance

Expectation
•  

Variance
•  
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Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Multivariate Gaussian Distribution

• For d-dimensional random vectors, the 
multivariate Gaussian distribution is 
governed by a d-dimensional mean vector       
and a D x D covariance matrix      that must 
be symmetric and positive semi-de#nite

• Probability density function

• Notation

Parameters
•     : mean vector
•     : covariance matrix

Expectation
•  

Variance
•  
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Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Multivariate Gaussian Distribution

• For d = 2, we have the bivariate Gaussian 
distribution

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)

Parameters
•     : mean vector
•     : covariance matrix

Expectation
•  

Variance
•  

49



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Multivariate Gaussian Distribution

• For d = 2, we have the bivariate Gaussian 
distribution

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)

Parameters
•     : mean vector
•     : covariance matrix

Expectation
•  

Variance
•  

49



Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Multivariate Gaussian Distribution

• For d = 2, we have the bivariate Gaussian 
distribution

• The covariance matrix      (often C) deter-
mines the shape of the distribution (video)





   





     

    

  

Parameters
•     : mean vector
•     : covariance matrix

Expectation
•  

Variance
•  

So
ur

ce
 [1

]
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Human-Oriented Robotics
Prof. Kai Arras

Social Robotics Lab
Common Probability Distributions

Poisson Distribution

• Consider independent events that happen 
with an average rate of     over time

• The Poisson distribution is a discrete 
distribution that describes the probability 
of a given number of events occurring in a 
!xed interval of time

• Can also be de#ned over other intervals 
such as distance, area or volume

• Probability mass function  

• Notation

0 5 10 15 20
0

0.1

0.2

0.3

0.4

 

 

h = 1
h = 4
h = 10

Parameters
•      : average rate of events 

over time or space

Expectation
•  

Variance
•  
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Bayesian updatesBayesian updates

P(θ|X) = P(X|θ)P(θ)
P(X)

P(θ): I have some prior over how good a player is: informative vs
uninformative.

P(X|θ): I think dart throwing is a stochastic process, every player has
an unknown mean.

X: I observe them throwing darts.

P(X): Across all parameters this is how likely the data is.

Normalization is usually hard to compute, but it’s often not needed.

Say P(θ) is a normal distribution with mean 0 and high variance.

And P(X|θ) is also a normal distribution.

What’s the best estimate for this player’s performance?
∂
∂θ logP(θ|X) = 0

Andrei Barbu (MIT) Probability August 2018
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Graphical modelsGraphical models

So far we’ve talked about independence, conditioning, and
observation.

A toolkit to discuss these at a higher level of abstraction.
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Speech recognition: Naïve bayesSpeech recognition: Naïve bayes

Break down a speech signal into parts.

Recover the original speech
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Speech recognition: Naïve bayesSpeech recognition: Naïve bayes

Create a set of features, each sound is composed of combinations of
features.

P(c|X) ∝
∏

K
P(Xk|c)P(c)
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Speech recognition: Gaussian mixture modelSpeech recognition: Gaussian mixture model
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Speech recognition: Hidden Markov modelSpeech recognition: Hidden Markov model
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SummarySummary

Probabilities defined in terms of events

Random variables and their distributions

Reasoning with probabilities and Bayes’ rule

Updating our knowledge over time

Graphical models to reason abstractly

A quick tour of how we would build a more complex model
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