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An intuition for Bayesian estimation
Medical testing
A random person goes to the doctor to get a medical test 
for a rare disease. The test is pretty accurate: it gives a 
positive result for 99% of those who have the disease, 
and gives negative result for 90% of those who do not 
have the disease.

What are the chances that this person has the disease if 
the test comes out positive?

A. Less than 90%
B. 90%
C. between 90 and 99%
D. 99%
E. I don't know.

From Dan Levy’s Master Class on teaching
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p(Y es) p(+|Y es) p(–|No)

3Thursday, June 11, 15



p(Y es) p(+|Y es) p(–|No)

90%99%2%
rare
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p(Y es) p(+|Y es) p(–|No)

90%99%2%

1000 20 ~20+/20+ 882–/980–

98+/980–

p(Y es|+)

20/(20+98) = 0.17
17%
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p(Y es|+) =
p(+|Y es)p(Y es)

p(+)

p(+) = p(+|Y es)p(Y es) + p(+|No)p(No)

p(Y es) p(+|Y es) p(–|No)

99% 2%

99% 2% 98%10%

90%99%2%
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Estimating visual contrast from neural activity

+

Which grating moves faster?

Application #1: Biases in Motion Perception
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Estimating visual contrast from neural activity

S
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Bayesian estimation

S
p(m|S)

noise process

m*
stimulus noisy

measurement

S = f(m)

estimator

S*
estimate of
the stimulus

A Bayesian estimator is just another f(m). But what it does is that it minimizes 
some cost over the posterior, p(S|m)

p(S|m) =
1

p(m)
p(m|S)p(S)

Prior

Likelihood
Posterior
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Bayesian estimation (formal treatment)

Three ingredients for bayesian estimation

1. Likelihood

2. Prior

3. Cost function 

} jointly determine the posterior

} “cost” of making an estimate Se
when the true value is S

Se(m) = argmin
Se

Z
C(Se, S)p(S|m)dS

C(Se, S)

p(m|S)

p(S) p(S|m)
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Typical cost functions and Bayesian estimators

C(Se, S) = (Se � S)2

squared error cost function need to find Se that minimizes
Z

(Se � S)2p(S|m)dS

(Se � S)2

p(S|m)

S

S
Se For any Se, multiply the two curves, find the 

area. Then move Se until you find the point 
that the area is minimized
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Typical cost functions and Bayesian estimators

C(Se, S) = (Se � S)2

squared error cost function need to find Se that minimizes
Z

(Se � S)2p(S|m)dS

(Se � S)2

p(S|m)

S

S
Se

Bayes Least Squares (BLS)
also known as MMSE

mean of the posterior
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Typical cost functions and Bayesian estimators

p(S|m)

S

BLS (Bayes Least Squares)

MAP (Maximum Aposteriori)

Se = fBLS(m)

Se = fMAP (m)
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Estimating visual contrast from neural activity
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Likelihood

m
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Bayesian estimation

Stimulus/variable/etc (unknown)

Experimenter (or brain)
makes a (noisy) measurement

Measurement(s)
Likelihood function
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