Bayesian methods Brain and cog perspectives

Mehrdad Jazayeri

June 9th, 46-3189, 4pm-6pm

MIT Tutorials on advanced topics, 2015

An intuition for Bayesian estimation

Medical testing

A random person goes to the doctor to get a medical test for a rare disease. The test is pretty accurate: it gives a positive result for 99% of those who have the disease, and gives negative result for 90% of those who do not have the disease.

What are the chances that this person has the disease if the test comes out positive?

A. Less than 90%
B. 90%
C. between 90 and 99%
D. 99%
E. I don't know.

$p(Yes) \quad p(+|Yes) \quad p(-|No)$

	p(Yes)	p(+ Yes)	p(- No)	
	2%	99%	90%	
1000	20	~20+/20+	882-/980- 98+/980-	

p(Yes|+)

	p(Yes)	p(+ Yes)	p(- No)
	2%	99%	90%
1000	20	~20+/20+	882-/980- 98+/980-

p(Yes|+) 20/(20+98) = 0.17 17%

Thursday, June 11, 15

6

$$p(Yes) \quad p(+|Yes) \quad p(-|No)$$

2% 99% 90%

$$\begin{array}{l} 99\% \quad 2\% \\ p(Yes|+) = \displaystyle \frac{p(+|Yes)p(Yes)}{p(+)} \end{array}$$

99% 2% 10% 98% p(+) = p(+|Yes)p(Yes) + p(+|No)p(No)

Estimating visual contrast from neural activity

Estimating visual contrast from neural activity

Conditional probability

p(m|S)

Conditional probability

p(m|S)

Likelihood

Estimation

Estimation

Estimation

Example: Plot L(S; 58), and find $f_{ML}(58)$ noise process n(m|S)S = f(m)

Example: Plot L(S; 58), and find $f_{ML}(58)$

Thursday, June 11, 15

A Bayesian estimator is just another f(m). But what it does is that it minimizes some cost over the posterior, p(SIm)

Bayesian estimation (formal treatment)

Three ingredients for bayesian estimation

p(m|S) p(S)1. Likelihood jointly determine the posterior $\sim (C^{\perp})$ 2. Prior p(S|m)

3. Cost function $C(S_e, S)$ (cost" of making an estimate S_e when the true value is S

$$S_e(m) = \arg\min_{S_e} \int C(S_e, S) p(S|m) dS$$

Typical cost functions and Bayesian estimators

Typical cost functions and Bayesian estimators

 $C(S_e, S) = (S_e - S)^2$

need to find S_e that minimizes

$$\int (S_e - S)^2 p(S|m) dS$$

Bayes Least Squares (BLS) also known as MMSE

Typical cost functions and Bayesian estimators

$$S_{e} = f_{MAP}(m)$$

$$MAP \text{ (Maximum Aposteriori)}$$

$$S_{e} = f_{BLS}(m)$$
BLS (Bayes Least Squares)
$$MAP \text{ (Maximum Aposteriori)}$$

$$S_{e} = f_{BLS}(m)$$

Estimating visual contrast from neural activity

S

$$m = r(S) + n$$

$$r(S) = 10 + \frac{50}{1 + e^{-\frac{S - 0.25}{0.15}}}$$

$$n(n) = \frac{1}{1 - e^{-\frac{n^2}{2(5)^2}}}$$

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{n^2}{2(5)}}$$

m

 $\pi(S) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{(S-0.5)^2}{2(0.2)^2}}$

$$m = r(S) + n$$

$$r(S) = 10 + \frac{50}{1 + e^{-\frac{S - 0.25}{0.15}}}$$

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{n^2}{2(5)^2}}$$

 $\pi(S) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{(S-0.5)^2}{2(0.2)^2}}$

$$m = r(S) + n$$

$$r(S) = 10 + \frac{50}{1 + e^{-\frac{S - 0.25}{0.15}}}$$

S

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{n^2}{2(5)^2}}$$

Thursday, June 11, 15

m

m

S

$$m = r(S) + n \qquad \qquad \pi(S) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{(S-0.5)^2}{2(0.2)^2}}$$
$$r(S) = 10 + \frac{50}{1 + e^{-\frac{S-0.25}{0.15}}}$$

S_{ML}

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{n^2}{2(5)^2}}$$

m = r(S) + n

 $\pi(S) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{(S-0.5)^2}{2(0.2)^2}}$ $r(S) = 10 + \frac{50}{1 + e^{-\frac{S - 0.25}{0.15}}}$

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{n^2}{2(5)^2}}$$

$$m = r(S) + n \qquad \pi(S) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{(S-0.5)^2}{2(0.2)^2}}$$
$$r(S) = 10 + \frac{50}{1 + e^{-\frac{S-0.25}{0.15}}}$$
$$p(n) = \frac{1}{\sqrt{2\pi}(0.2)} e^{-\frac{n^2}{2(5)^2}}$$

$$p(n) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{1}{2(5)}}$$

Stimulus/variable/etc (unknown)

Experimenter (or brain) makes a (noisy) measurement

Measurement(s) Likelihood function

Stimulus/variable/etc (unknown)

Experimenter (or brain) makes a (noisy) measurement

Measurement(s) Likelihood function

Prior distribution

Experience/ Statistical regularities / False belief

regularities / False belief

regularities / False belief

