Bayesian Tutorial Exercises

1) Derive Bayes’ rule: Use only the sum and product rules of probability:
o Sumrule: P(4) = Y P(4,B)
B

o Product rule: P(4,B) =P(AB)P(B) = P(B|A)P(A)

P(dh)P(h)
Y. P(dm)P(h)
h'eH

o Bayes’ rule: P(h|d) =

2) A Bayesian estimator: You want to estimate some quantity S based on a noisy
measurement M. Show that E[S|M]is the minimum mean squared error (MMSE)
estimator for S. That is, show that:

o argmin E[(S—S)|M] = E(S|M)
Hint: set the derivative to 0 to find where the minimum is.
Why would we consider this estimator to be Bayesian? (Hint: assume that
you have characterized the noise model for your measurement as P (M|S)
but don’t know P(S|M) directly.

3) Apply the Bayesian approach to estimate sound location. You hear a sound
coming from somewhere to the left of your head, and want to know how much to
turn your head to shift your gaze to the source of the sound. You know that the
location of the sound source varies trial by trial -- it is sampled from a (prior)
Gaussian distribution with a mean of 20 deg, and a std of 8 deg. Because your
sensory system is also noisy, you cannot fully rely on your auditory input. Let’s
assume that you know that your sensory measurement is perturbed by
zero-mean Gaussian noise with a std of 3 deg.

o Maximum-Likelihood (ML) Estimate: If you ignore your prior knowledge
about the sound source, a common estimator is the value which
maximizes the likelihood function £(S) = P(M|S) (Note: f(S) is not a
probability distribution). Using maximum-likelihood estimation, where
would you say the source is if you hear it come from 18.5 deg to the left?
(Bonus: would you say the same if | told you that noise in the sensory
system is higher for more peripheral sounds?)



o Bayesian (MMSE) Estimate: How would you change your estimate, if you
additionally use your prior knowledge? Is it any different? Is it any better?
Why?

o Bonus: Repeat the following experiment 100 times: for each trial, assume
that the location of sound source is at 19 deg left and simulate a sensory
measurement of the source (perturbed by sensory noise); then compute
the ML and the MMSE estimates from this measurement. Compare the
mean and distribution of estimates derived from the ML and the MMSE
estimators. Can you now say why/how the MMSE estimate might be
better?

4) Will your neuron fire? Updating beliefs: Consider a population of olfactory
neurons that elicit a spike to various odors in a probabilistic fashion.

o You test one of these neuron’s responses to a chocolate smell and see
that on 750 of 1000 trials, the neuron fires a spike. What is the probability
that this neuron will fire in response to chocolate smell?

o Now imagine a case where after the first trial, you lose the neuron, so you
don’t get to do multiple trials, and you are left with the impoverished
information that the neuron did fire in response to chocolate smell the one
time you tested it. What would you estimate is the probability of firing for
this neuron?

o To better inform your estimate, you go to your Pl and ask for a record of
all the neurons previously recorded in this brain in response to chocolate,
and your PI gives you a whole distribution of firing probabilities across
neurons. How can you use this information to get a better estimate for the
probability of firing of the neuron that you only recorded one trial for?

o Your Pl quantified the full distribution of firing probabilities across neurons
by a Beta distribution shown below (use this as your prior):
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o Use the result of your one-trial experiment to plot the likelihood function.
Now use the Bayesian approach to derive the MMSE estimate of your
neuron’s firing probability.

5) Planning when your error depends on your plan: You are playing a game of
one-dimensional horseshoes, where you are penalized proportional to the square
of the distance to the target (i.e. you want to minimize the mean square error).
Assume that your throws can be modeled with a gaussian distribution, where the
standard deviation scales with the distance that you aim for. That is, the actual
distance you throw is given by D, _,..;= D.m+ €, Where € ~N(0, cD,,) . Assuming
you know the correct distance, D, what D,,,, should you aim for?



