Dimensionality Reduction II: ICA

Sam Norman-Haignere

Jan 21, 2016

Motivation

- Many signals reflect linear mixtures of multiple 'sources' :
 - \Rightarrow Audio signals from multiple speakers
 - \Rightarrow Neuroimaging measures of neural activity

(e.g. EEG, fMRI, calcium imaging)

- Often want to recover underlying sources from the mixed signal
 - ⇒ ICA algorithms provide general-purpose statistical machinery (given certain key assumptions)

Classic Example: Cocktail Party Problem

- Several sounds being played simultaneously
- Microphones at different locations record the mixed signal

Mixtures

Classic Example: Cocktail Party Problem

- Several sounds being played simultaneously
- Microphones at different locations record the mixed signal

ICA can recovers individual sounds sources

 \Rightarrow Only true if # microphones \geq # sources

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi

Classic Example: Cocktail Party Problem

Why is this a classic demo?

⇒Impressive

 \Rightarrow Assumptions of ICA fit the problem well:

- **1.** Sound source waveforms close to independent
- 2. Audio mixing truly linear
- 3. Sound source waveforms have non-Gaussian amplitude distribution

HISTOGRAM OF SPEECH WITH GAUSSIAN OVERLAID

Neuroimaging Examples: **EEG**

Frequently used to denoise EEG timecourses

⇒Artifacts (e.g. eye blinks) mostly independent of neural activity and have non-Gaussian amplitude distribution

⇒EEG channels modeled as linear mixture of artifacts and neural activity

Neuroimaging Examples: fMRI

fMRI 'voxels' contain hundreds of thousands of neurons

 \Rightarrow Plausibly contain neural populations with distinct selectivity

fMRI responses (reflecting blood) approximately linear function of neural activity

⇒ Use component analysis to unmix responses from different neural populations?

Working Example from My Research (for Convenience)

- Measured fMRI responses to 165 natural sounds:
- 1.Man speaking
- 2.Flushing toilet
- 3. Pouring liquid
- 4.Tooth-brushing
- 5.Woman speaking
- 6.Car accelerating
- 7.Biting and chewing
- 8.Laughing
- 9. Typing
- 10. Car engine starting
- **11.** Running water
- 12.Breathing
- 13.Keys jangling
- 14. Dishes clanking

- 15.Ringtone
- 16. Microwave
- 17.Dog barking
- **18.**Walking (hard surface)
- 19.Road traffic
- 20.Zipper
- 21. Cellphone vibrating
- 22. Water dripping
- 23. Scratching
- 24.Car windows
- 25. Telephone ringing
- 26. Chopping food
- 27. Telephone dialing
- 28. Girl speaking

- 29.Car horn
- 30.Writing
- 31.Computer startup sound
- 32.Background speech
- 33. Songbird
- 34. Pouring water
- 35.Pop song
- 36. Water boiling
- 37.Guitar
- 38. Coughing
- 39. Crumpling paper
- 40.Siren

Working Example from My Research (for Convenience)

- Measured fMRI responses to 165 natural sounds:
- For each voxel, measure average response to each sound

Working Example from My Research (for Convenience)

- Measured fMRI responses to 165 natural sounds:
- For each voxel, measure average response to each sound
- Compile all voxel responses into a matrix

11065 Voxels

Hypothesis: Perhaps a small number of neural populations – each with a canonical response to the sound set – explain the response of thousands of voxels?

Linear Model of Voxel Responses

Voxel responses modeled as weighted sum of response profiles

11065 Voxels

Factor response matrix into set of components, each with:

- **1**. Response profile to all 165 sounds
- 2. Voxel weights specifying contribution of each component to each voxel

11065 Voxels

Factor response matrix into set of components, each with:

- **1**. Response profile to all 165 sounds
- 2. Voxel weights specifying contribution of each component to each voxel

11065 Voxels

Factor response matrix into set of components, each with:

- **1**. Response profile to all 165 sounds
- 2. Voxel weights specifying contribution of each component to each voxel

11065 Voxels

11065 Voxels

Matrix approximation ill-posed (many equally good solutions)

- \Rightarrow Must be constrained with additional assumptions
- \Rightarrow Different techniques make different assumptions

Principal Components Analysis (PCA)

11065 Voxels

For PCA to infer underlying components, they must:

- 1. Have uncorrelated response profiles and voxel weights
- 2. Explain different amounts of response variance

Independent Components Analysis (ICA)

11065 Voxels

For ICA to infer underlying components, they must:

1. Have non-Gaussian and statistically independent voxel weights

An Aside on Statistical Independence

Saying that voxel weights are independent means:

 \Rightarrow The weight of one component tells you nothing about the weight of another

 $p(w_1, w_2) = p(w_1)p(w_2)$

Statistical independence a stronger assumption uncorrelatedness

 \Rightarrow All independent variables are uncorrelated

 \Rightarrow Not all uncorrelated variables are independent:

An Aside on non-Gaussianity

Many ways for a distribution to be non-Gaussian:

Non-Gaussinity and Statistical Indepedence

Central limit theorem (non-technical):

Sums of independent non-Gaussian distributions become more Gaussian

Consequence:

Maximally non-Gaussian projections of the data are more likely to be sources

What if the sources have a Gaussian distribution?

Out of luck: Sums of Gaussian distributions remain Gaussian

Music-selective population

Music-selective population

Limitation of PCA

PCA Dimensions

• But the specific directions are misaligned

Limitation of PCA

Can recover the "true" dimensions by rotating in the whitened PCA space

ICA Dimensions

ICA rotates PCA components to maximize statistical independence / non-Gaussianity

What if the data is Gaussian?

For Gaussian distributions

- \Rightarrow Projections on PCA components are circularly symmetric
- ⇒No "special directions"

For non-Gaussian distributions:

⇒Can recover latent components by searching for "special directions" that have maximally non-Gaussian projections

A Simple 2-Step Recipe

1. PCA: whiten data

- \Rightarrow Possibly discard low-variance components
- \Rightarrow How many components to discard?
- 2. ICA: rotate whitened PCA components to maximize non-Gaussianity
 - \Rightarrow How to measure non-Gaussianity?
 - \Rightarrow How to maximize your non-Gaussianity measure?

Measuring Non-Gaussianity: Negentropy (gold standard)

• Definition: difference in entropy from a Gaussian

$$J(\mathbf{y}) = H(\mathbf{y}_{gauss}) - H(\mathbf{y})$$

- Gaussian distribution is maximally entropic (for fixed variance)
 ⇒All non-Gaussian distributions have positive negentropy
- Maximizing negentropy closely related to minimizing mutual information
- Cons: in practice, can be hard to measure and optimize

Measuring Non-Gaussianity: Kurtosis (approximation)

• Definition: 4th moment of the distribution

 $\mathbf{E}[y^4]$

• Useful for sparse, 'heavy tailed' distributions (which are common)

Measuring Non-Gaussianity: Kurtosis (approximation)

• Definition: 4th moment of the distribution

 $\mathbf{E}[y^4]$

- Useful for sparse, 'heavy tailed' distributions (which are common)
 - \Rightarrow Many audio sources have a sparse distribution of amplitudes

Measuring Non-Gaussianity: Kurtosis (approximation)

• Definition: 4th moment of the distribution

 $\mathbf{E}[y^4]$

- Useful for sparse, 'heavy tailed' distributions (which are common)
 - \Rightarrow Many audio sources have a sparse distribution of amplitudes
 - \Rightarrow Natural images tend to be sparse (e.g. Olshausen & Field, 1997)
- Very easy to measure and optimize
- Cons: only useful if the source distributions are sparse, sensitive to outliers

Measuring Non-Gaussianity: Skew (approximation)

• Definition: 3rd moment of the distribution

 $\mathbf{E}[y^3]$

• Useful for distributions with a single heavy tail

Measuring Non-Gaussianity: Skew (approximation)

• Definition: 3rd moment of the distribution

 $\mathbf{E}[y^3]$

- Useful for distributions with a single heavy tail
- Again easy to measure and optimize
- Only useful if the source distributions are skewed

Measuring Non-Gaussianity

Bottom line:

- Negentropy a general-purpose measure of non-Gaussianity, but often hard to use in practice
- Parametric measures can be more effective if tailored to the non-Gaussianity of the source distribution

Non-Gaussianity Maximization

- Brute-force search
 - \Rightarrow e.g. iteratively rotate pairs of components to maximize non-Gaussianity
 - \Rightarrow Easy-to-implement, effective in low-dimensional spaces
- Gradient-based (many variants)
 - \Rightarrow More complicated to implement, effective in high dimensions
- All optimization algorithms attempt to find local, not global, optima
 - \Rightarrow Useful to test stability of local optima
 - \Rightarrow e.g. run algorithm many times from random starting points

A Simple 2-Step Recipe Applied to fMRI Data!

1. PCA: whiten data

 \Rightarrow Possibly discard low-variance components

 \Rightarrow How many components to discard?

2. ICA: rotate whitened PCA components to maximize non-Gaussianity

 \Rightarrow How to measure non-Gaussianity?

 \Rightarrow How to maximize your non-Gaussianity measure?

A Simple 2-Step Recipe Applied to fMRI Data!

- 1. PCA: whiten data
 - \Rightarrow Possibly discard low-variance components
 - \Rightarrow How many components to discard?
- 2. ICA: rotate whitened PCA components to maximize non-Gaussianity
 - \Rightarrow How to measure non-Gaussianity?
 - \Rightarrow How to maximize your non-Gaussianity measure?

Choosing the Number of Components

Using cross-validation to select components

- \Rightarrow Project voxel responses onto principal components (using subset of data)
- \Rightarrow Predict responses from left-out data using different numbers of components

A Simple 2-Step Recipe Applied to fMRI Data!

- 1. PCA: whiten data
 - \Rightarrow Possibly discard low-variance components
 - \Rightarrow Keep top 6 Components
- 2. ICA: rotate whitened PCA components to maximize non-Gaussianity
 - \Rightarrow How to measure non-Gaussianity?
 - \Rightarrow How to maximize your non-Gaussianity measure?

A Simple 2-Step Recipe Applied to fMRI Data!

- 1. PCA: whiten data
 - \Rightarrow Possibly discard low-variance components
 - \Rightarrow Keep top 6 Components
- 2. ICA: rotate whitened PCA components to maximize non-Gaussianity
 - \Rightarrow Use negentropy to measure non-Gaussianity
 - \Rightarrow Maximize negentropy via brute-force rotation
 - \Rightarrow Feasible because:
 - 1. Many voxels / data points (>10,000 voxels)
 - 2. Low-dimensional data (just 6 dimensions)

Rotating the Top 6 Principal Components

- Negentropy of principal components can be increased by rotation
- Rotation algorithm discovers clear optimum

Probing the Inferred Components

We now have 6 dimensions, each with:

- 1. A response profile (165-dimensional vector)
- 2. A weight vector, specifying its contribution to each voxel
- \Rightarrow Both response profile and anatomy unconstrained

All 6 inferred components have interpretable properties

 \Rightarrow 2 components highly selective for speech and music, respectively

Sounds

All 6 inferred components have interpretable properties

 \Rightarrow 2 components highly selective for speech and music, respectively

Music-selectivity highly diluted in raw voxels

 \Rightarrow fMRI signals likely blur activity from different neural populations

PCA components differ qualitatively from ICA components, with less clear functional/anatomical properties

 \Rightarrow ICA components have response profiles with substantial correlations

Conclusions

- 1. Core assumptions of ICA
 - ⇒Measured signals reflects linear mixture of underlying sources
 - \Rightarrow Sources are non-Gaussian and statistically independent
- 2. When core assumptions hold, the method is very effective, and requires few additional assumptions about the nature of the underlying sources

Exercise: 2-Step Recipe Applied to the Cocktail Party

Dataset

 \Rightarrow 5 audio soundtracks mixed from 3 sources

2-step recipe:

- 1. Project data onto the top 3 principal components
- 2. Iteratively rotate pairs of components to maximize negentropy
- \Rightarrow Listen to the unmixed signals!