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Large-scale data analysis via 
matrix and tensor decompositions

Alex Williams
MIT, 09/05/2017

Part 1: Matrix decomposition



Examples of Matrix-Encoded Data
1. Gene Expression

dissection dissociation
single-cell

sequencing
data matrix holding

transcript counts

(schematic adapted from La Manno & Gyllborg et al., 2016)

2. Neural Activity
smoothed or
trial-averaged
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Examples of Matrix-Encoded Data

Cortical neurons expressing YFP  
(Kim & Zhang et al., 2016)

Zebra Finch courtship song 
(Provided by Emily Mackevicius)

time
fre
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cy

3. Fluorescence Images 4. Spectrograms



Goal: extract simple structure from 
these large-scale datasets

genetic programs

cell types



Matrix Decomposition
A simple & general framework for extracting correlations 
and low-dimensional structure from matrix-coded datasets
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Visualization of Matrix Decomposition

Factor Matrices
Rank-3

ReconstructionOriginal Data



Talk Outline
1. Long list of matrix decomposition models

2. Optimization and model fitting

3. Visualization and model assessment
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minimize

U,V
kX�UVT k2F +�ufu(U) + �vfv(V)

subject to U 2 ⌦u, V 2 ⌦v

Matrix decomposition model, stated formally

loss regularization

constraints



The simplest matrix decomposition is PCA

minimize
U,V

kX�UVT k2Fmaximize

V
kXVVT k2F

(subject to V orthonormal) (subject to U,V orthogonal)



bX = UVT = UF�1FVT = U0V0T

There are an infinite # of solutions to PCA
known as “the rotation problem”
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reconstruction

bX = UVT = UF�1FVT = U0V0T

cell time

There are an infinite # of solutions to PCA
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same reconstruction

bX = UVT = UF�1FVT = U0V0T

There are an infinite # of solutions to PCA
known as “the rotation problem”



Nonnegative Matrix Factorization (NMF)
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U,V
kX�UVT k2F

subject to U � 0, V � 0

NMFPCA



Nonnegative Matrix Factorization

(Lee & Seung, 1999)

minimize

U,V
kX�UVT k2F

subject to U � 0, V � 0



Nonnegative Matrix Factorization

(Lee & Seung, 1999)

NMF advantages:

• sparse factors

minimize

U,V
kX�UVT k2F

subject to U � 0, V � 0

• additively combined
• can be “parts-based”
• can be unique (i.e. 

no rotation problem)
(Stodden & Donoho, 1999)



Sparse PCA*

* Several variants of this model with different properties appear in the literature. 
Originally it was proposed by Zou et al. (2006).
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Sparse PCA*

* Several variants of this model with different properties appear in the literature. 
Originally it was proposed by Zou et al. (2006).

Sparse
PCA

PCA

minimize
U,V

kX�UVT k2F+�u

X

i

kui:k1+�v

X

j

kvj:k22



Why L1 penalties result in sparse factors

L1 penalty L2 penalty

|ui| u2
i

uiui



Sparse PCA

 (D’Aspremont et al., 2007)

PCA Sparse PCA



PCA NMF Sparse
NMF

K-meansSemi-NMF
Sparse
semi-NMF

minimize
U,V

∥X−UVT ∥2F

subject to U ≥ 0, V ≥ 0

minimize
U,V

∥X−UVT ∥2F

subject to UTU = VTV = I

minimize
U,V

∥X−UVT ∥2F+λu

∑

i

∥ui:∥1

subject to U ≥ 0, V ≥ 0

minimize
U,V

∥X−UVT ∥2F

subject to U ≥ 0

minimize
U,V

∥X−UVT ∥2F+λu

∑

i

∥ui:∥1

subject to U ≥ 0

minimize
U,V

∥X−UVT ∥2F

subject to ui: ∈ {ek}, ∀i



Matrix decomposition can be interpreted 
probabilistically, via Bayes Rule: 

p(model | data) = p(data | model) p(model)

p(data)
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Matrix decomposition can be interpreted 
probabilistically, via Bayes Rule: 



p(model | data) = p(data | model) p(model)

p(data)

likelihood priorposterior

� ln p(model | data) / � ln p(data | model)� ln p(model)

Matrix decomposition can be interpreted 
probabilistically, via Bayes Rule: 



Loss functions often map onto the negative log-likelihood

Regularizers often map onto the prior distributions

Bottom Line: Standard matrix decomposition can be 
viewed as maximum a posteriori estimation

p(model | data) = p(data | model) p(model)

p(data)

likelihood priorposterior

� ln p(model | data) / � ln p(data | model)� ln p(model)

Matrix decomposition can be interpreted 
probabilistically, via Bayes Rule: 



Using the appropriate loss function can 
make a difference

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/


Combinatorial menu of models

quadratic

absolute

logistic

Poisson

circular

loss functions regularizers/constraints

L2 norm

L1 norm (sparsity)

Nonnegative

Derivative penalties

(real data)

(robust to outliers)

(binary data)

(integer data)

(angular data)

(sparse factors)

(small factors)

(additive factors)

(smooth factors)



Further Reading
Udell et al. (2016). “Generalized Low Rank Models.” Foundations and 
Trends in Machine Learning.

Presents one of the most general matrix factorization frameworks that 
includes PCA, NMF, Sparse PCA, K-means, and many others as special 
cases.

http://perso.telecom-paristech.fr/~essid/teach/NMF_tutorial_ICME-2014.pdf
Essid & Ozerov (2014). Tutorial on NMF. ICME 2014.

A comprehensive overview of applications and extensions of NMF

Gillis (2011). Nonnegative Matrix Factorization: Complexity, Algorithms, 
and Applications. PhD thesis, Université Catholique de Louvain.

A very comprehensive thesis placing greater focus on the algorithmic 
aspects of NMF. Also see more recent work from Gillis.

http://perso.telecom-paristech.fr/~essid/teach/NMF_tutorial_ICME-2014.pdf


Talk Outline
1. Long list of matrix decomposition models

2. Optimization and model fitting

3. Visualization and model assessment



Properties of PCA
Rotation problem limits interpretability. However, it also allows 
us to organize factors to have convenient properties.

Canonically, choose factors to be orthogonal and order them 
by variance explained.



Properties of PCA
Rotation problem limits interpretability. However, it also allows 
us to organize factors to have convenient properties.

Canonically, choose factors to be orthogonal and order them 
by variance explained.

Eckart-Young Theorem: solution given by truncated singular 
value decomposition (SVD)

Consequence: the solution with R components is contained in 
the solution with R+1 components.



Properties of PCA
PCA is one of the few examples of a nonconvex 
problem* that can be provably solved in polynomial time

* with a bit of work you can formulate a convex optimization problem whose solution 
also solves the PCA problem: 
http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf
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Properties of PCA
PCA is one of the few examples of a nonconvex 
problem* that can be provably solved in polynomial time

* with a bit of work you can formulate a convex optimization problem whose solution 
also solves the PCA problem: 
http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf

Can prove that all local 
minima are solutions. 

All non-optimal critical points 
are saddle points or maxima.

(Baldi & Hornik, 1989).

http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf
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Consider the PCA 
loss for a single 
matrix element

ui

vj
xij ≈

`ij(ui, vj) = (xij � uivj)
2

Convex in u when v is fixed as 
constant (and vice versa)



Alternating Minimization
minimize

U,V
kX�UVT k2F

subject to UTU = VTV = IDecompose the loss function into two, easy to solve 
subproblems:

U argmin
⇠
U

kX� ⇠
U VT k2F

V argmin
⇠
V

kX�U
⇠
VTk2F

Repeat until loss function converges.

step 1:

step 2:



Fitting PCA in 10 lines of MATLAB



Alternating minimization is super 
effective in practice

Update U Update V

Simulated 100x100 data matrix, with 10 components

Generally, not that many iterations are needed.



Alternating minimization is super 
effective in practice

Time to perform 1 update of U and V on my MacBook Pro

For moderate data sizes, iterations are fast.



NMF can also be solved by alternating 
minimization

U argmin
⇠
U�0

kX� ⇠
U VT k2F

V argmin
⇠
V�0

kX�U
⇠
VTk2F

Each step is nonnegative 
least squares problem 
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(e.g. Kim & Park, 2008)



NMF can also be solved by alternating 
minimization

U argmin
⇠
U�0

kX� ⇠
U VT k2F

V argmin
⇠
V�0

kX�U
⇠
VTk2F

Each step is nonnegative 
least squares problem 

Convex problem

Specialized, fast 
optimization methods

(e.g. Kim & Park, 2008)

In MATLAB:

In Python:



Further reading on optimization

Parikh & Boyd. (2016). “Proximal Methods.” Foundations and Trends in 
Machine Learning.

An overview of a very simple, but powerful class of optimization methods 
for matrix optimization. Udell et al. (2016), cited earlier, make use of 
these methods.

Kim et al. (2014). “Algorithms for nonnegative matrix and tensor 
factorizations.” Journal of Global Optimization.

A unified review that covers alternating minimization along with other 
specialized methods for fitting NMF.



Talk Outline
1. Long list of matrix decomposition models
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3. Visualization and model assessment



Scree Plot — How well am I fitting the data?

NMF (best fit)
SVD

NMF (all fits)

Interpretation: NMF converges to similar error from different 
initializations, and nearly achieves the optimal lower bound on 
performance set by SVD.



Similarity Plot — Are there multiple 
solutions that fit the data equally well? 

⇧where      , is an r x r 
permutation matrix.

Define the similarity of two 
factor matrices as:

S(U,U0
) = max

⇧

1

r
Tr

⇥
UTU0

⇧

⇤



Cross-Validation

held-out data
training data

Holding out data at random for cross-validation draws a 
connection to the well-studied matrix completion problem 

(see e.g. Candès & Recht, 2009)



Further reading on model assessment

Bro et al. (2008). “Cross-validation of component models: a critical look 
at current methods.” Analytical and Bioanalytical Chemistry

An in-depth look at cross-validation procedures for PCA and other matrix 
factorization approaches.

Luxburg. (2010). “Clustering Stability: An Overview.” Foundations and 
Trends in Machine Learning.

The subtle concepts behind the similarity plot are much better studied for 
clustering algorithms (rather than NMF). This review covers that literature.


