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L arge-scale data analysis via
matrix and tensor decompositions

Part 1: Matrix decomposition

Alex Williams
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Examples of Matrix-Encoded Data

1. Gene Expression

single-cell data matrix holding
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2. Neural Activity
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Examples of Matrix-Encoded Data

3. Fluorescence Images

Spectrograms

4.

time

Zebra Finch courtship song
(Provided by Emily Mackevicius)

Cortical neurons expressing YFP
(Kim & Zhang et al., 2016)
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Goal: extract simple structure from
these large-scale datasets
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Matrix Decomposition

A simple & general framework for extracting correlations
and low-dimensional structure from matrix-coded datasets
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Matrix Decomposition

A simple & general framework for extracting correlations
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Matrix Decomposition

A simple & general framework for extracting correlations
and low-dimensional structure from matrix-coded datasets
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Visualization of Matrix Decomposition

Rank-3
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Talk Outline

1. Long list of matrix decomposition models

2. Optimization and model fitting

3. Visualization and model assessment
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Matrix decomposition model, stated formally

loss regularization

minimize X — UV %+ fu (U) + Xy fo (V)

subject to U € ,, V €,

constraints



The simplest matrix decomposition is PCA

. . LI T2
maximize || XVV'|% minimize || X -UV"|%
\V4 U,V
(subject to V orthonormal) (subject to U,V orthogonal)

o
‘/Ma'ximize variance Minimize residuals
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of red dots in in this direction

this direction



There are an infinite # of solutions to PCA

known as “the rotation problem”

X = UVvT



There are an infinite # of solutions to PCA

known as “the rotation problem”

X =UV? =UF 'FV? =U'V”



solution #1

There are an infinite # of solutions to PCA

known as “the rotation problem”

X =UVT = Urtrv? = uvy?

neuron factors temporal factors
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solution #1

solution #2

There are an infinite # of solutions to PCA

known as “the rotation problem”

X =UV?T = UF'FVT = U'V7T
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Nonnegative Matrix Factorization (NMF)

minimize [|[X — UV*||%
U,V

subject to U >0,V >0



Nonnegative Matrix Factorization (NMF)
minimize || X — UV?|%
U,V
subject to U >0,V >0

NMF




Nonnegative Matrix Factorization

Original

- ]

(Lee & Seung, 1999)
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Nonnegative Matrix Factorization

UV'[%

IX
U >0

minimize
U,V

NMF advantages:

subject to

no rotation problem)

 can be “parts-based”
(Stodden & Donoho, 1999)

» sparse factors
- additively combined
* can be unique (i.e.



Sparse PCA*”

L. T2 2
minimize | X — UV |2+ ZHW:Hl+)\U ZHVj:Hz
1 J

* Several variants of this model with different properties appear in the literature.
Originally it was proposed by Zou et al. (2000).



Sparse PCA*”

L. T2 2
minimize | X — UV || 7+ ZHui:Hl—l-)\fu ZHVj:HQ
1 J

Sparse
PCA

* Several variants of this model with different properties appear in the literature.
Originally it was proposed by Zou et al. (2006).



Why L1 penalties result in sparse factors

L. penalty

]

L, penalty
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Sparse PCA

(D’Aspremont et al., 2007)



minimize || X — UV'|%
U,V

subject to UTU=VIV =1

Semi-NMF

minimize || X — UV?||%
U,V

subject to U >0

NMF

minimize
U,V

subject to U >0,V >0

Sparse
semi-NMF

minimize
U,V

IX - OV

minimize ||X — UV ||%+\, ZHuZ 1

U,V

subject to U >0

Sparse
NMF

subject to U >0,V >0

K-means

minimize
U.v

Y

IX = OVH|[F4Au )l

IX - UV

subject to u;. € {ey}, Vi



Matrix decomposition can be interpreted
orobabilistically, via Bayes Rule:

p(data | model) p(model)

del | data) =
p(model | data) D(data)




Matrix decomposition can be interpreted
orobabilistically, via Bayes Rule:

posterior likelihood  prior

dat del del
p(model | data) = p(data | model) p(model)

p(data)




Matrix decomposi

lon can be interpreted
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p(model | data) =
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Matrix decomposi

lon can be interpreted

probabilistica

posterior
p(model | data) =

ly, via Bayes Rule:

likelihood  prior

p(data | model) p(model)

p(data)

— In p(model | data) o« —In p(data | model) — In p(model)

Bottom Line: Standard matrix decomposition can be
viewed as maximum a posteriori estimation

Loss functions often map onto the negative log-likelihood

Regularizers often map onto the prior distributions



Using the appropriate loss function can
make a ditference
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http://alexhwilliams.info/itsneuronalblog/2016/03/27/pca/

Combinatorial menu of models

loss functions regularizers/constraints
guadratic
(real data) L2 norm
(small factors)
absolute
(robust to outliers) L1 norm (sparsity)
ogistic (sparse factors)
(binary data) Nonnegative
Poisson (additive factors)

(integer data) Derivative penalties

circular (smooth factors)
(angular data)



Further Reading

Udell et al. (2016). “Generalized Low Rank Models.” Foundations and
Trenas in Machine Learning.

Presents one of the most general matrix factorization frameworks that
includes PCA, NMF, Sparse PCA, K-means, and many others as special
cases.

Essid & Ozerov (2014). Tutorial on NMF. ICME 2014.

A comprehensive overview of applications and extensions of NMF

Gillis (2011). Nonnegative Matrix Factorization: Complexity, Algorithms,
and Applications. PhD thesis, Universitée Catholique de Louvain.

A very comprehensive thesis placing greater focus on the algorithmic
aspects of NMF. Also see more recent work from Gillis.


http://perso.telecom-paristech.fr/~essid/teach/NMF_tutorial_ICME-2014.pdf

Talk Outline

1. Long list of matrix decomposition models

2. Optimization and model fitting

3. Visualization and model assessment



Properties of PCA

Rotation problem limits interpretability. However, it also allows
us to organize tactors to have convenient properties.

Canonically, choose factors to be orthogonal and order them
by variance explained.



Properties of PCA

Rotation problem limits interpretability. However, it also allows
us to organize tactors to have convenient properties.

Canonically, choose factors to be orthogonal and order them
by variance explained.

Eckart-Young Theorem: solution given by truncated singular
value decomposition (SVD)

Consequence: the solution with R components is contained in
the solution with R+1 components.




Properties of PCA

PCA Is one of the few examples of a nonconvex
problem™ that can be provably solved in polynomial time

* with a bit of work you can formulate a convex optimization problem whose solution
also solves the PCA problem:

http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf
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Properties of PCA

PCA Is one of the few examples of a nonconvex
problem™ that can be provably solved in polynomial time

Can prove that all local
minima are solutions.

All non-optimal critical points
are saddle points or maxima. Unique

‘) Saddle
points
minimum W ———»

FIGURE 2. The landscape of E.
(Baldi & Hornik, 1989).

* with a bit of work you can formulate a convex optimization problem whose solution
also solves the PCA problem:

http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf


http://www.stat.cmu.edu/~ryantibs/convexopt/lectures/nonconvex.pdf

Consider the PCA
loss for a single
matrix element

X
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Consider the PCA

X

loss for a single

matrix element

lij(ui,vj) = (T35 — wiv;)°
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X

Consider the PCA
loss for a single
matrix element

lij(ui,vj) = (T35 — wiv;)°

Convex in u when v is fixed as
constant (and vice versa)

o—-- Il I BN = B B BN BN B .



Alternating Minimization
minimize || X — UV*|%
U,V

Decompose the loss function into two, easy to solve
subproblems:

step 1: U < argmin || X— U V7%
U

step 2: V « argmin | X — U V' |2
\%

Repeat until loss function converges.
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Fitting PCA in 10 lines of MATLAB

- K =

- data

3; % number of components
= randn(100,K) * randn(K, 101);

_ [M, N] = size(data);

- U =

- for

- end

randn(M, K); % initial gquess for U

iteration = 1:10

Vt = U \ data; % Update V (fixed U)
U = data / Vt; % Update U (fixed V)
loss(iteration) = norm(data - UxVt,

U
U

'fro'):



Alternating minimization is super
effective in practice

Generally, not that many iterations are needed.

o Update U ® Update V

02 = 0.1 o2 =1 0’ =10
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loss function
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0.84 0

loss function
[ )

o
o

012345678 0123450678 012345678
iteration iteration iteration

Simulated 100x100 data matrix, with 10 components



Alternating minimization is super
effective in practice

For moderate data sizes, iterations are fast.

A
|

time per iteration (s)
N)

o
|

0 1000 2000 3000
size of N X N matrix

Time to perform 1 update of U and V on my MacBook Pro



NMF can also be solved by alternating
minimization

Each step Is nonnegative U < argmin | X— U VTH%

least squares problem Sreg

V « argmin | X — U V'|%
V>0
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least squares problem >0
Convex problem V « argmin | X — U f\\;—TH%
Specialized, fast V>0

optimization methods
(e.g. Kim & Park, 2008)



NMF can also be solved by alternating
minimization

Each step Is nonnegative U <+ argmin [|X— U VT|%
least squares problem >0
Convex problem V « argmin | X — U f\\;—TH%
Specialized, fast V>0

optimization methods
(e.g. Kim & Park, 2008)

In MATLAB: x = lsgnonneg(A, b);

In Python: import scipy.optimize
X = sclpy.optimize.nnls(A, b)



Further reading on optimization

Kim et al. (2014). “Algorithms for nonnegative matrix and tensor
factorizations.” Journal of Global Optimization.

A unified review that covers alternating minimization along with other
specialized methods for fitting NMF.

Parikh & Boyd. (2016). “Proximal Methods.” Foundations and Trends in
Machine Learning.

An overview of a very simple, but powertul class of optimization methods
for matrix optimization. Udell et al. (2016), cited earlier, make use of
these methods.
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3. Visualization and model assessment



Scree Plot — How well am | fitting the data?

0.15 -
® NMF (all fits)
0.14 -
— NMF (best fit)
n 0.13 A —— SVD
=
@ 0.12 -
0.11 -
0.10 -

2.5 5.0 7.5
# of components

Interpretation: NMF converges to similar error from different
Initializations, and nearly achieves the optimal lower bound on
performance set by SVD.



Similarity Plot — Are there multiple
solutions that fit the data equally well??

Define the similarity of two

. 1.0 -
factor matrices as:
. 2 0.9 -
S(U,U’) =max -Tr [U'UI] r—g
11 T =
»n 0.8 -
where 11 . isanrxr 0.7 - .

permutation matrix. 2 4 6 8
# of components



Cross-Validation

training data
held-out data

Holding out data at random for cross-validation draws a
connection to the well-studied matrix completion problem
(see e.g. Candes & Recht, 2009)



Further reading on model assessment

Luxburg. (2010). “Clustering Stability: An Overview.” Foundations and
Irenas in Machine Learning.

The subtle concepts behind the similarity plot are much better studied for
clustering algorithms (rather than NMF). This review covers that literature.

Bro et al. (2008). “Cross-validation of component models: a critical look
at current methods.” Analytical and Bioanalytical Chemistry

An in-depth look at cross-validation procedures for PCA and other matrix
factorization approaches.



