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Modern experiments capture a large range 
of timescales in neural data
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Existing method #2: Trial-concatenated PCA
(very similar to GPFA; Yu et al. 2009)
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Our Goal: Find compact representation for 
within- and across-trial neural dynamics
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We apply standard tensor decomposition 
methods to extract these components
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Normalize activity traces so 
that high-firing-rate neurons 
do not dominate analysis.

TCA involves minimizing a 
nonconvex function which may 
get caught in local minima
Unlike PCA, the best-fit factors 
depend on the # of components
Thus, models with different # of 
components multiple times from 
different random initializations.
In practice, optimization is 
tractable.

Scree and similarity plots can help determine this. 
Always visualize multiple models and ensure they 
produce similar results. 

We typically visualize the neuron factors as 
a bar plot, the temporal factors as line 
plots, and the trial factors as color-coded 
scatter plots.
Since the ordering of the neurons is often 
arbitrary, it can help to reorder them by the 
neuron factor loadings in creative ways.
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A demonstration of TCA using simulated data 
from the gain-modulated linear network
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PCA fails to recover network parameters from 
simulated data
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PCA fails to recover network parameters from 
simulated data
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TCA precisely recovers all parameters

... ...

trial 1 50 100

ne
ur

on
s

time time time

low high model estimateground truth

activity level neurons time trials

synaptic
weights

input
waveforms

input
magnitude

Simulated Data



By design, PCA identifies a coordinate system 
instead of ground truth factors

Known as “rotational ambiguity” or the “rotation problem”
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Seminal theorem (Kruskal, 1977) proves that 
linear independence is a sufficient condition for 

tensor decomposition identifiability

When PCA can recover 
ground truth:

When TCA can recover 
ground truth:

orthogonal factors,
large eigengap

factors can be correlated
and have similar magnitudes



• Despite being a simple generalization of PCA, it has 
strikingly advantageous theoretical properties.

• TCA separates fast, temporal factors from slow, across-
trial factors.

Summary Thusfar

• Strong connection between TCA as a statistical model and 
the principle of gain modulation.



• Despite being a simple generalization of PCA, it has 
strikingly advantageous theoretical properties.

• TCA separates fast, temporal factors from slow, across-
trial factors.

Summary Thusfar

Applications

learning in artificial networks 
via backpropagation

BMI learning and 
adaptation

navigation with switching 
reward contingencies

• Strong connection between TCA as a statistical model and 
the principle of gain modulation.
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Resorting the network connectivity by the TCA 
neuron factor reveals winner-take-all structure
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Application #2: How does prefrontal cortex encode 
place, actions, and rewards during maze navigation?
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TCA factors map on to individual task variables
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PCA components encode complex mixtures of task 
variables
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Application #3: How does motor cortex learn to 
control a cursor via a brain-machine interface?
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3.   A learned component, capturing new neural dynamics that
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Summary
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• There is growing interest in both large-scale and long-term 
recordings. TCA is can be used “off-the-shelf” on these data.

Summary

• TCA has nice theoretical properties (Kolda & Bader, 2009) 
and an intuitive interpretation as a gain-modulated network.

• Can reveal discrete clusters of neurons and single-trial 
dynamics.

• TCA can also pull out gradual trends within neural populations 
and across-trial learning dynamics

Overall, TCA is a well-motivated tool for identifying 
structure in some of the most challenging datasets in 
neuroscience involving large-scale & long-term neural 
recordings.



Try out TCA!

https://github.com/ahwillia/tensortools
https://tensorly.github.io/

http://www.sandia.gov/~tgkolda/TensorToolbox/

https://github.com/yunjhongwu/TensorDecompositions.jl

https://www.tensorlab.net/

Python

MATLAB

Julia

https://github.com/ahwillia/tensortools


Mark 
Schnitzer

Tony 
Kim

Fori 
Wang

Tammy 
Kolda

Surya 
Ganguli

Krishna 
Shenoy

Saurabh 
Vyas

Contact : ahwillia@stanford.edu
Slides : alexhwilliams.info/pdf/nccd.pdf
Code : github.com/ahwillia/tensor-demo

Co-authors:

Funding &
Support:

mailto:ahwillia@stanford.edu?subject=
https://github.com/ahwillia/tensor-demo

