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Modern experiments capture a large range
of timescales in neural data
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Neural data is large, along multiple dimensions

 Ability to record from thousands of neurons, over
thousands of trials.
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Existing method #2: Trial-concatenated PCA
(very similar to GPFA; Yu et al. 2009)
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Existing method #2: Trial-concatenated PCA
(very similar to GPFA; Yu et al. 2009)
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Our Goal: Find compact representation for
within- and across-trial neural dynamics
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We apply standard tensor decomposition
methods to extract these components

Tensor Components Analysis (TCA)
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We apply standard tensor decomposition
methods to extract these components
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A neural circuit interpretation of TCA:

TCA is a linear network with gain modulation — an influential
principle of cortical computation (e.g., Carandini and Heeger, 2012)
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A neural circuit interpretation of TCA:

TCA is a linear network with gain modulation — an influential
principle of cortical computation (e.g., Carandini and Heeger, 2012)
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A demonstration of TCA using simulated data
from the gain-modulated linear network
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PCA falils to recover network parameters from
simulated data
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PCA falils to recover network parameters from
simulated data
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TCA precisely recovers all parameters
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By design, PCA identifies a coordinate system
instead of ground truth factors

Known as “rotational ambiguity” or the “rotation problem”
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solution #2

By design, PCA identifies a coordinate system
instead of ground truth factors

Known as “rotational ambiquity” or the “rotation problem”
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Seminal theorem (Kruskal, 1977) proves that
linear independence is a sufficient condition for
tensor decomposition identifiability

When PCA can recover When TCA can recover
ground truth: ground truth:
orthogonal factors, factors can be correlated
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Summary Thusfar

TCA separates fast, temporal factors from slow, across-
trial factors.

Despite being a simple generalization of PCA, it has
strikingly advantageous theoretical properties.

Strong connection between TCA as a statistical model and
the principle of gain modulation.
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Application #1: How does a model network learn a
sensory discrimination task?
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Application #1: How does a model network
learn a sensory discrimination task?
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Application #1: How does a model network
learn a sensory discrimination task?
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Gain modulation is a compact and accurate
model of the network activity over all trials
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Gain modulation is a compact and accurate
model of the network activity over all trials

Two example cells before and TCA with 1 component
after training describes the vast majority of
variance in firing rates
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TCA with one component (|L) identifies:
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TCA with one component (|L) identifies:

1. Cells with opposing responses to the stimulus (neuron factor)

2. A decision timescale shared by all neurons (temporal factor)
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TCA with one component (|L) identifies:

1. Cells with opposing responses to the stimulus (neuron factor)

2. A decision timescale shared by all neurons (temporal factor)

3. Network decisions trial-by-trial and learning (trial factor)
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TCA with one component (|L) identifies:

1. Cells with opposing responses to the stimulus (neuron factor)

2. A decision timescale shared by all neurons (temporal factor)

3. Network decisions trial-by-trial and learning (trial factor)
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Resorting the network connectivity by the TCA
neuron factor reveals winner-take-all structure
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Application #2: How does prefrontal cortex encode
place, actions, and rewards during maze navigation?



Application #2: How does prefrontal cortex encode
place, actions, and rewards during maze navigation?

West-Start Condition East-Start Condition
Trial Condition Decision Trial Outcome

East / West === North / South ———» Rewarded / Error
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TCA (gain modulation) is a very compact and
accurate model for trial-to-trial variability
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TCA (gain modulation) is a very compact and
accurate model for trial-to-trial variability
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TCA factors map on to individual task variables
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PCA components encode complex mixtures of task

variables
PC #1 -
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Application #3: How does motor cortex learn to
control a cursor via a brain-machine interface?
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TCA identifies:

1. An early component, capturing the initial performance

2. A compensatory component, capturing within-trial corrections.

3. Alearned component, capturing new neural dynamics that
persist as the monkey adapts to the new BMI decoder.
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TCA identifies:

1.

An early component, capturing the initial performance

2. A compensatory component, capturing within-trial corrections.

3. Alearned component, capturing new neural dynamics that
persist as the monkey adapts to the new BMI decoder.
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Summary

There Is growing interest in both large-scale and long-term
recordings. TCA is can be used “off-the-shelf” on these data.

TCA has nice theoretical properties (Kolda & Bader, 2009)
and an intuitive interpretation as a gain-modulated network.

Can reveal discrete clusters of neurons and single-trial
dynamics.
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Summary

There Is growing interest in both large-scale and long-term
recordings. TCA is can be used “off-the-shelf” on these data.

TCA has nice theoretical properties (Kolda & Bader, 2009)
and an intuitive interpretation as a gain-modulated network.

Can reveal discrete clusters of neurons and single-trial
dynamics.

TCA can also pull out gradual trends within neural populations
and across-trial learning dynamics

Overall, TCA is a well-motivated tool for identifying
structure in some of the most challenging datasets in

neuroscience involving large-scale & long-term neural
recordings.



Try out TCA!

Python
https://github.com/ahwillia/tensortools
https://tensorly.github.io/

MATLAB

http://www.sandia.gov/~tgkolda/TensorToolbox/
https://www.tensorlab.net/

Julia
https://github.com/yunjhongwu/TensorDecompositions. |l


https://github.com/ahwillia/tensortools

Contact : ahwillia@stanford.edu

Slides : alexhwilliams.info/pdf/nccd.pdf ||w"5| ITl ANFORD

Code : github.com/ahwillia/tensor-demo
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