
Exercises on NMF

Alex Williams, 09/05/2017

Notation.

Nonnegative matrix factorization (NMF) considers a matrix dataset X with dimensions m ⇥ n, where all

datapoints are nonnegative, i.e.

xij � 0, 8i 2 {1, ...,m}, j 2 {1, ..., n} .

For brevity, we use X � 0 to denote the above condition (this is a common shorthand). A NMF model with

r components attempts to solve the following optimization problem:

minimize
U,V

kX�UVT k2F

subject to U � 0, V � 0

where U and V are respectively m⇥r and n⇥r matrices, where r < m and r < n (to reduce dimensionality).

We refer to U and V as factor matrices.

Exercises.

1. Implement NMF by alternating nonnegative least squares (ANLS). For simplicity, run the algorithm

for 30 iterations (you don’t need to check for convergence). The update equations for ANLS are:

Uk+1 argmin
U�0

kX�UVT
k k2F

Vk+1 argmin
V�0

kX�Uk+1V
T k2F

where k indexes the iterations. In MATLAB, you can use the lsqnonneg function. In Python, you

can use the nnls function in scipy.optimize. Initialize the factor matrices with uniform, random

nonnegative numbers.

2. Test your implementation on the synthetic dataset provided to you in nmfdata.txt. Use the same

data to answer all the questions below.

3. Scree Plot. Implement a function that plots the root-mean-square-error (RMSE) of the model as a

function of the number of components, r. For each value of r, fit the model from multiple random

initializations and plot the RMSE as a separate point. For the provided dataset, is the RMSE sensitive

to initialization?

4. Comparison to truncated SVD. Modify your scree plot to include a line that plots the RMSE of a

truncated SVD/PCA model as a function of r. Compare the performance of NMF to SVD for the

synthetic dataset. When you generate this plot from the provided dataset, is the result favorable or

unfavorable for NMF?

5. Similarity Plot. Implement a function that computes the similarity of two factor matrices. Specifically,

your function will take two factor matrices U and U0 with the same number of components, r, but fit

1

from di↵erent initializations. First, normalize the columns of U and U0 to be unit Euclidean length.

Then, compute the following similarity score between the two factor matrices:

max
⇧

1

r

Tr
⇥
UTU0⇧

⇤
.

Here, Tr[·] denotes the trace of a matrix, and ⇧ is an r⇥ r permutation matrix. In other words, search

over the all permutations of the columns of U0 and return the maximal average cosine similarity with

the columns of U. Then, plot the average model similarity as a function of the number of components.

After computing and visualizing the similarity for U, as described above, do the same for V (this

should require essentially no extra code).

6. Visualization and interpretation. Assume that the rows and columns of the data are in arbitrary order.

For example, let’s say we’re working with gene expression data where each column of X is a di↵erent

gene, and each row of X is a di↵erent biological sample (e.g., a tumor derived from a di↵erent patient).

Implement a function that re-sorts the samples and genes based on the NMF model. Visualize the raw

data and the re-sorted data as heatmaps. For the provided synthetic dataset, it should be possible to

re-sort the data to reveal clustering within genes and samples.

2

