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Representations that are invariant to translation, scale and other
transformations, can considerably reduce the sample complexity of
learning, allowing recognition of new object classes from very few
examples—a hallmark of human recognition. Empirical estimates of
one-dimensional projections of the distribution induced by a group
of affine transformations are proven to represent a unique and invari-
ant signature associated with an image. We show how projections
yielding invariant signatures for future images can be learned au-
tomatically, and updated continuously, during unsupervised visual
experience. A module performing filtering and pooling, like sim-
ple and complex cells as proposed by Hubel and Wiesel, can com-
pute such estimates. Under this view, a pooling stage estimates
a one-dimensional probability distribution. Invariance from observa-
tions through a restricted window is equivalent to a sparsity property
w.r.t. to a transformation, which yields templates that are a) Gabor
for optimal simultaneous invariance to translation and scale or b)
very specific for complex, class-dependent transformations such as
rotation in depth of faces. Hierarchical architectures consisting of
this basic Hubel-Wiesel module inherit its properties of invariance,
stability, and discriminability while capturing the compositional or-
ganization of the visual world in terms of wholes and parts, and
are invariant to complex transformations that may only be locally
affine. The theory applies to several existing deep learning con-
volutional architectures for image and speech recognition. It also
suggests that the main computational goal of the ventral stream
of visual cortex is to provide a hierarchical representation of new
objects/images which is invariant to transformations, stable, and
discriminative for recognition—and that this representation may be
continuously learned in an unsupervised way during development and
natural visual experience.
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We propose a theory of hierarchical architectures and,

in particular, of the ventral stream in visual cortex. The
initial assumption is that the computational goal of the

ventral stream is to compute a representation of objects

which is invariant to transformations. The theory shows
how a process based on high-dimensional dot products can

use stored ”movies” of objects transforming, to encode
new images in an invariant way. Theorems show that in-

variance implies several properties of the ventral stream

organization and of the tuning of its neurons. Our main
contribution is a theoretical framework for the next phase

of machine learning beyond supervised learning: the unsu-

pervised learning of representations that reduce the sam-
ple complexity of the final supervised learning stage.

It is known that Hubel and Wiesel’s original proposal [31]
for visual area V1—of a module consisting of complex cells
(C-units) combining the outputs of sets of simple cells (S-
units) with identical orientation preferences but differing reti-
nal positions—can be used to construct translation-invariant
detectors. This is the insight underlying many networks for
visual recognition, including HMAX [32] and convolutional
neural nets [33, 34]. We show here how the original idea can
be expanded into a comprehensive theory of visual recognition
relevant for computer vision and possibly for visual cortex.
The first step in the theory is the conjecture that a repre-

l=4

l=3

l=2

l=1

Fig. 1: A hierarchical architecture built from HW-modules. Each
red circle represents the signature vector computed by the associated
module (the outputs of complex cells) and double arrows represent
its receptive fields – the part of the (neural) image visible to the
module (for translations this is also the pooling range). The “im-
age” is at level 0, at the bottom. The vector computed at the top
of the hierarchy consists of invariant features for the whole image
and is usually fed as input to a supervised learning machine such
as a classifier; in addition signatures from modules at intermediate
layers may also be inputs to classifiers for objects and parts.

sentation of images and image patches, with a feature vector
that is invariant to a broad range of transformations—such
as translation, scale, expression of a face, pose of a body, and
viewpoint—makes it possible to recognize objects from only
a few labeled labeled examples, as humans do. The second
step is proving that hierarchical architectures of Hubel-Wiesel
(‘HW’) modules (indicated by

∧
in Fig. 1) can provide such

invariant representations while maintaining discriminative in-
formation about the original image. Each

∧
-module provides

a feature vector, which we call a signature, for the the part
of the visual field that is inside its “receptive field”; the sig-
nature is invariant to (R2) affine transformations within the
receptive field. The hierarchical architecture, since it com-
putes a set of signatures for different parts of the image, is
invariant to the rather general family of locally affine trans-
formations (which includes globally affine transformations of
the whole image). This remarkable invariance of the hierar-

Reserved for Publication Footnotes

1At the time of our writing, the working monograph [35] contains the most up-to-date account
of the theory. The current monograph evolved from one that first appeared in July 2011 ([35]).
Shorter papers describing isolated aspects of the theory have also appeared: [36, 37, 35]. The
present paper is the first time the entire argument has been brought together in a short document.
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chies we consider, follows from the key property of covariance
of such architectures for image transformations and from the
uniqueness and invariance of the individual module signatures.
The basic HW-module is at the core of the properties of the
architecture. This paper focuses first on its characterization
and then outlines the rest of the theory, including its connec-
tions with machine learning, machine vision and neuroscience.
Most of the theorems are in the supplementary information,
where in the interest of telling a complete story we quote some
results which are described more fully elsewhere1.

Invariant representations and sample complexity
One could argue that the most important aspect of intelligence
is the ability to learn. How do present supervised learning
algorithms compare with brains? One of the most obvious
differences is the ability of people and animals to learn from
very few labeled examples. A child, or a monkey, can learn a
recognition task from just a few examples. The main motiva-
tion of this paper is the conjecture that the key to reducing
the sample complexity of object recognition is invariance to
transformations. Images of the same object usually differ from
each other because of simple transformations such as transla-

Recti�ed

Not recti�ed

A

B

C

 

1 2 3 4 10 20

50

60

70

80

90

100

a
cc

u
ra

cy
 (

%
)

Number of examples per class

Fig. 2: Sample complexity for the task of categorizing cars vs air-
planes from their raw pixel representations (no preprocessing). A.

Performance of a nearest-neighbor classifier (distance metric = 1 -
correlation) as a function of the number of examples per class used

for training. Each test used 74 randomly chosen images to evaluate
the classifier. Error bars represent +/- 1 standard deviation com-
puted over 100 training/testing splits using different images out

of the full set of 440 objects × number of transformation condi-

tions. Solid line: The rectified task. Classifier performance for the
case where all training and test images are rectified with respect

to all transformations; example images shown in B. Dashed line:
The unrectified task. Classifier performance for the case where
variation in position, scale, direction of illumination, and rotation

around any axis (including rotation in depth) is allowed; example
images shown in C. The images were created using 3D models from
the Digimation model bank and rendered with Blender.

tion, scale (distance) or more complex deformations such as
viewpoint (rotation in depth) or change in pose (of a body)
or expression (of a face).

The conjecture is supported by previous theoretical work
showing that almost all the complexity in recognition tasks is
often due to the viewpoint and illumination nuisances that
swamp the intrinsic characteristics of the object [38]. It im-
plies that in many cases, recognition—i.e., both identification,
e.g., of a specific car relative to other cars—as well as cate-
gorization, e.g., distinguishing between cars and airplanes—
would be much easier (only a small number of training exam-
ples would be needed to achieve a given level of performance),
if the images of objects were rectified with respect to all trans-
formations, or equivalently, if the image representation itself
were invariant.

The case of identification is obvious since the difficulty in
recognizing exactly the same object, e.g., an individual face,
is only due to transformations. In the case of categorization,
consider the suggestive evidence from the classification task in
Fig. 2. The Fig. shows that if an oracle factors out all trans-
formations in images of many different cars and airplanes,
providing “rectified” images with respect to viewpoint, illu-
mination, position and scale, the problem of categorizing cars
vs airplanes becomes easy: it can be done accurately with
very few labeled examples. In this case, good performance
was obtained from a single training image of each class, using
a simple classifier. In other words, the sample complexity of
the problem seems to be very low.2 We argue in this paper
that the ventral stream in visual cortex tries to approximate
such an oracle, providing a quasi-invariant signature for im-
ages and image patches.

Invariance and uniqueness
Consider the problem of recognizing an image, or an image
patch, independently of whether it has been transformed by
the action of a group like the affine group in R2. We would
like to associate to each object/image I a signature, i.e. a
vector which is unique and invariant with respect to a group
of transformations, but our analysis, as we will see later, is
not restricted to the case of groups. In the following, we
will consider groups that are compact and, for simplicity, fi-
nite (of cardinality |G|). We indicate, with slight abuse of
notation, a generic group element and its (unitary) represen-
tation with the same symbol g, and its action on an image as
gI(x) = I(g−1x) (e.g. a translation, gξI(x) = I(x − ξ)). A
natural mathematical object to consider is the orbit OI—i.e.,
the set of images gI generated from a single image I under the
action of the group. We say that two images are equivalent
when they belong to the same orbit: I ∼ I ′ if ∃g ∈ G such
that I ′ = gI. This equivalence relation formalizes the idea
that an orbit is invariant and unique. Indeed, if two orbits
have a point in common they are identical everywhere. Con-
versely, two orbits are different if none of the images in one
orbit coincide with any image in the other (see also [39]).

How can two orbits be characterized and compared?
There are several possible approaches. A distance between
orbits can be defined in terms of a metric on images, but its
computation is not obvious (especially by neurons). We fol-
low here a different strategy: intuitively two empirical orbits
are the same irrespective of the ordering of their points. This
suggests that we consider the probability distribution PI in-
duced by the group’s action on images I (gI can be seen as

2A similar argument involves estimating the cardinality of the universe of possible images gener-
ated by different viewpoints—such as variations in scale, position and rotation in 3D—versus true
intraclass variability, e.g. different types of cars. With reasonable assumptions on resolution and
size of the visual field, the first number would be several orders of magnitude larger than the, say,
103 distinguishable types of cars.

2 http://cbmm.mit.edu Footline Author



a realization of a random variable). It is possible to prove
(see theorem 1 in SI Appendix section 1) that if two orbits
coincide then their associated distributions under the group
G are identical, that is

I ∼ I ′ ⇐⇒ OI = OI′ ⇐⇒ PI = PI′ . [1]

The distribution PI is thus invariant and discriminative
but it also inhabits a high-dimensional space and is therefore
difficult to estimate. In particular, it is unclear how neurons
or neuron-like elements could estimate it.

As argued later, simple operations for neurons are (high-
dimensional) inner products, 〈·, ·〉, between inputs and stored
“templates” which are neural images. It turns out that clas-
sical results (such as the Cramer-Wold theorem [40], see The-
orem 2 section 1 in SI Appendix) ensure that a probabil-
ity distribution PI can be almost uniquely characterized by
K one-dimensional probability distributions P〈I,tk〉 induced

by the (one-dimensional) results of projections
〈
I, tk

〉
, where

tk, k = 1, ...,K are a set of randomly chosen images called
templates. A probability function in d variables (the image
dimensionality) induces a unique set of 1-D projections which
is discriminative; empirically a small number of projections
is usually sufficient to discriminate among a finite number of
different probability distributions. Theorem 3 in SI Appendix
section 1 says (informally) that an approximately invariant
and unique signature of an image I can be obtained from
the estimates of K 1-D probability distributions P〈I,tk〉 for

k = 1, · · · ,K. The number K of projections needed to dis-
criminate n orbits, induced by n images, up to precision ε
(and with confidence 1 − δ2) is K ≥ c

ε2
log n

δ
, where c is a

universal constant.
Thus the discriminability question can be answered pos-

itively (up to ε) in terms of empirical estimates of the one-
dimensional distributions P〈I,tk〉 of projections of the image

onto a finite number of templates tk, k = 1, ...,K under the
action of the group.
Memory-based learning of invariance
Notice that the estimation of P〈I,tk〉 requires the observation

of the image and “all” its transforms gI. Ideally, however, we
would like to compute an invariant signature for a new object
seen only once (e.g., we can recognize a new face at different
distances after just one observation). It is remarkable and al-
most magical that this is also made possible by the projection
step. The key is the observation that

〈
gI, tk

〉
=
〈
I, g−1tk

〉
.

The same one-dimensional distribution is obtained from the
projections of the image and all its transformations onto a
fixed template, as from the projections of the image onto all
the transformations of the same fixed template. Indeed, the
distributions of the variables

〈
I, g−1tk

〉
and

〈
gI, tk

〉
are the

same. Thus it is possible for the system to store for each
template tk all its transformations gtk for all g ∈ G and later
obtain an invariant signature for new images without any ex-
plicit understanding of the transformations g or of the group
to which they belong. Implicit knowledge of the transforma-
tions, in the form of the stored templates, allows the system
to be automatically invariant to those transformations for new
inputs (see eq. [7] in SI Appendix).

An estimate of the one-dimensional Probability Density
Functions (PDFs) P〈I,tk〉 can be written in terms of his-

tograms as µkn(I) = 1/|G|
∑|G|
i=1 ηn(

〈
I, git

k
〉
), where ηn, n =

1, · · · , N is a set of nonlinear functions (see SI Appendix sec-
tion 1). A visual system need not recover the actual prob-
abilities from the empirical estimate in order to compute a
unique signature. The set of µkn(I) values is sufficient, since

it identifies the associated orbit (see box 1 in SI Appendix).
Crucially, mechanisms capable of computing invariant repre-
sentations under affine transformations for future objects can
be learned and maintained in an unsupervised automatic way
by storing and updating sets of transformed templates which
are unrelated to those future objects.

A theory of pooling
The arguments above make a few predictions. They re-
quire an effective normalization of the elements of the in-

ner product (e.g.
〈
I, git

k
〉
7→ 〈I,gitk〉

‖I‖‖gitk‖
) for the property〈

gI, tk
〉

=
〈
I, g−1tk

〉
to be valid (see section 0 of SI Ap-

pendix). Notice that invariant signatures can be computed
in several ways from one-dimensional probability distribu-
tions. Instead of the µkn(I) components representing directly
the empirical distribution, they may represent the moments

mk
n(I) = 1/|G|

∑|G|
i=1(

〈
I, git

k
〉
)n of the same distribution [41].

Under weak conditions, the set of all moments uniquely char-
acterizes the one-dimensional distribution P〈I,tk〉 (and thus

PI). n = 1 corresponds to pooling via sum/average (and is
the only pooling function that does not require a nonlinearity);
n = 2 corresponds to ”energy models” of complex cells and
n =∞ is related to the max-pooling. In our simulations, using
just one of these moments seems to usually provide sufficient
selectivity to a hierarchical architecture (see SI Appendix sec-
tion 5). Other nonlinearities are also possible; see [35]. The
arguments of this section may begin to provide a theoretical
understanding of “pooling”, giving insight to the search for
the “best” choice in any particular setting—something which
is normally done empirically for each application (e.g., [42]).
According to this theory, these different pooling functions are
all invariant, each one capturing part of the full information
contained in the PDFs.

Implementations
There are other interesting and surprising results beyond
the core of the theory described above. We sketch some of
the main ones – the supplementary information provides the
mathematical statements. Here it is important to stress that
the theory has strong empirical support from several specific
implementations which have been shown to perform well on
a number of databases of natural images. The main set of
tests is provided by HMAX, an architecture in which pooling
is done with a max operation and invariance, to translation
and scale, is mostly hardwired (instead of learned). Its per-
formance on a variety of tasks is summarized in SI Appendix
section 5. Strong performance is also achieved by other very
similar architectures (again special cases of the theory) such
as [43]. High performance for non-affine and even non-group
transformations allowed by the hierarchical extension of the
theory (see below) has been shown on large databases of face
images, where our latest system advances the state-of-the-art
on several tests [37]. Deep learning convolutional networks
are another case of architectures that have achieved very good
performance and are probably special cases of the theory even
if they do not incorporate all of the possible invariances or
their unsupervised learning ([44, 45], but see [46]).

Extensions of the Theory
Invariance Implies Localization and Sparsity. The core of the
theory applies without qualification to compact groups such
as rotations of the image in the image plane. Translation and
scaling are however only locally compact, and in any case,
each of the modules of Fig. 1 observes only a part of the
transformation’s full range. Each

∧
-module has a finite pool-

ing range, corresponding to a finite “window” over the orbit
associated with an image. Exact invariance for each module

Footline Author CBCL paper September 27, 2013 3



is equivalent to a condition of localization/sparsity of the dot
product between image and template (see Theorem 5 and Fig.
2 in section 1 of SI Appendix). In the simple case of a group
parametrized by one parameter r the condition is:〈

I, grt
k
〉

= 0 |r| > a. [2]

Since this condition is a form of sparsity of the generic im-
age I w.r.t. to a dictionary of templates tk (under a group),
this results provides a powerful justification for sparse encod-
ing in sensory cortex (e.g. [47]).

It turns out that localization yields the following surpris-
ing result (Theorem 6 and 7 in SI Appendix): optimal in-
variance for translation and scale implies Gabor functions as
templates. Since a frame of Gabor wavelets follows from nat-
ural requirements of completeness, this may also provide a
general motivation for the Scattering Transform approach of
Mallat based on wavelets [48].

The same Equation 15, if relaxed to hold approximately,
that is

〈
IC , grt

k
〉
≈ 0 |r| > a, becomes a sparsity condition

for the class of IC wrt the dictionary tk under the group G
when restricted to a subclass IC of similar images. This prop-
erty (see SI Appendix at the end of section 1), which is simi-
lar to compressive sensing “incoherence” (but in a group con-
text), requires that I and tk have a representation with rather
sharply peaked autocorrelation (and correlation). When the
condition is satisfied, the basic HW-module equipped with
such templates can provide approximative invariance to non-
group transformations such as rotations in depth of a face
or its changes of expression (see Proposition 8, section 1, SI
Appendix). In summary, condition Equation 15 can be sat-
isfied in two different regimes. The first one, exact and valid
for generic I, yields optimal Gabor templates. The second
regime, approximate and valid for specific subclasses of I,
yields highly tuned templates, specific for the subclass. Note
that this arguments suggests generic, Gabor-like templates in
the first layers of the hierarchy and highly specific templates
at higher levels (note also that incoherence improves with in-
creasing dimensionality).

Hierarchical architectures. We focused so far on the basic HW-
module. Architectures consisting of such modules can be
single-layer as well as multi-layer (hierarchical) (see Fig. 1).
In our theory, the key property of hierarchical architectures
of repeated HW-modules—allowing the recursive use of single
module properties at all layers—is the property of covariance:
the neural image at layer n transforms like the neural image
at layer n − 1, that is, calling Σ`(I) the signature at the `th

layer, Σl(gΣ`−1(I)) = g−1Σ`(Σ`−1(I)), ∀g ∈ G, I ∈ X (see
Proposition 9 in section 2, SI Appendix).

One-layer networks can achieve invariance to global trans-
formations of the whole image (exact invariance if the trans-
formations are a subgroup of the affine group in R2) while
providing a unique global signature which is stable with re-
spect to small perturbations of the image, (see Theorem 4 SI
Appendix and [35]). The two main reasons for a hierarchi-
cal architecture such as Fig. 1 are a) the need to compute
an invariant representation not only for the whole image but
especially for all parts of it which may contain objects and
object parts and b) invariance to global transformations that
are not affine (but are locally affine, that is, affine within the
pooling range of some of the modules in the hierarchy)3 Fig.
10 show examples of invariance and stability for wholes and
parts. In the architecture of Fig. 1, each

∧
-module provides

uniqueness, invariance and stability at different levels, over in-
creasing ranges from bottom to top. Thus, in addition to the
desired properties of invariance, stability and discriminabil-

ity, these architectures match the hierarchical structure of the
visual world and the need to retrieve items from memory at
various levels of size and complexity. The results described

Fig. 3: Empirical demonstration of the properties of invariance,
stability and uniqueness of the hierarchical architecture (see Theo-
rem 12) in a specific 2 layers implementation (HMAX). Inset (a)
shows the reference image on the left and a deformation of it (the
eyes are closer to each other) on the right; (b) shows an HW-
module at layer 2 (c2) whose receptive fields contain the whole face
provides a signature vector which is (Lipschitz) stable with respect
to the deformation. In all cases, the Figure shows just the Eu-
clidean norm of the signature vector. Notice that the c1 and c2

vectors are not only invariant but also selective. Error bars repre-
sent ±1 standard deviation. Two different images (c) are presented
at various location in the visual field. The Euclidean distance be-
tween the signatures of a set of HW-modules at layer 2 with the
same receptive field (the whole image) and a reference vector is
shown in (d). The signature vector is invariant to global transla-
tion and discriminative (between the two faces). In this example
the HW-module represents the top of a hierarchical, convolutional
architecture. The images we used were 200×200 pixels

Fig. 4: A neuron (green) can easily perform high-dimensional in-

ner products between inputs on its dendritic tree and stored synapse
weights.

3Of course, one could imagine local and global one-layer architectures used in the same visual sys-
tem without a hierarchical configuration, but there are further reasons favoring hierarchies including
compositionality and reusability of parts. In addition to the issues of sample complexity and connec-
tivity, one-stage architectures are unable to capture the hierarchical organization of the visual world

where scenes are composed of objects which are themselves composed of parts. Objects (i.e., parts)
can move in a scene relative to each other without changing their identity and often changing only
in a minor way the scene (i.e., the object). Thus global and local signatures from all levels of the
hierarchy must be able to access memory in order to enable the categorization and identification of
whole scenes as well as of patches of the image corresponding to objects and their parts.

4 http://cbmm.mit.edu Footline Author



here are part of a general theory of hierarchical architectures
which is beginning to take form (see [35, 48, 49, 50]) around
the basic function of computing invariant representations.

The property of compositionality discussed above is re-
lated to the efficacy of hierarchical architectures vs. one-layer
architectures in dealing with the problem of partial occlusion
and the more difficult problem of clutter in object recognition.
Hierarchical architectures are better at recognition in clutter
than one-layer networks [51], because they provide signatures
for image patches of several sizes and locations. However,
hierarchical feedforward architectures cannot fully solve the
problem of clutter. More complex (e.g. recurrent) architec-
tures are likely needed for human-level recognition in clutter
(see for instance [52, 53, 54]) and for other aspects of human
vision. It is likely that much of the circuitry of visual cortex
is required by these recurrent computations, not considered
in this paper.

Visual Cortex
The theory described above effectively maps the computation
of an invariant signature onto well-known capabilities of cor-
tical neurons. A key difference between the basic elements of
our digital computers and neurons is the number of connec-
tions: 3 vs. 103−104 synapses per cortical neuron. Taking into
account basic properties of synapses, it follows that a single
neuron can compute high-dimensional (103−104) inner prod-
ucts between input vectors and the stored vector of synaptic
weights [55]. A natural scenario is then the following (see
also Fig. 4). Consider an HW-module of “simple” and “com-
plex” cells [31] looking at the image through a window defined
by their receptive fields (see SI Appendix, section 1). Sup-
pose that images of objects in the visual environment undergo
affine transformations. During development—and more gen-
erally, during visual experience—a set of |G| simple cells store
in their synapses an image patch tk and its transformations
g1t

k, ..., g|G|t
k—one per simple cell. This is done, possibly at

separate times, for K different image patches tk (templates),
k = 1, · · · ,K. Each gtk for g ∈ G is a sequence of frames,
literally a movie of image patch tk transforming. There is a
very simple, general, and powerful way to learn such uncon-
strained transformations. Unsupervised (Hebbian) learning is
the main mechanism: for a “complex” cell to pool over sev-
eral simple cells, the key is an unsupervised Foldiak-type rule:
cells that fire together are wired together. At the level of com-
plex cells this rule determines classes of equivalence among
simple cells – reflecting observed time correlations in the real
world, that is transformations of the image. Time continuity,
induced by the Markovian physics of the world, allows asso-
ciative labeling of stimuli based on their temporal contiguity.

Later, when an image is presented, the simple cells com-
pute

〈
I, git

k
〉

for i = 1, ..., |G|. The next step, as described
above, is to estimate the one-dimensional probability distri-
bution of such a projection, that is the distribution of the
outputs of the simple cells. It is generally assumed that com-
plex cells pool the outputs of simple cells. Thus a complex cell

could compute µkn(I) = 1/|G|
∑|G|
i=1 σ(

〈
I, git

k
〉

+n∆) where σ
is a smooth version of the step function (σ(x) = 0 for x ≤ 0,
σ(x) = 1 for x > 0) and n = 1, ..., N . Each of these N com-
plex cells would estimate one bin of an approximated CDF
(cumulative distribution function) for P〈I,tk〉. Following the

theoretical arguments above, the complex cells could compute,
instead of an empirical CDF, one or more of its moments.
n = 1 is the mean of the dot products, n = 2 corresponds
to an energy model of complex cells [56]; very large n corre-

sponds to a max operation. Conventional wisdom interprets
available physiological data to suggest that simple/complex
cells in V1 may be described in terms of energy models, but
our alternative suggestion of empirical histogramming by sig-
moidal nonlinearities with different offsets may fit the diver-
sity of data even better.

As described above, a template and its transformed ver-
sions may be learned from unsupervised visual experience
through Hebbian plasticity. Remarkably, our analysis and em-
pirical studies[35] show that Hebbian plasticity, as formalized
by Oja, can yield Gabor-like tuning—i.e., the templates that
provide optimal invariance to translation and scale (see SI
Appendix section 1)4.

The localization condition (Equation 15) can also be sat-
isfied by images and templates that are similar to each other.
The result is invariance to class-specific transformations. This
part of the theory is consistent with the existence of class-
specific modules in primate cortex such as a face module and
a body module [62, 63, 36]. It is intriguing that the same lo-
calization condition suggests general Gabor-like templates for
generic images in the first layers of a hierarchical architec-
tures and specific, sharply tuned templates for the last stages
of the hierarchy5. This theory also fits physiology data con-
cerning Gabor-like tuning in V1 and possibly in V4 (see [35]).
It can also be shown that the theory, together with the hy-
pothesis that storage of the templates takes place via Hebbian
synapses, also predicts properties of the tuning of neurons in
the face patch AL of macaque visual cortex [35, 64].

From the point of view of neuroscience, the theory makes
a number of predictions, some obvious, some less so. One of
the main predictions is that simple and complex cells should
be found in all visual and auditory areas, not only in V1.
Our definition of simple cells and complex cells is different
from the traditional ones used by physiologists, which do not
quite capture the different role in the theory of simple and
complex cells. Simple cells represent the result of dot prod-
ucts between image and (transformed) templates: they are
therefore linear. Complex cells represent invariant measure-
ments associated with histograms of the outputs of simple
cells or of moments of it. Probably the simplest and most
useful moment is the average of the simple cells output: the
corresponding complex cells are linear (contrary to common
classification rules)6. The theory implies that invariance to
all image transformations can be learned during development
and adult life. This is however consistent with the possibility
that the basic invariances may be genetically encoded by evo-
lution but also refined and maintained by unsupervised visual
experience. Studies on the development of visual invariance in
organisms such as mice raised in virtual environments could
test these predictions and their boundaries.

Discussion
The goal of this paper is to introduce a new theory of learn-
ing invariant representations for object recognition which cuts

4There is psychophysical and neurophysiological evidence that the brain employs such learning rules
(e.g. [58, 60] and references therein). A second step of Hebbian learning may be responsible for
wiring a complex cells to simple cells that are activated in close temporal contiguity and thus cor-
respond to the same patch of image undergoing a transformation in time [57]. Simulations show
that the system could be remarkably robust to violations of the learning rule’s assumption that
temporally adjacent images correspond to the same object [61]. The same simulations also suggest
that the theory described here is qualitatively consistent with recent results on plasticity of single
IT neurons and with experimentally-induced disruptions of their invariance [60].
5These incoherence properties of visual signatures are attractive from the point of view of informa-
tion processing stages beyond vision, such as memory access.
6 It is also important to note that simple and complex units do not need to always correspond
to different cells: it is conceivable that a simple cell may be a cluster of synapses on a dendritic
branch of a complex cell with nonlinear operations possibly implemented by active properties in the
dendrites.
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across levels of analysis [35, 65]. At the computational level,
it gives a unified account of why a range of seemingly different
models have recently achieved impressive results on recogni-
tion tasks. HMAX [32, 66, 67], Convolutional Neural Net-
works [33, 34, 68, 69] and Deep Feedforward Neural Networks
[44, 45, 46] are examples of this class of architectures—as is,
possibly, the feedforward organization of the ventral steam.
In particular, the theoretical framework of this paper may
help explain the recent successes of hierarchical architectures
of convolutional type on visual and speech recognition tests
e.g. [45, 44]). At the algorithmic level, it motivates the devel-
opment, now underway, of a new class of models for vision and
speech which includes the previous models as special cases. At
the level of biological implementation, its characterization of
the optimal tuning of neurons in the ventral stream is consis-
tent with the available data on Gabor-like tuning in V1 ([35])
and the more specific types of tuning in higher areas such as
in faces patches.

Despite significant advances in sensory neuroscience over
the last five decades, a true understanding of the basic func-
tions of the ventral stream in visual cortex has proven to be
elusive. Thus it is interesting that the theory of this paper is
directly implied by a simple hypothesis for the main compu-
tational function of the ventral stream: the representation of
new objects/images in terms of a signature which is invariant
to transformations learned during visual experience, thereby
allowing recognition from very few labeled examples—in the
limit, just one. A main contribution of our work to machine
learning is a novel theoretical framework for the next major
challenge in learning theory beyond the supervised learning
setting which is now relatively mature: the problem of repre-
sentation learning, formulated here as the unsupervised learn-
ing of invariant representations that significantly reduce the
sample complexity of the supervised learning stage.
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Supplementary Information

0. Setup and Definitions
Let X be a Hilbert space with norm and inner product de-
noted by ‖·‖ and 〈·, ·〉, respectively. We can think of X as
the space of images (our images are usually “neural images”).
We typically consider X = Rd, L2(R), L2(R2). We denote
with G a (locally) compact group and with an abuse of no-
tation, we denote by g both a group element in G and its
action/representation on X .
When useful we will make the following assumptions which
are justified from a biological point of view.
Normalized dot products of signals (e.g. images or “neural
activities”) are usually assumed throughout the theory, for
convenience but also because they provide the most elemen-
tary invariances – to measurement units (origin and scale).
We assume that the dot products are between functions or
vectors that are zero-mean and of unit norm. Thus 〈I, t〉
sets I = I′−Ī′

‖I′−Ī′‖ , t = t′−t̄′

‖t′−t̄′‖ with (̄·) the mean. This nor-

malization stage before each dot product is consistent with
the convention that the empty surround of an isolated image
patch has zero value (which can be taken to be the average

“grey” value over the ensemble of images). In particular the
dot product of a template – in general different from zero –
and the “empty” region outside an isolated image patch will
be zero. The dot product of two uncorrelated images – for
instance of random 2D noise – is also approximately zero.

Remarks:

1. The k-th component of the signature associated with a
simple-complex module is (see Equation [12]) µkn(I) =

1
|G0|

∑
g∈G0

ηn
( 〈
gI, tk

〉 )
where the functions ηn are such

that Ker(ηn) = {0}: in words, the empirical histogram es-
timated for

〈
gI, tk

〉
does not take into account the 0 value,

since it does not carry any information about the image
patch. The functions ηn are also assumed to be positive
and invertible.

2. Images I are inputs to the modules of later one and
have a maximum total possible support corresponding to
a bounded region B ⊆ R2, which we refer to as the visual
field, and which corresponds to the spatial pooling range
of the module at the top of the hierarchy of Figure 1 in the
main text. Neuronal images also written as I are inputs to
the modules in higher layers and are usually supported in
a higher dimensional space Rd, corresponding to the signa-
ture components provided by lower layers modules; isolated
objects are images with support contained in the pooling
range of one of the modules at an intermediate level of the
hierarchy. We use the notation ν(I), µ(I) respectively for
the simple responses

〈
gI, tk

〉
and for the complex response

µkn(I) = 1
|G0|

∑
g∈G0

ηn
( 〈
gI, tk

〉 )
. To simplify the nota-

tion we suppose that the center of the support of µ`(I)
coincides with the center of the pooling range.

3. The domain of the dot products
〈
gI, tk

〉
corresponding to

templates and to simple cells is in general different from
the domain of the pooling

∑
g∈G0

. We will continue to use
the commonly used term receptive field – even if it mixes
these two domains.

4. The main part of the theory characterizes properties of the
basic HW module – which computes the components of an
invariant signature vector from an image patch within its
receptive field.

5. It is important to emphasize that the basic module is always
the same throughout the paper. We use different mathe-
matical tools, including approximations, to study under
which conditions (e.g. localization or linearization, see end
of section 1) the signature computed by the module is in-
variant or approximatively invariant.

6. The pooling
∑
g∈G0

is effectively over a pooling window in
the group parameters. In the case of 1D scaling and 1D
translations, the pooling window corresponds to an inter-
val, e.g. [aj , aj+k], of scales and an interval, e.g. [−x̄, x̄],
of x translations, respectively.

7. All the results in this paper are valid in the case of a dis-
crete or a continuous compact group: in the first case we
have a sum over the transformations, in the second an inte-
gral over the Haar measure of the group. In the following,
for convenience, the theorems are proved in the continuous
setting.

8. Normalized dot products also eliminate the need of the ex-
plicit computation of the determinant of the Jacobian for
affine transformations (which is a constant and is simpli-
fied dividing by the norms) assuring that 〈AI,At〉 = 〈I, t〉,
where A is an affine transformation.
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1. Basic Module
Compact Groups (fully observable). Given an image I ∈ X
and a group representation g, the orbit OI = {I ′ ∈ X s.t.I ′ =
gI, g ∈ G} is uniquely associated to an image and all its trans-
formations. The orbit provides an invariant representation of
I, i.e. OI = OgI for all g ∈ G. Indeed, we can view an orbit as
all the possible realizations of a random variable with distri-
bution PI induced by the group action. From this observation,
a signature Σ(I) can be derived for compact groups, by using
results characterizing probability distributions via their one
dimensional projections.

In this section we study the signature given by

Σ(I) = (µ1(I), . . . , µk(I)) = (µ1
1(I), .., µ1

N , .., µ
K
1 , .., µ

K
N (I)),

where each component µk(I) ∈ RN is a histogram correspond-
ing to a one dimensional projection defined by a template
tk ∈ X . In the following we let X = Rd.

Orbits and probability distributions. If G is a compact group,
the associated Haar measure dg can be normalized to be a
probability measure, so that, for any I ∈ Rd, we can define
the random variable,

ZI : G→ Rd, ZI(g) = gI.

The corresponding distribution PI is defined as PI(A) =
dg(Z−1

I (A)) for any Borel set A ⊂ Rd (with some abuse of
notation we let dg be the normalized Haar measure).
Recall that we define two images, I, I ′ ∈ X to be equivalent
(and we indicate it with I ∼ I ′) if there exists g ∈ G s.t.
I = gI ′. We have the following theorem:

Theorem 1. The distribution PI is invariant and unique i.e.
I ∼ I ′ ⇔ PI = PI′ .

Proof:
We first prove that I ∼ I ′ ⇒ PI = PI′ . By defini-
tion PI = PI′ iff

∫
A
dPI(s) =

∫
A
dPI′(s), ∀ A ⊆ X , that is∫

Z−1
I

(A)
dg =

∫
Z−1
I′ (A)

dg, where,

Z−1
I (A) = {g ∈ G s.t. gI ⊆ A}

Z−1
I′ (A) = {g ∈ G s.t. gI ′ ∈ A} = {g ∈ G s.t. gḡI ⊆ A},

∀ A ⊆ X . Note that ∀ A ⊆ X if gI ∈ A ⇒ gḡ−1ḡI =
gḡ−1I ′ ∈ A, so that g ∈ Z−1

I (A) ⇒ gḡ−1 ∈ Z−1
I′ (A),

i.e. Z−1
I (A) ⊆ Z−1

I′ (A). Conversely g ∈ Z−1
I′ (A) ⇒ gḡ ∈

Z−1
I (A), so that Z−1

I (A) = Z−1
I′ (A)ḡ, ∀A. Using this obser-

vation we have,∫
Z−1
I

(A)

dg =

∫
(Z−1
I′ (A))ḡ

dg =

∫
Z−1
I′ (A)

dĝ

where in the last integral we used the change of variable
ĝ = gḡ−1 and the invariance property of the Haar measure:
this proves the implication.
To prove that PI = PI′ ⇒ I ∼ I ′, note that PI(A)−
PI′(A) = 0, ∀ A ⊆ X , is equivalent to∫
Z−1
I′ (A)

dg −
∫
Z−1
I

(A)

dg =

∫
Z−1
I

(A)4Z−1
I′ (A)

dg = 0, ∀A ∈ X

where 4 denotes the symmetric difference. This implies
Z−1
I (A)4Z−1

I′ (A) = ∅ or equivalently

Z−1
I (A) = Z−1

I′ (A), ∀ A ∈ X
In other words of any element in A there exist g′, g′′ ∈ G such

that g′I = g′′I ′. This implies I = g′
−1
g′′I ′ = ḡI ′, ḡ = g′

−1
g′′,

i.e. I ∼ I ′. Q.E.D.

Random Projections for Probability Distributions.. Given the
above discussion, a signature may be associated to I by con-
structing a histogram approximation of PI , but this would
require dealing with high dimensional histograms. The fol-
lowing classic theorem gives a way around this problem.
For a template t ∈ S(Rd), where S(Rd) is unit sphere in Rd,
let I 7→ 〈I, t〉 be the associated projection. Moreover, let
P〈I,t〉 be the distribution associated to the random variable

g 7→ 〈gI, t〉 (or equivalently g 7→
〈
I, g−1t

〉
, if g is unitary).

Let E = [t ∈ S(Rd), s.t. P〈I,t〉 = Q〈I,t〉].

Theorem 2. (Cramer-Wold, [40]) For any pair P,Q of proba-
bility distributions on Rd, we have that P = Q if and only if
E = S(Rd).

In words, two probability distributions are equal if and only if
their projections on any of the unit sphere directions is equal.
The above result can be equivalently stated as saying that the
probability of choosing t such that P〈I,t〉 = Q〈I,t〉 is equal to
1 if and only if P = Q and the probability of choosing t such
that P〈I,t〉 = Q〈I,t〉 is equal to 0 if and only if P 6= Q (see
Theorem 3.4 in [2]). The theorem suggests a way to define a
metric on distributions (orbits) in terms of

d(PI , PI′) =

∫
d0(P〈I,t〉, P〈I′,t〉)dλ(t), ∀I, I ′ ∈ X ,

where d0 is any metric on one dimensional probability distri-
butions and dλ(t) is a distribution measure on the projections.
Indeed, it is easy to check that d is a metric. In particular
note that, in view of the Cramer Wold Theorem, d(P,Q) = 0
if and only if P = Q. As mentioned in the main text, each
one dimensional distribution P〈I,t〉 can be approximated by a

suitable histogram µt(I) = (µtn(I))n=1,...,N ∈ RN , so that, in
the limit in which the histogram approximation is accurate

d(PI , PI′) ≈
∫
dµ(µt(I), µt(I ′))dλ(t), ∀I, I ′ ∈ X , [3]

where dµ is a metric on histograms induced by d0.
A natural question is whether there are situations in which

a finite number of projections suffice to discriminate any two
probability distributions, that is PI 6= P ′I ⇔ d(PI , PI′) 6= 0.
Empirical results show that this is often the case with a small
number of templates (see [3] and HMAX experiments, sec-
tion 5). The problem of mathematically characterizing the
situations in which a finite number of (one-dimensional) pro-
jections are sufficient is challenging. Here we provide a partial
answer to this question.
We start by observing that the metric [3] can be approxi-
mated by uniformly sampling K templates and considering

d̂K(PI , PI′) =
1

K

K∑
k=1

dµ(µk(I), µk(I ′)), [4]

where µk = µt
k

. The following result shows that a finite num-
ber K of templates is sufficient to obtain an approximation
within a given precision ε. Towards this end let

dµ(µk(I), µk(I ′)) =
∥∥∥µk(I)− µk(I)

∥∥∥
RN

. [5]

where ‖·‖RN is the Euclidean norm in RN . The following the-
orem holds:
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Theorem 3. Consider n images Xn in X . Let K ≥ c
ε2

log n
δ

,
where c is a universal constant. Then

|d(PI , PI′)− d̂K(PI , PI′)| ≤ ε, [6]

with probability 1− δ2, for all I, I ′ ∈ Xn.

Proof:
The proof follows from an application of Höeffding inequality
and a union bound.
Fix I, I ′ ∈ Xn. Define the real random variable Z : S(Rd) →
R,

Z(tk) =
∥∥∥µk(I)− µk(I)

∥∥∥
RN

, k = 1, . . . ,K.

From the definitions it follows that ‖Z‖ ≤ c and E(Z) =
d(PI , PI′). Then Höeffding inequality implies

|d(PI , PI′)− d̂K(PI , PI′)| = |
1

K

K∑
k=1

E(Z)− Z(tk)| ≥ ε,

with probability at most e−cε
2k. A union bound implies a

result holding uniformly on Xn; the probability becomes at

most n2e−cε
2K . The desired result is obtained noting that

this probability is less than δ2 as soon as n2e−cε
2K < δ2 that

is K ≥ c
ε2

log n
δ

. Q.E.D.

The above result shows that the discriminability question
can be answered in terms of empirical estimates of the one-
dimensional distributions of projections of the image and
transformations induced by the group on a number of tem-
plates tk, k = 1, ...,K.
Theorem 3 can be compared to a version of the Cramer
Wold Theorem for discrete probability distributions. Theo-
rem 1 in [4] shows that for a probability distribution con-
sisting of k atoms in Rd, we see that at most k + 1 direc-
tions (d1 = d2 = ... = dk+1 = 1) are enough to characterize
the distribution, thus a finite – albeit large – number of one-
dimensional projections.

The signature Σ(I) = (µ1
1(I), . . . , µKN (I)) is obviously in-

variant (and unique) since it is associated to an image and
all its transformations (an orbit). Each component of the sig-
nature is also invariant – it corresponds to a group average.
Indeed, each measurement can be defined as

µkn(I) =
1

|G|
∑
g∈G

ηn
(〈

gI, tk
〉)

, [7]

for G finite group, or equivalently

µkn(I) =

∫
G

dg ηn
(〈

gI, tk
〉)

=

∫
G

dg ηn
(〈

I, g−1tk
〉)

, [8]

when G is a (locally) compact group. Here, the non linearity
ηn is chosen to define an histogram approximation. Then, it
is clear that from the properties of the Haar measure we have

µkn(ḡI) = µkn(I), ∀ḡ ∈ G, I ∈ X . [9]

Stability. With Σ(I) ∈ RNK denoting as usual the signature
of an image, and d(Σ(I),Σ(I ′)), I, I ′ ∈ X , a metric, we say
that a signature Σ is stable if it is Lipschitz continuous (see
[48]), that is

d(Σ(I),Σ(I ′)) ≤ L
∥∥I − I ′∥∥

2
, L > 0, ∀I, I ′ ∈ X . [10]

In our setting we let

d(Σ(I),Σ(I ′)) =
1

K

K∑
k=1

dµ(µk(I), µk(I ′)),

and assume that µkn(I) =
∫
dg ηn(

〈
gI, tk

〉
) for n = 1, . . . , N

and k = 1, . . . ,K. If L < 1 we call the signature map con-
tractive. The following theorem holds.

Theorem 4. Assume the templates to be normalized and Lη =
maxn(Lηn) s.t. NLη < 1, where Lηn is the Lipschitz constant
of the function ηn. Then

d(Σ(I),Σ(I ′)) ≤
∥∥I − I ′∥∥

2
, [11]

for all I, I ′ ∈ X .

Proof:
By definition, if the non linearities ηn are Lipschitz contin-
uous, for all n = 1, . . . , N , with Lipschitz constant Lηn , it
follows that for each k component of the signature we have∥∥∥Σk(I)− Σk(I ′)

∥∥∥
RN

≤ 1

|G|

√√√√ N∑
n=1

(∑
g∈G

Lηn | 〈gI, tk〉 − 〈gI ′, tk〉 |
)2

≤ 1

|G|

√√√√ N∑
n=1

L2
ηn

∑
g∈G

(| 〈g(I − I ′), tk〉 |)2,

where we used the linearity of the inner product and Jensen’s
inequality. Applying Schwartz’s inequality we obtain

∥∥∥Σk(I)− Σk(I ′)
∥∥∥
RN
≤ Lη
|G|

√√√√ N∑
n=1

∑
g∈G

‖I − I ′‖2 ‖g−1tk‖2

where Lη = maxn(Lηn). If we assume the templates and
their transformations to be normalized to unity then we fi-
nally have,∥∥∥Σk(I)− Σk(I ′)

∥∥∥
RN
≤ NLη

∥∥I − I ′∥∥
2
.

from which we obtain [10] summing over all K components
and dividing by 1/K. In particular if NLη ≤ 1 the map is non
expansive and summing each component we have eq. [11].
Q.E.D.

The above result shows that the stability of the empirical
signature

Σ(I) = (µ1
1(I), . . . , µKN (I)) ∈ RNK ,

provided with the metric [4] (together with [5]) holds
for nonlinearities with Lipschitz constants Lηn such that
Nmaxn(Lηn) < 1.

Box 1: computing an invariant signature µ(I)

1: procedure Signature(I)
Given K templates {gtk|∀g ∈ G}.

2: for k = 1, . . . ,K do
3: Compute

〈
I, gtk

〉
, the normalized dot products

of the image with all the transformed
templates (all g ∈ G).

4: Pool the results: POOL({
〈
I, gtk

〉
|∀g ∈ G}).

5: end for
6: return µ(I) = the pooled results for all k.
. µ(I) is unique and invariant if there are enough
templates.

7: end procedure
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Partially Observable Groups. This section outlines invariance,
uniqueness and stability properties of the signature obtained
in the case in which transformations of a group are observ-
able only within a window “over” the orbit. The term POG
(Partially Observable Groups) emphasizes the properties of
the group – in particular associated invariants – as seen by
an observer (e.g. a neuron) looking through a window at a
part of the orbit. Let G be a finite group and G0 ⊆ G a
subset (note: G0 is not usually a subgroup). The subset of
transformations G0 can be seen as the set of transformations
that can be observed by a window on the orbit that is the
transformations that correspond to a part of the orbit. A lo-
cal signature associated to the partial observation of G can be
defined considering

µkn(I) =
1

|G0|
∑
g∈G0

ηn
(〈

gI, tk
〉)

, [12]

and ΣG0(I) = (µkn(I))n,k. This definition can be generalized
to any locally compact group considering,

µkn(I) =
1

V 0

∫
G0

ηn
(〈

gI, tk
〉)

dg, V0 =

∫
G0

dg. [13]

Note that the constant V0 normalizes the Haar measure, re-
stricted to G0, so that it defines a probability distribution.
The latter is the distribution of the images subject to the
group transformations which are observable, that is in G0.
The above definitions can be compared to definitions [7] and
[8] in the fully observable groups case. In the next sections we
discuss the properties of the above signature. While stability
and uniqueness follow essentially from the analysis of the pre-
vious section, invariance requires developing a new analysis.

POG: Stability and Uniqueness. A direct consequence of The-
orem 1 is that any two orbits with a common point are iden-
tical. This follows from the fact that if gI, g′I ′ is a common
point of the orbits, then

g′I ′ = gI ⇒ I ′ = (g′)−1gI.

Thus the two images are transformed versions of one another
and OI = OI′ .
Suppose now that only a fragment of the orbits – the part
within the window – is observable; the reasoning above is still
valid since if the orbits are different or equal so must be any
of their “corresponding” parts.
Regarding the stability of POG signatures, note that the rea-
soning in the previous section can be repeated without any
significant change. In fact, only the normalization over the
transformations is modified accordingly.

POG: Partial Invariance and Localization. Since the group is
only partially observable we introducethe notion of partial in-
variance for images and transformations G0 that are within
the observation window. Partial invariance is defined in terms
of invariance of

µkn(I) =
1

V0

∫
G0

dg ηn
(〈

gI, tk
〉)

. [14]

We recall that when gI and tk do not share any common
support on the plane or I and t are uncorrelated, then〈
gI, tk

〉
= 0. The following theorem, where G0 corresponds to

the pooling range states a sufficient and necessary condition
for partial invariance:

Theorem 5. Invariance and Localization. Let I, t ∈ H a
Hilbert space, ηn : R → R+ a set of bijective (positive) func-
tions and G a locally compact group. Let G0 ⊆ G and suppose
supp(

〈
gI, tk

〉
) ⊆ G0. Then for any given ḡ ∈ G, tk, I ∈ X

µkn(I) = µkn(ḡI) ⇔
〈
gI, tk

〉
= 0, ∀g ∈ G/(G0 ∩ ḡG0),〈

gIk, t
〉
6= 0, ∀g ∈ G0 ∩ ḡG0. [15]

Proof:
If µkn(I)− µkn(ḡI) = 0 by definition we have

0 =

∫
G0

dg ηn
((〈

gI, tk
〉 )
− ηn

( 〈
gḡI, tk

〉 ))
=

∫
G0∆ḡG0

dg ηn
( 〈
gI, tk

〉 )
[16]

=

∫
G/(G0∩ḡG0)

dg ηn
( 〈
gI, tk

〉 )
where ∆ is the symbol for symmetric difference (A∆B =
(A ∪ B)/(A ∩ B) A,B sets) and the last equality holds if

Fig. 5: Necessary and sufficient condition for local invariance: if
the support of 〈gI, t〉 is sufficiently localized it will be completely
contained in the pooling interval even if the image is group shifted,
or, equivalently (as shown in the Figure), if the pooling interval is
group shifted by the same amount.

𝒃 −𝒃 

𝒓 

𝒓 

−𝒃 

𝒈−𝟐𝒕 𝒈−𝟏𝒕 𝒈−𝟑𝒕 𝒈𝟐𝒕 𝒈𝟑𝒕 𝒕 𝒈𝟏𝒕 

𝑰(𝒕𝟎) 

𝒈𝟓𝒕 𝒈𝟔𝒕 𝒈𝟒𝒕 𝒈𝟗𝒕 𝒈𝟏𝟎𝒕 𝒈𝟕𝒕 𝒈𝟖𝒕 

𝑰(𝒕𝟏) 

𝒃 𝒃 

Fig. 6: An HW-module pooling the dot products of trans-
formed templates with the image. The input image I is shown
centered on the template t; the same module is shown above for
a group shift of the input image, which now localizes around
the transformed template g7t. Images and templates satisfy
the localization condition 〈I, Txt〉 6= 0, |x| > a with a = 3.
The interval [−b, b] indicates the pooling window. The shift in
x shown in the Figure is a special case: the reader should con-
sider the case in which the transformation parameter, instead
of x, is for instance rotation in depth.
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supp(
〈
gI, tk

〉
) ⊆ G0. Since the functions ηn are positive and

bijective, eq. [16] implies
〈
gI, tk

〉
= 0, g ∈ G/(G0 ∩ ḡG0).

The inverse implication is proved by simply inverting the chain
of equalities. See Figure 5 for a visual explanation. Q.E.D.
Condition in eq. [16] is a localization condition on the prod-
uct of the transformed image and the template (see Figure
17 for a pictorial intuitive example in the case of translation
group). In the next paragraph we will see how localization
conditions for scale and translation transformations implies a
specific form of the templates.

The Localization condition: Translation and Scale In
this section we identify G0 with subsets of the affine group.
In particular, we study separately the case of scale and trans-
lations (in 1D for simplicity).

In the following it is helpful to assume that all images I
and templates t are strictly contained in the range of transla-
tion or scale pooling, P , since image components outside it are
not measured. We will consider images I restricted to P : for
translation this means that the support of I is contained in P ,

for scaling, since gsI = I(sx) and Î(sx) = (1/s)Î(ω/s) (where
·̂ indicates the Fourier transform), assuming a scale pooling
range of [sm, sM ], implies a range [ωIm, ω

I
M ], [ωtm, ω

t
M ] (m and

M indicates maximum and minimum) of spatial frequencies
for the maximum support of I and t. As we will see because
of Theorem 5 invariance to translation requires spatial local-
ization of images and templates and less obviously invariance
to scale requires bandpass properties of images and templates.
Thus images and templates are assumed to be localized from
the outset in either space or frequency. The corollaries be-
low show that a stricter localization condition is needed for
invariance and that this condition determines the form of the
template. Notice that in our framework images and templates
are bandpass because of being zero-mean. Notice that, in ad-
dition, neural “images” which are input to the hierarchical
architecture are spatially bandpass because of retinal process-
ing.
We now state the result of Theorem 5 for one dimensional
signals under the translation group and – separately – under
the dilation group.
Let I, t ∈ L2(R), (R,+) the one dimensional locally com-
pact group of translations and Tx : L2(R) → L2(R) a uni-
tary representation of the translation operator. Let, e.g.,
G0 = [−b, b], b > 0 and suppose supp(t) ⊆ supp(I) ⊆ [−b, b].
Further suppose supp(〈TxI, t〉) ⊆ [−b, b]. Then eq. [15] spe-
cializes to

Corollary 1: Localization in the spatial domain is neces-
sary and sufficient for translation invariance. For any fixed
t, I ∈ X we have:

µkn(I) = µkn(TxI), ∀x ∈ [0, x̄] ⇔ 〈TxI, t〉 6= 0, ∀x ∈ [−b+x̄, b].
[17]

with x̄ > 0.

Similarly let G = (R+, ·) be the one dimensional locally com-
pact group of dilations and denote with Ds : L2(R)→ L2(R)
a unitary representation of the dilation operator. Let G0 =
[1/S, S], S > 1 and suppose supp(〈DsI, t〉) ⊆ [1/S, S]. Then
eq. [15] gives

Corollary 2: Localization in the spatial frequency domain is
necessary and sufficient for scale invariance. For any fixed
t, I ∈ X we have:

µkn(I) = µkn(DsI), s ∈ [1, s̄] ⇔ 〈DsI, t〉 6= 0, ∀s ∈ [
s̄

S
, S].

[18]
with S > 1.
Localization conditions of the support of the dot product for
translation and scale are depicted in Figure 7,a),b).
As shown by the following Lemma 1 Eq. [17] and [18] gives
interesting conditions on the supports of t and its Fourier
transform t̂. For translation, the corollary is equivalent to
zero overlap of the compact supports of I and t. In particular
using Theorem 5, for I = t, the maximal invariance implies
the following localization conditions on t

〈gt, t〉 = 0 g 6∈ GL ⊆ G [19]

which we call self-localization. For 1D translations it has the
simple form 〈Txt, t〉 = 0 |x| > a, a > 0.
For scaling we consider the support of the Fourier transforms
of I and t. The Parseval theorem allows to rewrite the dot

product 〈DsI, t〉 which is in L2(R2) as
〈
D̂sI, t̂

〉
in the Fourier

domain.
In the following we suppose that the support of t̂ and Î is
respectively [ωtm, ω

t
M ] and [ωIm, ω

I
M ] where ωt,Im could be very

close to zero (images and templates are supposed to be zero-
mean) but usually are bigger then zero.
Note that the effect of scaling I with (typically s = 2j with

j ≤ 0) is to change the support as supp(D̂sI) = s(supp(Î)).

This change of the support of Î in the dot product
〈
D̂sI, t̂

〉
gives non trivial conditions on the intersection with the sup-
port of t̂ and therefore on the localization w.r.t. the scale
invariance. We have the following Lemma:

Lemma 1. Invariance to translation in the range [0, x̄], x̄ > 0
is equivalent to the following localization condition of t in
space

supp(t) ⊆ [−b− x̄, b]− supp(I), I ∈ X . [20]

Separately, invariance to dilations in the range [1, s̄], s̄ > 1
is equivalent to the following localization condition of t̂ in fre-

Fig. 7: a), b): if the support of the dot product between the im-
age and the template is contained in the intersection between
the pooling range and the group translated (a) or dilated (b)
pooling range the signature is invariant. In frequency condi-
tion b) becomes b’): when the Fourier supports of the dilated
image and the template do not intersect their dot product is
zero.
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quency ω

supp(t̂) ⊆ [−ωt −∆∗t ,−ωt + ∆∗t ] ∪ [ωt −∆∗t , ωt + ∆∗t ]

∆∗t = SωIm − ωIM
s̄

S
, ωt =

ωtM − ωtm
2

. [21]

Proof:
To prove that supp(t) ⊆ [−b + x̄, b] − supp(I) note that eq.
[17] implies that supp(〈TxI, t〉) ⊆ [−b + x̄, b] (see Figure 7,
a)). Being supp(〈TxI, t〉) = supp(I ∗ t) ⊆ supp(I) + supp(t)
we have supp(t) ⊆ [−b− x̄, b]− supp(I).
To prove the condition in eq. [21] note that eq. [18] is
equivalent in the Fourier domain to

〈DsI, t〉 =
〈
D̂sI, t̂

〉
=

1

s

∫
dω Î

(ω
s

)
t̂(ω) 6= 0 ∀s ∈ [

s̄

S
, S]

[22]
The situation is depicted in Fig. 7 b′) for S big enough: in

this case in fact we can suppose the support of D̂s̄/SI to be

on an interval on the left of that of supp(t̂) and D̂SI on the

right; the condition supp(
〈
D̂sI, t̂

〉
) ⊆ [s̄/S, S] is in this case

equivalent to

ωIM
s̄

S
< ωtm, ωtM < ωImS [23]

which gives

∆∗t = Max(∆t) ≡Max
(ωtM − ωtm

2

)
= SωIm − ωIM

s̄

S
[24]

and therefore eq. [21].Q.E.D.
Note that for some s ∈ [s̄/S, S] the condition that the Fourier
supports are disjoint is only sufficient and not necessary for
the dot product to be zero since cancelations can occur. How-

ever to have
〈
D̂sI, t̂

〉
= 0 on a continuous interval of scales,

(unless some pathological examples of the function I) implies

disjointness of the supports, since Î(ω/s) 6= Î(ω/s′), s 6= s′

unless I has constant spectrum in the interval [s̄/S, S]. A
similar reasoning is valid for the translation case.

The results above lead to a statement connecting invari-
ance with localization of the templates:

Theorem 6. Maximum translation invariance implies a tem-
plate with minimum support in the space domain (x); max-
imum scale invariance implies a template with minimum sup-
port in the Fourier domain (ω).

Proof:
We illustrate the statement of the theorem with a simple ex-
ample. In the case of translations suppose, e.g., supp(I) =
[−b, b′], supp(t) = [−a, a], a ≤ b′ ≤ b. Eq. [20] reads

[−a, a] ⊆ [−b+ x̄+ b′, b− b′]
which gives the condition −a ≥ −b + b′ + x̄, i.e. x̄max =
b − b′ − a; thus, for any fixed b, b′ the smaller the template
support 2a in space, the greater is translation invariance.
Similarly, in the case of dilations, increasing the range of in-
variance [1, s̄], s̄ > 1 implies a decrease in the support of t̂
as shown by eq. [24]; in fact noting that |supp(t̂)| = 2∆t we
have

d|supp(t̂)|
ds̄

= −2ωIM
S

< 0

i.e. the measure, | · |, of the support of t̂ is a decreasing func-
tion w.r.t. the measure of the invariance range [1, s̄]. Q.E.D.

Because of the assumption of maximum possible support
of all I being finite there is always localization for any choice

of I and t under spatial shift. Of course if the localization sup-
port is larger than the pooling range there is no invariance.
For a complex cell with pooling range [−b, b] in spaThe the-
oremce only templates with self-localization smaller than the
pooling range make sense. An extreme case of self-localization
is t(x) = δ(x), corresponding to maximum localization of tun-
ing of the simple cells.

Invariance, Localization and Wavelets. The conditions equiv-
alent to optimal translation and scale invariance – maximum
localization in space and frequency – cannot be simultane-
ously satisfied because of the classical uncertainty principle: if
a function t(x) is essentially zero outside an interval of length

∆x and its Fourier transform Î(ω) is essentially zero outside
an interval of length ∆ω then

∆x ·∆ω ≥ 1. [25]

In other words a function and its Fourier transform cannot
both be highly concentrated. Interestingly for our setup the
uncertainty principle also applies to sequences (see [5]).

It is well known that the equality sign in the uncertainty
principle above is achieved by Gabor functions (see [6]) of the
form

ψx0,ω0(x) = e
− x2

2σ2 eiω0x, σx ∈ R+, ω0 ∈ R [26]

The uncertainty principle leads to the concept of “opti-
mal localization” instead of exact localization. In a simi-
lar way, it is natural to relax our definition of strict invari-
ance (e.g. µkn(I) = µkn(g′I)) and to introduce ε-invariance as
µkn(I) − µkn(g′I) ≤ ε. In particular if we suppose, e.g., the
following localization condition

〈TxI, t〉 = e
− x

2

σ2x , 〈DsI, t〉 = e
− s

2

σ2s , σx, σs ∈ R [27]

we have

µkn(Tx̄I)− µkn(I) =
1

2

√
σx
(

erf
(
[−b, b]∆[−b+ x̄, b+ x̄]

))
µkn(Ds̄I)− µkn(I) =

1

2

√
σs
(

erf
(
[−1/S, S]∆[s̄/S, Ss̄]

))
.

where erf is the error function. The differences above, with
an opportune choice of the localization ranges σs, σx can be
made as small as wanted.
We end this paragraph by a conjecture: the optimal
ε−invariance is satisfied by templates with non compact sup-
port which decays exponentially such as a Gaussian or a Ga-
bor wavelet. We can then speak of optimal invariance mean-
ing “optimal ε-invariance”. The reasonings above lead to the
theorem:

Theorem 7. Assume invariants are computed from pooling
within a pooling window with a set of linear filters. Then the
optimal templates (e.g. filters) for maximum simultaneous in-
variance to translation and scale are Gabor functions

t(x) = e
− x2

2σ2 eiω0x. [28]

Remarks
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1. The Gabor function ψx0,ω0(x) corresponds to a Heisenberg
box which has a x-spread σ2

x =
∫
x2|g(x)|dx and a ω spread

σ2
ω =

∫
ω2|ĝ(ω)|dω with area σxσω. Gabor wavelets arise

under the action on ψ(x) of the translation and scaling
groups as follows. The function ψ(x), as defined, is zero-
mean and normalized that is∫

ψ(x)dx = 0 [29]

and

||ψ(x)|| = 1. [30]

A family of Gabor wavelets is obtained by translating and
scaling ψ:

ψu,s(x) =
1

s
1
2

ψ(
x− u
s

). [31]

Under certain conditions (in particular, the Heisenberg
boxes associated with each wavelet must together cover the
space-frequency plane) the Gabor wavelet family becomes
a Gabor wavelet frame.

2. Optimal self-localization of the templates (which follows
from localization), when valid simultaneously for space and
scale, is also equivalent to Gabor wavelets. If they are a
frame, full information can be preserved in an optimal quasi
invariant way.

Approximate Invariance and Localization. In the previous sec-
tion we analyzed the relation between localization and invari-
ance in the case of group transformations. By relaxing the re-
quirement of exact invariance and exact localization we show
how the same strategy for computing invariants can still be ap-
plied even in the case of non-group transformations if certain
localization properties of 〈TI, t〉 holds, where T is a smooth
transformation.

We first notice that the localization condition of the-
orems 5 and 7 – when relaxed to approximate localiza-
tion – takes the (e.g. for the 1D translations group) form〈
I, Txt

k
〉
< δ ∀x s.t. |x| > a, where δ is small in the or-

der of 1/
√
n (where n is the dimension of the space) and〈

gI, tk
〉
≈ 1 ∀x s.t. |x| < a.

We call this property sparsity of I in the dictionary tk un-
der G. This condition can be satisfied by templates that are
similar to images in the set and are sufficiently “rich” to be
incoherent for “small” transformations. Note that form the
reasoning above the sparsity of I in tk under G is expected to
improve with increasing n and with noise-like encoding of I
and tk by the architecture.
Another important property of sparsity of I in tk (in ad-
dition to allowing local approximate invariance to arbitrary
transformations, see later) is clutter-tolerance in the sense
that if n1, n2 are additive uncorrelated spatial noisy clutter〈
I + n1, gt

k + n2

〉
≈ 〈I, gt〉.

Interestingly the sparsity condition under the group is related
to associative memories for instance of the holographic type
(see [8] and [9]). If the sparsity condition holds only for I = tk

and for very small set of g ∈ G, that is, it has the form〈
I, gtk

〉
= δ(g)δI,tk it implies strict memory-based recogni-

tion ( see non-interpolating look-up table in the description
of [10]) with inability to generalize beyond stored templates
or views.

While the first regime – exact (or ε−) invariance for
generic images, yielding universal Gabor templates – applies
to the first layer of the hierarchy, this second regime (spar-
sity) – approximate invariance for a class of images, yielding

class-specific templates – is important for dealing with non-
group transformations at the top levels of the hierarchy where
receptive fields may be as large as the visual field.

Several interesting transformations do not have the group
structure, for instance the change of expression of a face or
the change of pose of a body. We show here that approximate
invariance to transformations that are not groups can be ob-
tained if the approximate localization condition above holds,
and if the transformation can be locally approximated by a
linear transformation, e.g. a combination of translations, ro-
tations and non-homogeneous scalings, which corresponds to
a locally compact group admitting a Haar measure.

Suppose, for simplicity, that the smooth transformation
T , at least twice differentiable, is parametrized by the param-
eter r ∈ R. We approximate its action on an image I with a
Taylor series (around e.g. r = 0) as:

Tr(I) = T0(I) +
(dT
dr

)
r=0

(I)r +R(I) [32]

= I +
(dT
dr

)
r=0

(I)r +R(I)

= I + JI(I)r +R(I) = [e+ rJI ](I) +R(I)

= LIr(I) +R(I)

where R(I) is the reminder, e is the identity operator, JI the
Jacobian and LIr = e+ JIr is a linear operator.
Let R be the range of the parameter r where we can approxi-
mately neglect the remainder term R(I). Let L be the range of
the parameter r where the scalar product 〈TrI, t〉 is localized
i.e. 〈TrI, t〉 = 0, ∀r 6∈ L. If L ⊆ R we have

〈TrI, t〉 ≈
〈
LIrI, t

〉
, [33]

If the above linearization holds, we have the following:

Proposition 8. Let I, t ∈ H a Hilbert space, ηn : R→ R+ a set
of bijective (positive) functions and T a smooth transforma-
tion (at least twice differentiable) parametrized by r ∈ R. Let
L = supp(〈TrI, t〉), P the pooling interval in the r parameter
and R ⊆ R defined as above. If L ⊆ P ⊆ R and

〈TrI, t〉 = 0, ∀r ∈ R/(Tr̄P ∩ P )

then µkn(Tr̄I) = µkn(I).
Proof:
We have

µkn(Tr̄I) =

∫
P

dr ηn(〈TrTr̄I, t〉) =

∫
P

dr ηn(
〈
LIrL

I
r̄I, t

〉
)

=

∫
P

dr ηn(
〈
LIr+r̄I, t

〉
) = µkn(I)

where the last equality is true if 〈TrI, t〉 =
〈
LIrI, t

〉
= 0, r ∈

R/(Tr̄P ∩ P ). Q.E.D.

As an example, consider the transformation induced on the
image plane by rotation in depth of a face: it can be decom-
posed into piecewise linear approximations around a small
number of key templates, each one corresponding to a spe-
cific 3D rotation of a template face. Each key template corre-
sponds to a complex cell containing as (simple cells) a number
of observed transformations of the key template within a small
range of rotations. Each key template corresponds to a differ-
ent signature which is invariant only for rotations around its
center. Notice that the form of the linear approximation or
the number of key templates needed does not affect the algo-
rithm or its implementation. The templates learned are used

12 http://cbmm.mit.edu Footline Author



in the standard dot-product-and-pooling module. The choice
of the key templates – each one corresponding to a complex
cell, and thus to a signature component – is not critical, as
long as there are enough of them. For one parameter groups,
the key templates correspond to the knots of a piecewise lin-
ear spline approximation. Optimal placement of the centers –
if desired – is a separate problem that we leave aside for now.

Summary of the argument: Different transformations can
be classified in terms of invariance and localization.

Compact Groups: consider the case of a compact group
transformation such as rotation in the image plane. A com-
plex cell is invariant when pooling over all the templates which
span the full group θ ∈ [−π,+π]. In this case there is no re-
striction on which images can be used as templates: any tem-
plate yields perfect invariance over the whole range of trans-
formations (apart from mild regularity assumptions) and a
single complex cell pooling over all templates can provide a
globally invariant signature.

Locally Compact Groups and Partially Observable Com-
pact Groups: consider now the POG situation in which the
pooling is over a subset of the group: (the POG case always
applies to Locally Compact groups (LCG) such as transla-
tions). As shown before, a complex cell is partially invariant
if the value of the dot-product between a template and its
shifted template under the group falls to zero fast enough
with the size of the shift relative to the extent of pooling.

In the POG and LCG case, such partial invariance holds
over a restricted range of transformations if the templates and
the inputs have a localization property that implies wavelets
for transformations that include translation and scaling.

General (non-group) transformations: consider the case of
a smooth transformation which may not be a group. Smooth-
ness implies that the transformation can be approximated by
piecewise linear transformations, each centered around a tem-
plate (the local linear operator corresponds to the first term
of the Taylor series expansion around the chosen template).
Assume – as in the POG case – a special form of sparsity
– the dot-product between the template and its transforma-
tion fall to zero with increasing size of the transformation.
Assume also that the templates transform as the input im-
age. For instance, the transformation induced on the image
plane by rotation in depth of a face may have piecewise linear
approximations around a small number of key templates cor-
responding to a small number of rotations of a given template
face (say at ±30o,±90o,±120o). Each key template and its
transformed templates within a range of rotations corresponds
to complex cells (centered in ±30o,±90o,±120o). Each key
template, e.g. complex cell, corresponds to a different signa-
ture which is invariant only for that part of rotation. The
strongest hypothesis is that there exist input images that are
sparse w.r.t. templates of the same class – these are the im-
ages for which local invariance holds.

Remarks:

1. We are interested in two main cases of POG invariance:

• partial invariance simultaneously to translations in x, y,
scaling and possibly rotation in the image plane. This
should apply to “generic” images. The signatures
should ideally preserve full, locally invariant informa-
tion. This first regime is ideal for the first layers of
the multilayer network and may be related to Mallat’s
scattering transform, [48]. We call the sufficient con-
dition for for LCG invariance here, localization, and in
particular, self-localization given by Equation [19].

• partial invariance to linear transformations for a subset
of all images. This second regime applies to high-level
modules in the multilayer network specialized for spe-
cific classes of objects and non-group transformations.
The condition that is sufficient here for LCG invariance
is given by Theorem 5 which applies only to a specific
class of I. We prefer to call it sparsity of the images
with respect to a set of templates.

2. For classes of images that are sparse with respect to a
set of templates, the localization condition does not im-
ply wavelets. Instead it implies templates that are

• similar to a class of images so that
〈
I, g0t

k
〉
≈ 1 and

• complex enough to be “noise-like” in the sense that〈
I, gtk

〉
≈ 0 for g 6= g0.

3. Templates must transform similarly to the input for ap-
proximate invariance to hold. This corresponds to the as-
sumption of a class-specific module and of a nice object
class [11, 36].

4. For the localization property to hold, the image must be
similar to the key template or contain it as a diagnostic fea-
ture (a sparsity property). It must be also quasi-orthogonal
(highly localized) under the action of the local group.

5. For a general, non-group, transformation it may be impos-
sible to obtain invariance over the full range with a single
signature; in general several are needed.

6. It would be desirable to derive a formal characterization of
the error in local invariance by using the standard module
of dot-product-and-pooling, equivalent to a complex cell.
The above arguments provide the outline of a proof based
on local linear approximation of the transformation and on
the fact that a local linear transformation is a LCG.

2. Hierarchical Architectures
So far we have studied the invariance, uniqueness and stabil-
ity properties of signatures, both in the case when a whole
group of transformations is observable (see [7] and [8]), and
in the case in which it is only partially observable (see [12]
and [13]). We now discuss how the above ideas can be iter-
ated to define a multilayer architecture. Consider first the case
when G is finite. Given a subset G0 ⊂ G, we can associate a
window gG0 to each g ∈ G. Then, we can use definition [12]
to define for each window a signature Σ(I)(g) given by the
measurements,

µkn(I)(g) =
1

|G0|
∑
ḡ∈gG0

ηn
(〈

I, ḡtk
〉)

.

Note that, for reasons that will be clear later, the average
in the integral is done for transformed templates and not on
transformed images. We will keep this form as the definition of
signature. For fixed n, k, a set of measurements correspond-
ing to different windows can be seen as a |G| dimensional
vector. A signature Σ(I) for the whole image is obtained as
a signature of signatures, that is, a collection of signatures
(Σ(I)(g1), . . . ,Σ(I)(g|G|) associated to each window.
Since we assume that the output of each module is made zero-
mean and normalized before further processing at the next
layer, conservation of information from one layer to the next
requires saving the mean and the norm at the output of each
module at each level of the hierarchy.
We conjecture that the neural image at the first layer is
uniquely represented by the final signature at the top of the
hierarchy and the means and norms at each layer.
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The above discussion can be easily extended to continuous
(locally compact) groups considering,

µkn(I)(g) =
1

V0

∫
gG0

dḡηn
(〈

I, ḡtk
〉)

, V0 =

∫
G0

dḡ,

where, for fixed n, k, µkn(I) : G→ R can now be seen as a func-
tion on the group. In particular, if we denote by K0 : G→ R
the indicator function on G0, then we can write

µkn(I)(g) =
1

V0

∫
G

dḡK0(ḡ−1g)ηn
(〈

I, ḡtk
〉)

.

The signature for an image can again be seen as a collection
of signatures corresponding to different windows, but in this
case it is a function Σ(I) : G→ RNK , where Σ(I)(g) ∈ RNK ,
is a signature corresponding to the window G0 “centered” at
g ∈ G.

The above construction can be iterated to define a hierar-
chy of signatures. Consider a sequence G1 ⊂ G2, . . . ,⊂ GL =
G. For h : G → Rp, p ∈ N with an abuse of notion we let
gh(ḡ) = h(g−1ḡ). Then we can consider the following con-
struction.

We call complex cell operator at layer ` the operator that
maps an image I ∈ X to a function µ`(I) : G→ RNK where

µn,k` (I)(g) =
1

|G`|
∑
ḡ∈gG`

ηn
(
νk` (I)(ḡ)

)
, [34]

and simple cell operator at layer ` the operator that maps an
image I ∈ X to a function ν`(I) : G→ RK

µk` (I)(g) =
〈
µ`−1(I), gtk`

〉
[35]

with tk` the kth template at layer ` and µ0(I) = I. Several
comments are in order:

• beside the first layer, the inner product defining the
simple cell operator is that in L2(G) = {h : G →
RNK , |

∫
dg|h(g)|2 <∞};

• The index ` corresponds to different layers, corresponding
to different subsets G`.

• At each layer a (finite) set of templates T` = (t1` , . . . , t
K
` ) ⊂

L2(G) (T0 ⊂ X ) is assumed to be available. For simplicity,
in the above discussion we have assumed that |T`| = K, for
all ` = 1, . . . , L. The templates at layer ` can be thought
of as compactly supported functions, with support much
smaller than the corresponding set G`. Typically templates
can be seen as image patches in the space of complex op-
erator responses, that is t` = µ`−1(t̄) for some t̄ ∈ X .

• Similarly we have assumed that the number of non linear-
ities ηn, considered at every layer, is the same.

Following the above discussion, the extension to continu-
ous (locally compact) groups is straightforward. We collect it
in the following definition.

Definition 1. (Simple and complex response) For ` = 1, . . . , L, let
T` = (t1` , . . . , t

K
` ) ⊂ L2(G) (and T0 ⊂ X ) be a sequence of tem-

plate sets. The complex cell operator at layer ` maps an image
I ∈ X to a function c`(I) : G→ RNK ; in components

µn,k` (I)(g) =
1

V`

∫
dḡK`(ḡ

−1g)ηn
(
νk` (I)(ḡ)

)
, g ∈ G [36]

where K` is the indicator function on G`, V` =
∫
G`
dḡ and

where

νk` (I)(g) =
〈
µ`−1(I), gtk`

〉
, g ∈ G [37]

(µ0(I) = I) is the simple cell operator at layer ` that maps an
image I ∈ X to a function ν`(I) : G→ RK .

Remark Note that eq. [36] can be written as:

µn,k` (I) = K` ∗ ηn(νk` (I)) [38]

where ∗ is the group convolution.

Property 1: covariance. We call the map Σ covariant iff

Σ(gI) = g−1Σ(I), ∀g ∈ G, I ∈ X .
In the following we show the covariance property for the µn,k1

response (see Fig. 8). An inductive reasoning then can be
applied for higher order responses. We assume that the archi-
tecture is isotropic in the relevant covariance dimension (this
implies that all the modules in each layer should be identi-
cal with identical templates) and that there is a continuum of
modules in each layer.

Proposition 9. Let G a locally compact group and ḡ ∈ G. Let
µn,k1 as defined in 36. Then µn,k1 (g̃I)(g) = µn,k1 (I)(g̃−1g).
Proof:
Using the definition 36 we have

µn,k1 (g̃I)(g) =
1

V1

∫
G

dḡK1(ḡ−1g)ηn
(〈
g̃I, ḡtk

〉)
=

1

V1

∫
G

dḡK1(ḡ−1g)ηn
(〈
I, g̃−1ḡtk

〉)
=

1

V1

∫
G

dĝK1(ĝ−1g̃−1g)ηn
(〈
I, ĝtk

〉)
= µn,k1 (I)(g̃−1g)

where in the third line we used the change of variable ĝ = g̃−1ḡ
and the invariance of the Haar measure. Q.E.D.

Remarks

1. The covariance property described in proposition 9 can be
stated equivalently as µn,k1 (I)(g) = µn,k1 (ḡI)(ḡg). This last
expression has a more intuitive meaning as shown in Fig.
8.

2. The covariance property described in proposition 9 holds
both for abelian and non-abelian groups. However the
group average on templates transformations in definition
of eq. 36 is crucial. In fact, if we define the signature aver-
aging on the images we do not have a covariant response:

µn,k1 (g̃I)(g) =
1

V1

∫
G

dḡK1(ḡ−1g)ηn
(〈
ḡg̃I, tk

〉)
=

∫
G

dĝK1(g̃ĝ−1g)ηn
(〈
ĝI, tk

〉)
where in the second line we used the change of variable
ĝ = g̃−1ḡ and the invariance of the Haar measure. The
last expression cannot be written as µn,k1 (I)(g′g) for any
g′ ∈ G.

Fig. 8: Covariance: the response for an image I at position g
is equal to the response of the group shifted image at the shifted
position.
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3. With respect to the range of invariance, the following prop-
erty holds for multilayer architectures in which the output
of a layer is defined as covariant if it transforms in the
same way as the input: for a given transformation of an
image or part of it, the signature from complex cells at a
certain layer is either invariant or covariant with respect
to the group of transformations; if it is covariant there will
be a higher layer in the network at which it is invariant
(more formal details are given in theorem 11), assuming
that the image is contained in the visual field. This prop-
erty predicts a stratification of ranges of invariance in the
ventral stream: invariances should appear in a sequential
order meaning that smaller transformations will be invari-
ant before larger ones, in earlier layers of the hierarchy (see
[13]).

Property 2: partial and global invariance (whole and parts).
We now find the conditions under which the functions µ` are
locally invariant, i.e. invariant within the restricted range of
the pooling. We further prove that the range of invariance
increases from layer to layer in the hierarchical architecture.
The fact that for an image, in general, no more global invari-
ance is guaranteed allows, as we will see, a novel definition of
“parts” of an image.
The local invariance conditions are a simple reformulation of
Theorem 5 in the context of a hierarchical architecture. In
the following, for sake of simplicity we suppose that at each
layer we only have a template t and a non linear function η.

Proposition 10. Invariance and Localization: hierarchy.
Let I, t ∈ H a Hilbert space, η : R→ R+ a bijective (positive)
functions and G a locally compact group. Let G` ⊆ G and
suppose supp(〈gµ`−1(I), t〉) ⊆ G`. Then for any given ḡ ∈ G

µ`(I) = µ`(ḡI) ⇔ 〈gµ`−1(I), t〉 = 0, g ∈ G/(G` ∩ ḡG`),
〈gµ`−1(I), t〉 6= 0, g ∈ G` ∩ ḡG`. [39]

The proof follows the reasoning done in Theorem 5 with I sub-
stituted by µ`−1(I) using the covariance property µ`−1(gI) =
gµ`−1(I). Q.E.D.
We can give now a formal definition of object part as the subset
of the signal I whose complex response, at layer `, is invari-
ant under transformations in the range of the pooling at that
layer.
This definition is consistent since the invariance is increasing
from layer to layer (as formally proved below) therefore allow-
ing bigger and bigger parts. Consequently for each transfor-
mation there will exists a layer ¯̀ such that any signal subset
will be a part at that layer.

We can now state the following:

Theorem 11. Whole and parts. Let I ∈ X (an image or
a subset of it) and µ` the complex response at layer `. Let
G0 ⊆ · · · ⊂ G` ⊆ · · · ⊆ GL = G a set of nested subsets of the
group G. Suppose η is a bijective (positive) function and that
the template t and the complex response at each layer has fi-
nite support. Then ∀ḡ ∈ G, µ`(I) is invariant for some ` = ¯̀,
i.e.

µm(ḡI) = µm(I), ∃ ¯̀ s.t. ∀m ≥ ¯̀.

The proof follows from the observation that the pooling range
over the group is a bigger and bigger subset of G with growing
layer number, in other words, there exists a layer such that the
image and its transformations are within the pooling range at
that layer (see Fig. 9). This is clear since for any ḡ ∈ G the
nested sequence

G0 ∩ ḡG0 ⊆ ... ⊆ G` ∩ ḡG` ⊆ ... ⊆ GL ∩ ḡGL = G.

Fig. 9: An image I with a finite support may or may not be fully
included in the receptive field of a single complex cell at layer n
(more in general the transformed image may not be included in the
pooling range of the complex cell). However there will be a higher
layer such that the support of its neural response is included in the
pooling range of a single complex cell.

will include a set G¯̀∩ ḡG¯̀ such that〈
gµ¯̀−1(I), t

〉
6= 0 g ∈ G¯̀∩ ḡG¯̀

being supp(
〈
gµ¯̀−1(I), t

〉
) ⊆ G. Details are reported in [35].

Property 3: stability. Using the definition of stability given in
[11], we can formulate the following theorem characterizing
stability for the complex response:

Theorem 12. Stability. Let I, I ′ ∈ X and µ` the complex re-
sponse at layer l. Let the nonlinearity η a Lipschitz function
with Lipschitz constant Lη ≤ 1. Then∥∥µ`(I)− µ`(I ′)

∥∥ ≤ ∥∥I − I ′∥∥ , ∀ `, ∀ I, I ′ ∈ X . [40]

The proof follows from a repeated application of the reasoning
done in Theorem 11. See details in [35].

Comparison with stability defined by Mallat [48]. The same
definition of stability we use (Lipschitz continuity) was re-
cently given by [48], in a related context. Let I, I ′ ∈ L2(R2)
and Φ : L2(R2)→ L2(R2) a representation. Φ is stable if it is
Lipschitz continuous with Lipschitz constant L ≤ 1, i.e., is a
non expansive map:∥∥Φ(I)− Φ(I ′)

∥∥
2
≤
∥∥I − I ′∥∥

2
, ∀ I, I ′ ∈ L2(R2). [41]

In particular in [48] the author is interested in stability of
group invariant scattering representations to the action of
small diffeomorphisms close to translations. Consider trans-
formations of the form I ′(x) = LτI(x) = I(x − τ(x)) (which
can be though as small diffeomorphic transformations close
to translations implemented by a displacement field τ : R2 →
R2). A translation invariant operator Φ is said to be Lips-
chitz continuous to the action of a C2(R2) diffeomorphisms
if for any compact Ω ⊆ R2 there exists C such that for all
I ∈ L2(R2) supported in Ω ⊆ R2 and τ ∈ C2(R2)

‖Φ(I)− Φ(LτI)‖2 ≤ [42]

≤ C ‖I‖2
(
supx∈R2 |∇τ(x)|+ supx∈R2 |Hτ(x)|

)
where H is the Hessian and C a positive constant.
Condition [42] is a different condition then that in eq. [40]
since it gives a Lipschitz bound for a diffeomorphic transfor-
mation at each layer of the scattering representation.
Our approach differs in the assumption that small (close to
identity) diffeomorphic transformations can be well approxi-
mated, at the first layer, as locally affine transformations or,
in the limit, as local translations which therefore falls in the
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POG case. This assumption is substantiated by the follow-
ing reasoning in which any smooth transformation is seen as
parametrized by the parameter t (the r parameter of the Tr
transformation in section 1), which can be thought as time.
Let T ⊆ R be a bounded interval and Ω ⊆ RN an open set
and let Φ = (Φ1, ...,ΦN ) : T × Ω → RN be C2 (twice dif-
ferentiable), where Φ (0, .) is the identity map. Here RN is
assumed to model the image plane, intuitively we should take
N = 2, but general values of N allow our result to apply
in subsequent, more complex processing stages, for example
continuous wavelet expansions, where the image is also pa-
rameterized in scale and orientation, in which case we should
take N = 4. We write (t, x) for points in T ×Ω, and interpret
Φ (t, x) as the position in the image at time t of an observed
surface feature which is mapped to x = Φ (0, x) at time zero.
The map Φ results from the (not necessarily rigid) motions
of the observed object, the motions of the observer and the
properties of the imaging apparatus. The implicit assumption
here is that no surface features which are visible in Ω at time
zero are lost within the time interval T . The assumption that
Φ is twice differentiable reflects assumed smoothness proper-
ties of the surface manifold, the fact that object and observer
are assumed massive, and corresponding smoothness proper-
ties of the imaging apparatus, including eventual processing.
Now consider a closed ballB ⊂ Ω of radius δ > 0 which models
the aperture of observation. We may assume B to be centered
at zero, and we may equally take the time of observation to
be t0 = 0 ∈ T . Let

Kt = sup
(t,x)∈T×B

∥∥∥∥ ∂2

∂t2
Φ (t, x)

∥∥∥∥
RN

, Kx = sup
x∈B

∥∥∥∥ ∂2

∂x∂t
Φ (0, x)

∥∥∥∥
RN×N

.

Here (∂/∂x) is the spatial gradient in RM , so that the last
expression is spelled out as

Kx = sup
x∈B

(
N∑
l=1

N∑
i=1

(
∂2

∂xi∂t
Φl (0, x)

)2
)1/2

.

Of course, by compactness of T × B and the C2-assumption,
both Kt and Kx are finite. The following theorem is due to
Maurer and Poggio:

Theorem 13. There exists V ∈ RN such that for all (t, x) ∈
T ×B

‖Φ (t, x)− [x+ tV ]‖RN ≤ Kxδ |t|+Kt
t2

2
.

The proof reveals this to be just a special case of Taylor’s the-
orem.
Proof: Denote V (t, x) = (V1, ..., Vl) (t, x) = (∂/∂t) Φ (t, x),

V̇ (t, x) =
(
V̇1, ..., V̇l

)
(t, x) =

(
∂2/∂t2

)
Φ (t, x), and set V :=

V (0, 0). For s ∈ [0, 1] we have with Cauchy-Schwartz

∥∥∥∥ ddsV (0, sx)

∥∥∥∥2

RN
=

N∑
l=1

N∑
i=1

((
∂2

∂xi∂t
Φl (0, sx)

)
xi

)2

≤ K2
x ‖x‖2 ≤ K2

xδ
2,

whence

‖Φ (t, x)− [x+ tV ]‖

=

∥∥∥∥∫ t

0

V (s, x) ds− tV (0, 0)

∥∥∥∥
=

∥∥∥∥∫ t

0

[∫ s

0

V̇ (r, x) dr + V (0, x)

]
ds− tV (0, 0)

∥∥∥∥
=

∥∥∥∥∫ t

0

∫ s

0

∂2

∂t2
Φ (r, x) drds+ t

∫ 1

0

d

ds
V (0, sx) ds

∥∥∥∥
≤

∫ t

0

∫ s

0

∥∥∥∥ ∂2

∂t2
Φ (r, x)

∥∥∥∥ drds+ |t|
∫ 1

0

∥∥∥∥ ddsV (0, sx)

∥∥∥∥ ds
≤ Kt

t2

2
+Kx |t| δ.

Q.E.D.
Of course we are more interested in the visible features them-
selves, than in the underlying point transformation. If I :
RN → R represents these features, for example as a spatial dis-
tribution of gray values observed at time t = 0, then we would
like to estimate the evolved image I (Φ (t, x)) by a translate
I (x+ tV ) of the original I. It is clear that this is possible
only under some regularity assumption on I. The simplest
one is that I is globally Lipschitz. We immediately obtain the
following

Corollary 14. Under the above assumptions suppose that I :
RN → R satisfies

|I (x)− I (y)| ≤ c ‖x− y‖

for some c > 0 and all x, y ∈ RN . Then there exists V ∈ RN
such that for all (t, x) ∈ I ×B

|f (Φ (t, x))− f (x+ tV )| ≤ c
(
Kx |t| δ +Kt

t2

2

)
.

Theorem 13 and corollary 14 gives a precise mathematical mo-
tivation for the assumption that any sufficiently smooth (at
least twice differentiable) transformation can be approximated
in an enough small compact set with a group transformation
(e.g. translation), thus allowing, based on eq. 11, stability
w.r.t. small diffeomorphic transformations.

Approximate Factorization: hierarchy. In the first version of
[35] we conjectured that a signature invariant to a group of
transformations could be obtained by factorizing in successive
layers the computation of signatures invariant to a subgroup of
the transformations (e.g. the subgroup of translations of the
affine group) and then adding the invariance w.r.t. another
subgroup (e.g. rotations). While factorization of invariance
ranges is possible in a hierarchical architecture (theorem 11),
it can be shown that in general the factorization in successive
layers for instance of invariance to translation followed by in-
variance to rotation (by subgroups) is impossible (see [35]).
However, approximate factorization is possible under the same
conditions of the previous section. In fact, a transformation
that can be linearized piecewise can always be performed in
higher layers, on top of other transformations, since the global
group structure is not required but weaker smoothness prop-
erties are sufficient.

Why Hierarchical architectures: a summary.

1. Optimization of local connections and optimal reuse of com-
putational elements. Despite the high number of synapses
on each neuron it would be impossible for a complex cell to
pool information across all the simple cells needed to cover
an entire image.
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2. Compositionality. A hierarchical architecture provides sig-
natures of larger and larger patches of the image in terms
of lower level signatures. Because of this, it can access
memory in a way that matches naturally with the linguis-
tic ability to describe a scene as a whole and as a hierarchy
of parts.

3. Approximate factorization. In architectures such as the
network sketched in Fig. 1 in the main text, approxi-
mate invariance to transformations specific for an object
class can be learned and computed in different stages.
This property may provide an advantage in terms of the
sample complexity of multistage learning [15]. For in-
stance, approximate class-specific invariance to pose (e.g.
for faces) can be computed on top of a translation-and-
scale-invariant representation [36]. Thus the implementa-
tion of invariance can, in some cases, be “factorized” into
different steps corresponding to different transformations.
(see also [16, 17] for related ideas).

Probably all three properties together are the reason evolution
developed hierarchies.

3. Synopsis of Mathematical Results

List of Theorems

• Orbits are equivalent to PI and both are invariant and
unique.

Theorem 1. The distribution PI is invariant and unique i.e.
I ∼ I ′ ⇔ PI = PI′ .

• PI can be estimated within ε in terms of 1D probability
distributions of gI, tk.

Theorem 2. Consider n images Xn in X . Let K ≥ c
ε2

log n
δ

,
where c is a universal constant. Then

|d(PI , PI′)− d̂K(PI , PI′)| ≤ ε,

with probability 1− δ2, for all I, I ′ ∈ Xn.

• Invariance from a single image based on memory of tem-
plate transformations. The simple property〈

gI, tk
〉

=
〈
I, g−1tk

〉
implies (for compact groups without any additional
property) that the signature components µkn(I) =

1
|G|
∑
g∈G ηn

( 〈
I, gtk

〉 )
, calculated on templates transfor-

mations are invariant that is µkn(I) = µkn(ḡI).
• Invariance for Partially Observable Groups (observed

through a window) is equivalent to condition in eq. [19]
on the dot product between image and template)

Theorem 3. Let I, t ∈ H a Hilbert space, η : R → R+ a
bijective (positive) function and G a locally compact group.
Let G0 ⊆ G and suppose supp(〈gI, t〉) ⊆ G0. Then

µt(I) = µt(ḡI) ⇔ 〈gI, t〉 = 0, g ∈ G/(G0 ∩ ḡG0)

〈gI, t〉 6= 0, g ∈ G0 ∩ ḡG0

• Condition in [19] is equivalent to a localization or sparsity
property of the dot product between image and template
(〈I, gt〉 = 0 for g 6∈ GL). In particular

Proposition 4. Localization is necessary and sufficient for
translation and scale invariance. Localization for trans-
lation (respectively scale) invariance is equivalent to the
support of t being small in x (respectively in ω).

• Optimal simultaneous invariance to translation and scale
can be achieved by Gabor templates.

Theorem 5. Assume invariants are computed from pooling
within a pooling window a set of linear filters. Then
the optimal templates of filters for maximum simultane-
ous invariance to translation and scale are Gabor functions

t(x) = e
− x2

2σ2 eiω0x.

• Approximate invariance can be obtained if there is approx-
imate sparsity of the image in the dictionary of templates.
Approximate localization (defined as 〈t, gt〉 < δ for g 6∈ GL,
where δ is small in the order of ≈ 1√

d
and 〈t, gt〉 ≈ 1 for

g ∈ GL) is satisfied by templates (vectors of dimensionality
n) that are similar to images in the set and are sufficiently
“large” to be incoherent for “small” transformations.

• Approximate invariance for smooth (non group) transfor-
mations.

Proposition 6. µk(I) is locally invariant if

– I is sparse in the dictionary tk;

– I and tk transform in the same way (belong to the same
class);

– the transformation is sufficiently smooth.

• Sparsity of I in the dictionary tk under G increases with
size of the neural images and provides invariance to clutter.
The definition is 〈I, gt〉 < δ for g 6∈ GL, where δ is small in
the order of ≈ 1√

n
and 〈I, gt〉 ≈ 1 for g ∈ GL.

Sparsity of I in tk under G improves with dimensionality
of the space n and with noise-like encoding of I and t.
If n1, n2 are additive uncorrelated spatial noisy clutter
〈I + n1, gt+ n2〉 ≈ 〈I, gt〉.

• Covariance of the hierarchical architecture.

Proposition 7. The operator µ` is covariant with respect to
a non abelian (in general) group transformation, that is

µ`(TgI) = Tgµ`(I).

• Factorization.

Proposition 8. Invariance to separate subgroups of affine
group cannot be obtained in a sequence of layers while fac-
torization of the ranges of invariance can (because of co-
variance). Invariance to a smooth (non group) transfor-
mation can always be performed in higher layers, on top of
other transformations, since the global group structure is
not required.

• Uniqueness of signature. Conjecture:The neural image at
the first layer is uniquely represented by the final signature
at the top of the hierarchy and the means and norms at
each layer.
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4. General Remarks on the Theory

1. The second regime of localization (sparsity) can be consid-
ered as a way to deal with situations that do not fall under
the general rules (group transformations) by creating a se-
ries of exceptions, one for each object class.

2. Whereas the first regime “predicts” Gabor tuning of neu-
rons in the first layers of sensory systems, the second regime
predicts cells that are tuned to much more complex fea-
tures, perhaps similar to neurons in inferotemporal cortex.

3. The sparsity condition under the group is related to prop-
erties used in associative memories for instance of the holo-
graphic type (see [8]). If the sparsity condition holds only
for I = tk and for very small a then it implies strictly
memory-based recognition.

4. The theory is memory-based. It also view-based. Even
assuming 3D images (for instance by using stereo infor-
mation) the various stages will be based on the use of 3D
views and on stored sequences of 3D views.

5. The mathematics of the class-specific modules at the top of
the hierarchy – with the underlying localization condition –
justifies old models of viewpoint-invariant recognition (see
[18]).

6. The remark on factorization of general transformations im-
plies that layers dealing with general transformations can
be on top of each other. It is possible – as empirical results
by Leibo and Li indicate – that a second layer can improve
the invariance to a specific transformation of a lower layer.

7. The theory developed here for vision also applies to other
sensory modalities, in particular speech.

8. The theory represents a general framework for using rep-
resentations that are invariant to transformations that are
learned in an unsupervised way in order to reduce the sam-
ple complexity of the supervised learning step.

9. Simple cells (e.g. templates) under the action of the affine
group span a set of positions and scales and orientations.
The size of their receptive fields therefore spans a range.
The pooling window can be arbitrarily large – and this
does not affect selectivity when the CDF is used for pool-
ing. A large pooling window implies that the signature
is given to large patches and the signature is invariant to
uniform affine transformations of the patches within the
window. A hierarchy of pooling windows provides signa-
ture to patches and subpatches and more invariance (to
more complex transformations).

10. Connections with the Scattering Transform.

• Our theorems about optimal invariance to scale and
translation implying Gabor functions (first regime) may
provide a justification for the use of Gabor wavelets by
Mallat [48], that does not depend on the specific use of
the modulus as a pooling mechanism.

• Our theory justifies several different kinds of pooling of
which Mallat’s seems to be a special case.

• With the choice of the modulo as a pooling mechanisms,
Mallat proves a nice property of Lipschitz continuity on
diffeomorphisms. Such a property is not valid in gen-
eral for our scheme where it is replaced by a hierarchical
parts and wholes property which can be regarded as an
approximation, as refined as desired, of the continuity
w.r.t. diffeomorphisms.

• Our second regime does not have an obvious correspond-
ing notion in the scattering transform theory.

11. The theory characterizes under which conditions the signa-
ture provided by a HW module at some level of the hierar-
chy is invariant and therefore could be used for retrieving

information (such as the label of the image patch) from
memory. The simplest scenario is that signatures from
modules at all levels of the hierarchy (possibly not the low-
est ones) will be checked against the memory. Since there
are of course many cases in which the signature will not
be invariant (for instance when the relevant image patch is
larger than the receptive field of the module) this scenario
implies that the step of memory retrieval/classification is
selective enough to discard efficiently the “wrong” signa-
tures that do not have a match in memory. This is a non-
trivial constraint. It probably implies that signatures at
the top level should be matched first (since they are the
most likely to be invariant and they are fewer) and lower
level signatures will be matched next possibly constrained
by the results of the top-level matches – in a way similar
to reverse hierarchies ideas. It also has interesting im-
plications for appropriate encoding of signatures to make
them optimally quasi-orthogonal e.g. incoherent, in order
to minimize memory interference. These properties of the
representation depend on memory constraints and will be
object of a future paper on memory modules for recogni-
tion.

5. Empirical support for the theory
Several computational vision models in recent literature can
be considered instances of the theory described here. HMAX,
trained convolutional networks, and the feedforward networks
of N. Pinto et al. all consist of hierarchically stacked modules
of simple and complex cells. However, only the most recent
of these – variants of HMAX that incorporate invariances to
complex transformations learned from video – have been de-
signed with this theory explicitly in mind.

In [36], we showed that our approach of pooling over stored
views of template faces undergoing the transformation can be
used to recognize novel faces robustly to rotations in depth
from a single example view. More recently, we applied the
same idea to unconstrained face recognition benchmarks: La-
beled Faces in the Wild and PubFig83, and showed that they
yield a system that performs comparably to the state of the
art with considerably less engineering.

In versions of HMAX developed prior to this theory, and
in some related models, rather than arbitrary invariances be-
ing learned from video, specific invariances to local transla-
tion (and sometimes scaling) are built in to the architecture.
A convolutional architecture which by design computes re-
sponses to the same set of templates at every position (and
scale) is equivalent to a model which learned to do this by
seeing videos of each template object translating (and scal-
ing) through every position.

The best-performing version of HMAX for generic object
categorization is an improved version of [66] which scores 74%
on the Caltech 101 dataset, competitive with the state-of-the-
art for a single feature type. The original version achieved a
near-perfect score on the UIUC car dataset. Another HMAX
variant added a time dimension for action recognition [20],
outperforming both human annotators and a state-of-the-art
commercial system on a mouse behavioral phenotyping task.
An HMAX model [67] was also shown to account for human
performance in rapid scene categorization.

One of the observations that inspired our theory is that in
convolutional architectures, random features perform nearly
as well as features learned from objects [22, 23]. This includes
models other than HMAX: [42] found that a convolutional
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Fig. 10: Empirical demonstration of the properties of invariance,
stability and uniqueness of the hierarchical architecture (see Theo-
rem 12) in a specific 2 layers implementation (HMAX). Inset (a)
shows the reference image on the left and a deformation of it (the
eyes are closer to each other) on the right; (b) shows that an HW-
module in layer 1 whose receptive fields covers the left eye provides
a signature vector (c1) which is invariant to the deformation; in
(c) an HW-module at layer 2 (c2) whose receptive fields contain
the whole face provides a signature vector which is (Lipschitz) sta-
ble with respect to the deformation. In all cases, the Figure shows
just the Euclidean norm of the signature vector. Notice that the
c1 and c2 vectors are not only invariant but also selective. Error
bars represent ±1 standard deviation. Two different images (d) are
presented at various location in the visual field. The Euclidean dis-
tance between the signatures of a set of HW-modules at layer 2 with
the same receptive field (the whole image) and a reference vector
is shown in (e). The signature vector is invariant to global trans-
lation and discriminative (between the two faces). In this example
the HW-module represents the top of a hierarchical, convolutional
architecture. The images we used were 200×200 pixels

network with randomized weights performed only 3% worse
than the same network after training via backpropagation.
[43] also found feature learning to be the least significant of
several variables contributing to the performance of a hierar-
chical architecture.

A simple illustrative empirical demonstration of the
HMAX properties of invariance, stability and uniqueness is
in Fig. 10.

6.Unsupervised learning of the template orbit
While the templates need not be related to the test images (in
the affine case), during development, the model still needs to
observe the orbit of some templates. We conjectured that this
could be done by unsupervised learning based on the temporal
adjacency assumption [57, 27]. One might ask, do “errors of
temporal association” happen all the time over the course of
normal vision? Lights turn on and off, objects are occluded,
you blink your eyes – all of these should cause errors. If tem-
poral association is really the method by which all the images
of the template orbits are associated with one another, why
doesn’t the fact that its assumptions are so often violated lead
to huge errors in invariance?

The full orbit is needed, at least in theory. In practice
we have found that significant scrambling is possible as long
as the errors are not correlated. That is, normally an HW-
module would pool all the

〈
I, git

k
〉
. We tested the effect of,

for some i, replacing tk with a different template tk
′
. Even

scrambling 50% of our model’s connections in this manner
only yielded very small effects on performance. These exper-
iments were described in more detail in [61] for the case of
translation. In that paper we modeled Li and DiCarlo’s ”in-
variance disruption” experiments in which they showed that a
temporal association paradigm can induce individual IT neu-
rons to change their stimulus preferences under specific trans-
formation conditions [60, 30]. We also report similar results on
another ”non-uniform template orbit sampling” experiment
with 3D rotation-in-depth of faces in [37].
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