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Abstract

In this paper we consider the problem of human pose estimation from
a single still image. We propose a novel approach where each location in
the image votes for the position of each keypoint using a convolutional
neural net. The voting scheme allows us to utilize information from the
whole image, rather than rely on a sparse set of keypoint locations. Using
dense, multi-target votes, not only produces good keypoint predictions, but
also enables us to compute image-dependent joint keypoint probabilities
by looking at consensus voting. This differs from most previous methods
where joint probabilities are learned from relative keypoint locations and
are independent of the image. We finally combine the keypoints votes and
joint probabilities in order to identify the optimal pose configuration. We
show our competitive performance on the MPII Human Pose and Leeds
Sports Pose datasets.

1 Introduction

In recent years, with the resurgence of deep learning techniques, the accuracy
of human pose estimation from a single image has improved dramatically. Yet
despite this recent progress, it is still a challenging computer vision task and
state-of-the-art results are far from human performance.

The general approach in previous works, such as [15, 19], is to train a deep
neural net as a keypoint detector for all keypoints. Given an image I, the net
is fed a patch of the image Iy ⊂ I centered around pixel y and predicts if y
is one of the M keypoints of the model. This process is repeated in a sliding
window approach, using a fully convolutional implementation, to produce M
heat maps, one for each keypoint. Structure prediction, usually by a graphical
model, is then used to combine these heat maps into a single pose prediction.
This approach has several drawbacks. First, most pixels belonging to the person
are not themselves any of the keypoints and therefore contribute only limited
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information to the pose estimation process. Information from the entire person
can be used to get more reliable predictions, particularly in the face of partial
occlusion where the keypoint itself is not visible. Another drawback is that while
the individual keypoint predictors use state-of-the-art classification methods to
produce high quality results, the binary terms in the graphical model, enforcing
global pose consistency, are based only on relative keypoint location statistics
gathered from the training data and are independent of the input image.

Figure 1: Our model’s predicted pose estimation on the MPII-human-pose
database test-set [1]. Each pose is represented as a stick figure, inferred from
predicted joints. Different limbs in the same image are colored differently, same
limb across different images has the same color.

To overcome these limitations, we propose a novel approach in which for every
patch center y we predict the location of all keypoints relative to y, instead of
classifying y as one of the keypoints. This enables us to use ’wisdom of the
crowd’ by aggregating many votes to produce accurate keypoint detections. In
addition, by looking at agreements between votes, we infer informative image-
dependent binary terms between keypoints. Our binary terms are generated by
consensus voting - we look at a set of keypoints pairs, and for each possible pair
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of locations, we aggregate all votes for this combination. The total vote will
be high if both keypoint locations get strong votes from the same voters. We
show that this approach produces competitive results on the challenging MPII
human-pose [14] and the Leeds sports pose [9] datasets.

2 Related Work

Human body pose estimation in still images is a challenging task. The need
to cope with a variety of poses in addition to a large range of appearances due
to different clothing, scales and light conditions gave rise to many approaches
to dealing with the various aspects of this task. The most common approach
is to use a keypoint detector combined with a pictorial structure for capturing
relations between parts [6, 21]. In addition to the standard pictorial structure
[7], poselet-based features were used to incorporate higher-order part dependen-
cies [14]. Alternative methods, like the chains-model [10] replace the pictorial
structure with a set of voting chains, starting at the head keypoint and ending
at the hand.

With the reappearance of convolutional neural nets, part detectors became
more reliable, leading to a significant improvement in accuracy [4, 19, 2, 18, 15,
20]. The works of [19, 18] focus on multi-scale representation of body parts in
order to infer the location of keypoints. In [15], the authors deal with simul-
taneous detection and pose estimation of multiple people. Recent works [2, 20]
use an iterative scheme to refine pose estimation. As in our approach, in [4] an
image dependent binary term is learned. They, however, learn the binary terms
explicitly while in our model it arises naturally from the voting scheme.

3 Overview of the Method

We now describe the main parts of our algorithm, which will be explained in
detail in next sections.

At inference, we first use a deep neural net, described in section 4.2, to pre-
dict for each image patch Iy centered around pixel y, and for each keypoint j,
the location of the keypoint relative to y. From this we can compute the proba-
bility of keypoint location Kj being equal to a possible location x as seen from
Iy, Py(Kj = x). We aggregate these votes over all image patches to get the
probability distribution for each keypoint location {P (Kj = x)}Mj=1. Examples
of Py(Kj) and P (Kj) are shown in figures 3(a)-3(d) sec. 4.

Next we compute our consensus voting binary term. The voting net above
was trained using a separate loss per keypoint, which is equivalent to an inde-
pendence assumption, i.e. for each y,

Py(Ki = xi,Kj = xj) = Py(Ki = xi) · Py(Kj = xj). (1)
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If we now average over all locations y we get a joint distribution

P (Ki = xi,Kj = xj) ∝
∑
y

Py(Ki = xi) · Py(Kj = xj) (2)

in which the keypoints are no longer independent. Because of the multiplication,
the joint distribution is high when both locations get strong votes from the same
voters. More details on the consensus voting can be found in sec. 5.

Finally, we estimate the pose by minimizing an energy function over the
unary and binary terms generated by the voting scheme. We do this sequentially,
focusing at each step on a subset of keypoints. We start with the most reliable
keypoints until making the full pose estimation. This process is presented in
more details in sec. 6.

4 Keypoint Voting

4.1 Voting Representation

The first stage in our pose-estimation method is a keypoint detector learned by
a deep neural net, which we apply to the image patches in a fully convolutional
fashion [13]. This is an accelerated way to run the net in a sliding window man-
ner with the stride determined by pooling layers of the network. At each patch
center y, the net predicts the location of each keypoint K1, ...,KM relative to y.
This differs from previous methods [19, 18] where the net only needed to classify
if the center y is any of the M keypoints.

The problem of predicting the relative displacement vectors {K1−y, ...,KM−
y} is a regression problem which is usually solved by minimizing an L2 loss
function. However, for the current task the L2 loss has shortcomings, as the
net produces only a single prediction as output. Consequently, in cases of am-
biguity, e.g. difficulty to distinguish between left and right hand, the optimal
L2 loss would be the mean location instead of “splitting” the vote between both
locations. Indeed, when trained using this approach, we found that the net per-
formance is degraded by this problem. To better address this issue, we modify
the prediction task into a classification problem by discretizing the image into
log-polar bins centered around y, as seen in Fig. 2(a). Using log-polar binning
allows for more precise predictions for keypoints near y and a rough estimate for
far away keypoints. We classify into 50 classes, one for the central location, one
for background i.e. non-person, and the rest are four log-polar rings around the
center with each ring divided into 12 angular bins. Since not all people in the
training set are labeled, we are unable to use background locations for training
the non-person label. For this reason, we ignore image locations far from the
person of interest, as seen in Fig. 2(b), and use non-person images from the
PASCAL dataset for non-person label training.
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(a) Log-polar bins (b) Ignore mask
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Figure 2: (a) Log-polar bins, used for keypoints locations voting, centered around
the left upper arm; (b) Patch centers outside the person of interest, marked in
blue, are not used for training; (c) Our model makes use of 30 keypoints: 16
annotated body joints, supplied in the dataset, 12 synthetically generated mid-
section keypoints and estimated hands locations. Original keypoints marked in
blue, synthetically generated keypoints in green

We augmented the 16 humanly annotated keypoints supplied in the dataset
with additional 12 keypoints generated from the original ones, by taking the
middle point between two neighboring skeleton keypoints, e.g. the middle point
between the shoulder and elbow. We also obtained estimated location of the
hands by extrapolating the elbow-wrist vector by 30%. This produces a total
of 30 keypoints and allows us to have a more dense coverage of the body. All
keypoints can be seen in Fig. 2(c).

4.2 Net Architecture

The net architecture we use is based on the VGG-16 network [17]. We use the
first 13 convolutional layers parameters of the VGG-16 net, pre-trained on the
imagenet dataset [16]. On top of these layers we employ a max pooling with
stride 1 and use convolution with holes [3] in order to increase resolution and
generate a descriptor of size 2048 every 8 pixels. To further increase resolution
we learn an upsampling deconvolution layer [13] and get a probability distribu-
tion over 50 classes, indicating the relative keypoint location, every 4 pixels. The
last two layers are distinct per keypoint resulting in 30 distributions on 50 bins
every 4 pixels. More details about the structure of the net can be found in Table
1. The net training was done over images from the MPII Human pose dataset
[1] in a cascaded fashion. First, training the added layers, denoted by layers
11-14, in table 1(b), while keeping the first 13 convolutional layers with learning
rate 0. Then training layer 9 in table 1(b) and finally fine tuning the entire
network. We start with learning rate of 0.001 and no weight decay and continue
with learning rate of 0.0001 and 0.0002 weight decay. Since the size of each
classification bin is considerably different, we minimize a weighted softmax loss
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(a) V GG16: 244x244x3 input image; 1x1000 output labels
1 2 3 4 5 6 7 8 9 10 11 12 13

layer 2 x conv max 2 x conv max 3 x conv max 3 x conv max 3 x conv max fc fc fc
filter-stride 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-2 - - -

channels 64 64 128 128 256 256 512 512 512 512 4096 4096 1000
activation relu idn relu idn relu idn relu idn relu idn relu relu soft

size 224 112 112 56 56 28 28 14 14 7 1 1 1
(b) HPE-WIS: 504x504x3 input image; 102x102x50x30 output label maps

1 2 3 4 5 6 7 8 9 10 11 12 13 14
layer 2× conv max 2× conv max 3× conv max 3× conv max 3× hconv max hconv conv convKi

deconvKi

filter-stride 3-1 2-2 3-1 2-2 3-1 2-2 3-1 2-1 3-1 3-1 7-1 1-1 1-1 6-2
channels 64 64 128 128 256 256 512 512 512 512 2048 2048 50 50

activation relu idn relu idn relu idn relu idn relu idn relu relu idn w-soft
size 504 252 252 126 126 63 63 62 62 60 50 50 50 102

Table 1: Comparisons between the network architectures of V GG16 and HPE-
WIS, as shown in (a) and (b). Each table contains five rows, representing the
'name of layer', 'receptive field of filter - stride', 'number of output feature maps',
'activation function' and 'size of output feature maps', respectively. The terms
'conv', 'max', 'fc', 'hconv' and 'deconv' represent the convolution, max pool-
ing, fully connection, convolution with holes [3] and deconvolution upsampling
[13], respectively. The terms 'relu', 'idn', 'soft' and 'w-soft' represent the acti-
vation functions, rectified linear unit, identity, softmax and weighted-softmax,
respectively. The last two layers are distinct per keypoint.

function, where each class is weighted inversely proportional to the size of its bin.

4.3 The Voting Scheme

At each patch center y and for each keypoint j the network returns a softmax
probability distribution over the log-polar bins sjy ∈ R1×1×C . At inference we use

deconvolution, with a predefined fixed kernel w ∈ RHk×Wk×C , to transform the
log-polar representation sjy back to the image space and get the probability dis-
tribution of keypoint location over pixels Py(Kj = x). The deconvolution kernel
maps each channel, representing a log-polar bin, to the corresponding image lo-
cations. We use a deconvolution kernel of size (Hk ×Wk × C) = (65× 65× 50).
Most of the kernel weights are zeros, shown as black in fig. 3(e). At the top of
the figure we show an illustration of weights for a specific bin. Since this bin
corresponds to the upper left log-polar segment it is zero at all locations except
for the pixels of that segment which are set to 1

|bin| .

P̂y(Kj = x) = deconv(sjy, w) (3)

Then Py(Kj) is simply P̂y(Kj) translated by y. Examples for Py(Kj) are
shown in fig. 3(a) and 3(b). We aggregate these votes over all patch centers to
get the final probability of each keypoint at each location.

P (Kj = x) =
∑
y∈Y

Py(Kj = x) = deconv(sj , w) (4)
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(a) Right wrist single vote
map

(b) Left shoulder single vote
map

(c) Right wrist probability (d) Left shoulder probabil-
ity

(e) deconvolution kernel

Figure 3: (a) Voting map from location y (yellow rectangle) for Right Wrist
Py(KRightWrist); (b) Voting map from location y (yellow rectangle) for Left
Shoulder Py(KLeftShoulder); (c) Right wrist probability P (KRightWrist), gener-
ated by aggregating voting maps for right wrist; (d) Left shoulder probability
P (KLeftShoulder), generated by aggregating voting maps for left shoulder; (e)
The deconvolution kernel w. The weights of a specific channel are illustrated at
the top

The term P (Kj) ∈ R(H
4 +Hk−1)×(W

4 +Wk−1) is the aggregated votes of key-

point j, and sj ∈ RH
4 ×

W
4 ×C is the softmax distribution output of keypoint j.

Examples for P (Kj) are shown in fig. 3(c) and 3(d). Note that the size of the
aggregated distribution is larger than H

4 ×
W
4 , the image size at the output res-

olution. This enables the algorithm to generate votes for locations outside the
visible image.

During inference, we make use of the Caffe [8] implementation for decon-
volution by adding an additional deconvolution layer with fixed weights w on
top of the net softmax output. This layer generates the aggregated probability
distribution of each keypoint in a fast and efficient way.
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5 Consensus Voting

The voting scheme described in section 4 produces a heat map per keypoint,
which represents the probability of a keypoint being at each location. The next
challenge is to combine all the estimated distributions into a single pose predic-
tion. What makes this task especially challenging is that beyond just having to
handle false keypoint detections, we need to handle true detections but of other
individuals in the image as well. Other challenges include self-occlusion, and
confusion between left and right body parts.

The standard approach to solve this problem is to minimize an objective of
the following form:

N∑
i=1

φi(xi) +
∑

(i,j)∈E

φ(i,j)(xi, xj) (5)

The φi(xi) unary term is the score of having keypoint i at location xi. The
φ(i,j)(xi, xj) binary term measures compatibility and is the score of having key-
point i at location xi and keypoint j at location xj . The edge set E is some
preselected subset of pairs of keypoints.

Usually in pose estimation, the binary term is image independent and comes
from a prior on relative keypoint location. For example, given the location of
the shoulder, it produces a set of possible elbow displacements based on train-
ing samples pose statistics. While this can be helpful in excluding anatomically
implausible configurations, an image independent binary term has limitations.
For example, the location of the left shoulder relative to the head is strongly
dependent on whether the person is facing forwards or backwards and this infor-
mation is not incorporated into the standard binary term. One main advantage
of our keypoint voting scheme is that we can compute from it an image-based
“consensus voting” binary term, which has more expressive power. This is es-
pecially important for less common poses, where the image-independent prior
gives a low probability to the right pose.

At each image location y, we compute from the net output the distribution
Py(Ki = x) for each keypoint. These probabilities were trained under a (naive)
independence assumption, i.e. a separate softmax loss for each keypoint, more
formally

Py(Ki = xi,Kj = xj) = Py(Ki = xi) · Py(Kj = xj). (6)

If we now average over all locations y, we get a joint distribution

P (Ki = xi,Kj = xj) ∝
∑
y

Py(Ki = xi) · Py(Kj = xj) (7)

which is no longer independent. By having each center y vote for a combina-
tion of keypoints, the probabilities become dependent through the voters. For
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(a) Left shoulder probability (b) Left elbow probability

(c) Conditional probability (d) Conditional probability

Figure 4: (a) Left shoulder probability P (KLeftShoulder); (b)Left elbow proba-
bility P (KLeftElbow); (c) Conditional probability of left elbow given left shoulder
of person on the left (yellow rectangle); (d) Conditional probability of left elbow
given left shoulder of person on the right (yellow rectangle)

P (ki = xi, kj = xj) to be high, it is not enough for xi and xj to receive strong
votes separately, the combination needs to get strong votes from many common
voters. For this reason we call this the consensus voting term.

In Fig. 4 we show an example of the conditional probability P (Ki = xi|Kj =
xj) calculated from the previously described joint probability. As can be seen
in Fig. 4(b), the left elbow of the person to the right has a weak response. In
addition, there is a misleading weak response to the elbow of another individual
nearby. After conditioning on the left shoulder location, we see a strong response
in Fig 4(d), but only in the correct location.

In our algorithm, we use the unary term of the form φi(xi) = − log(P (Ki =
xi)). The binary term φ(i,j)(xi, xj) we use is a weighted combination of the joint
distribution − log(P (ki = xi, kj = xj)) just described and the commonly used
binary term based on relative keypoint location statistics. The hyperparameters
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where tuned using the TRW-S algorithm [12] on a validation set.

Computing the consensus voting is challenging, since calculating equation
7 in a naive way is computationally expensive. Each keypoint has N2 possible
locations, where the image is of sizeN×N . Considering all possible combinations
yields N4 pairs of locations. For each pair of possible locations, we sum over
all N2 voters, resulting in O(N6) running time. In order to reduce running
time, we use the observation that eq. 7 is in fact a convolution and use the
highly optimized Caffe GPU implementation [8] to calculate the binary tables.
In addition we calculate the binary term over a coarse scale of 1/12 of the image
scale, using only the first two log-polar rings. This reduces the running time
of a single keypoint pair to ∼ 100ms. The restriction to the first two rings
limits the maximal distance between keypoints, which we overcome by using the
augmented keypoints shown in Fig 2(c).

6 Pose Prediction

In the previous sections, we described the unary and binary terms which are the
basic building blocks of our algorithm. We now present additional steps that we
employ to improve performance on top of these basic building blocks. First, we
add geometrical constraints on our augmented keypoints. Second, we perform
the inference in parts, starting from the reliable parts proceeding to the less
certain ones.

6.1 Local Geometric Constraints

We generate additional keypoints, as seen in Fig. 2(c) by taking the mid-point
between keypoints, e.g. shoulder and elbow. While we could simply minimize
eq. 5 with these added variables as well, this fails to take into account the fact
that these new points are determined by other points. We can enforce these
constraints by removing the new synthetic variables and rewriting our binary
constraints. Assume our two original keypoints had indexes i and j and the
middle point had index `. Focusing on the relevant terms, instead of solving

min
xi,xj ,x`

φi(xi) + φj(xj) + φ`(x`) + φ(i,`)(xi, x`) + φ(`,j)(x`, xj) (8)

we add the geometric constraint by solving

min
xi,xj

φi(xi) + φj(xj) + φ̃(i,j)(xi, xj). (9)

Where we define

φ̃(i,j)(xi, xj) = φ`(f(xi, xj)) + φ(i,`)(xi, f(xi, xj)) + φ(`,j)(f(xi, xj), xj)

and f(x, y) = 1
2 (x+ y).
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This is equivalent to adding the constraint that x` is the mid-point between
xi and xj , but faster to optimize. By adding this mid-point constraint, and
using it as a linking feature [11], we get a more reliable binary term which also
looks at the appearance of the space between the two respective keypoints.

6.2 Sequential Prediction

An issue that arises when optimizing eq. 5 over all keypoint is that not all
keypoints are detected with equal accuracy. Some, like the head, are detected
with high accurately while others, like the wrist, are more difficult to locate. In
some cases, occluded or unclear keypoints can distort predictions of more visible
keypoints. In order to have the more certain keypoints influence the prediction
of less certain ones, but not vice versa, we predict the keypoints in stages. We
start with the most reliable keypoints, and at each stage use the previously
predicted keypoints as an ”anchor” to predict the other parts. We have three
stages. First, we locate the head, neck, thorax and pelvis. After that we locate
the shoulders and hips. Last, we locate all remaining keypoints.

7 Results

7.1 MPII

We tested our method on the MPII human pose dataset [1], which consists of
19,185 training and 7,247 testing images of various activities containing over 40K
annotated people. The dataset is highly challenging and has people in a wide
array of poses. At test time we are given an image with a rough location and
scale of the person of interest and need to return the location of 16 keypoints:
head-top, upper-neck, thorax, pelvis, shoulders, elbows, wrist, hips, knees and
ankles.

The standard evaluation is made on a subset of test images, named ”single
person”, where the person of interest is well separated from other people. We
note that several images in the ”single person” dataset still have another person
nearby. In order to restrict our algorithm to the person in question, we crop
a window of size 504 × 504 (using zero padding if needed) around the person
using the given position and scale. In addition, to insure that we return the
pose of the correct person, we multiply our mid-body keypoint heatmap (the
synthetic point between thorax and pelvis) with a mask centered around the
given person position. We trained the net described in section 4 using Caffe [8]
and get the final keypoint prediction by sequential optimization, as described in
section 6.2, using the TRW-S algorithm [12]. Various hyperparameters where
tuned using a validation set containing 3300 annotated poses. Examples of our
model’s predictions are shown in fig. 5.

Performance is measured by the PCKh metric [1], where a keypoint location
is considered correct if its distance to the ground truth location is no more than
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Figure 5: Additional results of our model’s predicted joint positions on the
MPII-human-pose database test-set [1]

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean
Tompson et al.[19] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Carreira et al.[2]∗ 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al.[18] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Pishchulin et al.[15]∗ 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Wei et al.[20]∗ 97.7 94.5 88.3 83.4 87.9 81.9 78.3 87.9
Our Model 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Table 2: PCKh results on the MPII single person dataset. Works marked with
? are arXIV preprints, not yet peer-reviewed.

half the head segment length. In table 2 we compare our results to the leading
methods on the MPII human pose leaderboard. We show competitive results
with mean PCKh score of 85.0% and state-of-the-art performance on the head
keypoints.

7.2 Leeds Sports

The Leeds sports dataset [9] (LSP) contains 2, 000 images of people in various
sport activities, 1, 000 for training and 1, 000 for testing. The task is to return
14 keypoints, the same keypoints as in the MPII dataset except for the thorax
and pelvis.

The LSP dataset has two evaluation settings, person-centric (PC) and observer-
centric (OC). We use the person-centric settings where right/left labels are ac-
cording to body parts (same as the MPII annotation) and not according to
relative image location. The standard performance measure for the LSP dataset
is strict percentage of correct parts (PCP) metric. The PCP score measures limb
detection: a limb is considered to be correctly detected if the distances between
the detected limb endpoints and groundtruth limb endpoints are within half of
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Figure 6: Pose estimation results on the MPII dataset for varying PCKh thresh-
olds.

Figure 7: Additional results of our model’s predicted joint positions on the LSP
database test-set [9]

the limb length.

We use the model trained on the MPII human pose dataset and fine-tune it
on the LSP training set. Examples of our model’s predictions are shown in fig.
7. At test time we run our algorithm twice, once with the input image and once
with it flipped up-side-down, and pick the pose with the optimal score. This is
done in order to handle up-side-down people which are more common in the LSP
dataset than the MPII dataset, and are therefore under-represented at training
time.

We compare the performance of our approach to that of other leading pose
estimation methods in table 3. Our performance is comparable to that of
Pishchulin et al. [15], and superior to other methods. We note that in [15]
the authors use the LSP-Extended dataset, containing additional 10,000 anno-
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Method Torso Upper Lower Upper Forearm Head Mean
Leg Leg Arm

Tompson et al.[19] 90.3 70.4 61.1 63.0 51.2 83.7 66.6
Carreira et al.[2] 95.3 81.8 73.3 66.7 51.0 84.4 72.5
Chen&Yuille [4] 96.0 77.2 72.2 69.7 58.1 85.6 73.6
Fan et. al. [5] 95.4 77.7 69.8 62.8 49.1 86.6 70.1
Pishchulin et al. [15] 97.0 88.8 82.0 82.4 71.8 95.8 84.3
Our Model 97.3 88.9 84.5 80.4 71.4 94.7 84.2

Table 3: PCP results on the LSP dataset (PC).

tated poses, not used in our model.

8 Discussion

In this work, we proposed a method for dealing with the challenging task of
human pose estimation in still images. We presented a novel approach of using
a deep convolutional neural net for keypoint voting rather than keypoint de-
tection. The keypoint voting scheme has several useful properties compared to
keypoint detection. First, all image regions of the evaluated person participate
in the voting, utilizing the ’wisdom of the crowd’ to produce reliable keypoint
predictions. Second, any informative location can contribute to multiple key-
points, not just to a single one. This allows us to use consensus voting in order
to compute expressive image-dependent joint keypoint probabilities. Empirical
results on the diverse MPII human pose and Leeds sports pose datasets show
competitive results, improving the state-of-the-art on a subset of evaluated key-
points. We showed that our model generalized well from the MPII dataset to
the LSP dataset, using only 1000 samples for fine tuning. Models and code will
be made publicly available. Additional contributions of the current scheme are
the use of log-polar bins for location prediction rather than estimating L2 trans-
lations, and the use of convolutions for fast aggregation of votes from multiple
locations.

The voting scheme is a natural tool for estimating the locations of unob-
served body parts. In future work, we plan to harness this property for dealing
with occlusions, resulting from closely interacting people, which are difficult to
handle by existing schemes. In addition, we plan to combine our voting scheme
with iterative methods, refining predictions by feeding the output of previous
iterations as input to the network.
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