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ABSTRACT

In this work, we focus on the problem of image instance retrieval

with deep descriptors extracted from pruned Convolutional Neu-

ral Networks (CNN). The objective is to heavily prune convolu-

tional edges while maintaining retrieval performance. To this end,

we introduce both data-independent and data-dependent heuristics

to prune convolutional edges, and evaluate their performance across

various compression rates with different deep descriptors over sev-

eral benchmark datasets. Further, we present an end-to-end frame-

work to fine-tune the pruned network, with a triplet loss function

specially designed for the retrieval task. We show that the combina-

tion of heuristic pruning and fine-tuning offers 5× compression rate

without considerable loss in retrieval performance.

Index Terms— CNN, Pruning, Triplet Loss, Image Instance Re-

trieval, Pooling

1. INTRODUCTION

Image instance retrieval is the problem of retrieving images from

a large database that contain or depict similar objects to a target

image. Convolutional Neural Networks (CNN)-based descriptors

[1, 2, 3, 4, 5] have recently been used to generate compact image de-

scriptors with high retrieval performance, and are rapidly becoming

the dominant approach for retrieval problem. Their major drawback

is the size of their models, running into hundreds of megabytes.

Smaller networks are desirable for use in mobile and embed-

ded applications, where storage, transmission, and computational

power is limited. For efficient hardware implementations of deep

neural networks, smaller networks reduce cost and improve chip

performance. Storing the entire network on-chip allows fast access

and reduce processing latency. There are also gains in distributed

training, where network latency bottlenecks the sharing of updated

parameters, and smaller networks significantly improve speed. Fi-

nally, emerging MPEG standards like Compact Descriptors for Vi-

sual Search (CDVS) [6] and Compact Descriptors for Video Analy-

sis (CDVA) [7] require memory-efficient models for streaming and

hardware implementations.

Model compression strategies reduce the computational, mem-

ory, and bandwidth costs; and pruning is a common first technique.

Pruning algorithms reduce network size by discarding edges or

nodes, and can be heuristic or analytic [8]. Modern pruning al-

gorithms have thus far been evaluated on CNN performing image

classification with a softmax loss function; we investigate the adap-

tation of these algorithms to image instance retrieval problem, and

present an empirical evaluation of their effectiveness.

∗The first three authors contributed equally.

1.1. Related Work

Image Instance Retrieval with CNN. Image retrieval systems gen-

erally construct a global image descriptor, a vector that represents

the contents of an image. Instead of descriptor extracted from fully-

connected layer, state-of-the-art use the intermediate output of CNN

(e.g. convolutional layers) with additional pooling operations to gen-

erate descriptors [1, 2, 3]. The application of multi-scale and multi-

rotation feature construction and pooling further improves scale- and

rotation-invariance [4, 9]. Very recently, pre-trained CNNs for Im-

ageNet classification are repurposed for the image retrieval prob-

lem, by fine-tuning them with retrieval specific loss functions such

as triplet loss [10, 11, 12].

Network Pruning Heuristic pruning algorithms generally as-

sign either nodes or edges salience scores and remove those with the

lowest scores [8]. In early neural network literature there was a con-

siderable interest in developing such algorithms. Heuristics include

Optimal Brain Damage by LeCun et al. [13]; derivative-based meth-

ods by Mozer and Smolensky [14], and Karnin [15]. Other work

removes nodes where the weights of incoming connections has the

smallest variance, but this has been mostly studied in the realm of

fault tolerance [16].

In current networks, a popular strategy is the removal of low-

magnitude edges. Han et al. [17] demonstrates this simple strategy

on AlexNet, reducing the number of free parameters by a factor

of 9× by pruning alone without any loss in image classification per-

formance. Their reported results heavily prune edges from fully-

connected layers (∼89% are pruned); on convolutional layers alone,

37% of convolutional edges are dropped. Thus, the majority of the

savings comes from the fully-connected layers, which contain 96%

of the parameters of the entire network.

There are also analytic algorithms compress networks layer-by-

layer, replacing the convolution matrix with a compressed represen-

tation. This compression is achieved by removing redundancy in the

function that each layer computes. This approach has been vigor-

ously explored in recent years, with work by Kim et al. [18], Mariet

and Sra [19], Lebedev et al. [20], and Denton et al. [21] each with

different redundancy reduction mechanisms.

1.2. Contributions

Compared to fully-connected layers that contain the most redun-

dancy, heavily pruning edges on convolutional layers is more chal-

lenging. In this work, we focus on heuristic criteria to prune convo-

lutional edges especially for image instance retrieval. We make the

following contributions:

• We investigate both data-independent and data-dependent

heuristics to prune convolutional edges. We perform a thor-

ough evaluation across various compression rates and deep

pooled descriptors over several benchmark datasets. Results

http://arxiv.org/abs/1707.05455v1


suggest that heuristic pruning is capable of reducing the

network size by 2× without retrieval performance loss.

• We introduce an end-to-end framework for fine-tuning pruned

network, specially tailored to image instance retrieval with a

triplet loss function. Combining pruning and rank-based fine-

tuning can provide a factor of 5× compression with minimal

loss in retrieval performance.

2. METHOD

2.1. Pruning Convolutional Edges

We consider different heuristics to assign salience scores[8] to edges.

Consider an arbitrary layer in a neural network, Ni is a random vari-

able following the activation of the ith node when presented with

data from a training set, wi,j is the weight of the edge connecting

that node to the jth node in the next layer, L is the value of the loss

function when run on some data. From existing literature, we con-

sider computing the following heuristics for each edge:

1. |wi,j |, the simplest heuristic, requiring no data. This was re-

cently popularized by Han et al. [17].

2. dL
dwi,j

wi,j , which was recently used by Molchanov et al. [22]

to prune networks for transfer learning. This is justified as the

Taylor expansion of the function computing the difference in

loss function with and without the weight wi,j , and is shown

to be applicable to transfer learning.

3. 〈|Ni|〉 · |wi,j | Mean activation.

4. Var[Ni] · w
2
i,j Variance of activation.

One may notice that heuristic 2 requires data with ground-truth la-

bels to compute the loss-function term ( dL
dwi,j

). Computing heuristic

3 and 4 requires data, but does not require that it have labels.

In order to prune the network to a fraction t of its original size,

we first compute the salience score for each edge in the network. We

then sort all salience scores across all layers and select the threshold

salience value, τ , such that (1 − t) of the salience scores are below

this value. We then remove all edges with salience scores less than τ .

Throughout our experiments, we report the network size as the total

fraction of edges removed. We do not prune bias nodes or report

them in the network size.

2.2. Convolutional Feature Pooling

In constructing the global image descriptor we append a pooling

layer to the pruned network. The pooling function employed is crit-

ical to the performance of the model. In this work, we consider

Square-root pooling (SQP) [23] and Regional-Maximum Activations

of Convolutions (R-MAC) [4] pooling functions. Consider an arbi-

trary image X , with C feature maps {x1, ...,xC} extracted from

intermediate layer, xc is a feature map of width W and height H .

Square-root pooling, f2(·) is defined as

f
SQP(xc) =

√

√

√

√

1

W ·H

W ·H
∑

i=1

x2
c,i. (1)

R-MAC [4] pooling is computed by first performing maximum

pooling over regions of interest (ROI), then average pooling.

f
R-MAC(xc) =

1

NROI

NROI
∑

i=1

max
j∈[1,SROI]

(xi
c,j), (2)

where SROI is the number of ROIs, and x
i
c denotes the ith ROI sam-

pled from feature map xc, with size SROI ≤ W ·H .

2.3. Triplet-based Fine-tuning

To fine-tune remaining parameters in an end-to-end manner, we need

to design a loss function for the pruned network. Following existing

work by Arandjelović et al. [11], Gordo et al. [12], we define a triplet

(Xq, X+, X−) that contains the query image Xq , a positive match-

ing image X+ and a negative, non-matching image X−. The images

are selected so that query image Xq is more similar to positive im-

age X+ than to the negative image X−. The triplet should meet the

condition that K(Xq , X+) > K(Xq , X−), where K is a function

computing pairwise image similarity.

Accordingly, we define the triplet loss as:

Lq,+,− = max{0, m+K(Xq
, X

−)−K(Xq
, X

+)}, (3)

where m is a positive margin parameter.

Following [2], we define the similarity measure K as:

K(X,Y ) = β(X)β(Y )
C
∑

c=1

k(f(xc), f(yc)), (4)

where f(.) denotes the pooling operation applied on feature maps,

k(f(xc), f(yc)) =< f(xc), f(yc) > is the scalar product of the

pooled features, β(.) is a normalization term computed by β(X) =
√

∑C

c=1 k(f(xc), f(xc)).

3. EXPERIMENTS

We begin with a VGG-VeryDeep-16 network [24] pre-trained on

ImageNet, and keep only the layers from the input up to and includ-

ing the last pooling layer pool5. Convolutional layers are pruned

using each of the four heuristics, then fine-tuned for 20 epochs on the

image retrieval task using the triplet loss function discussed earlier.

All pruning and fine-tuning, are implemented with the MatConvNet

library, with the 3D-Landmarks [25] dataset. Testing is performed

on the INRIA Holidays [26], Oxford5k [27] and Paris6k

[28] datasets which consist of outdoor scenes and buildings; and the

UKbench [29] dataset which features close-up shots of objects in

indoor environments.

In all reported results, the accuracy metric for the Holidays,

Oxford5k, and Paris6k datasets is the mean average precision

(MAP), and the metric for the UKbench dataset is 4×recall@4.

Note that we report results without post-processing (e.g., PCA

whitening) on pooled features.

3.1. Pooling Features

We first pruned the convolutional layers of VGG-VeryDeep-16

using the four heuristics discussed earlier. Each network was pruned

to five different sizes, from 10% to 50% of the original network size.

The performance of each pruned network on each of the four datasets

is presented in Figure 1.

From Figure 1, we observe that heuristic 1 (magnitude of edge)

consistently performs better than the other heuristics. In fact, until

about 40% of the edges are remaining, networks pruned with heuris-

tic 1 perform not significantly worse than unpruned networks. This

corresponds to a 2.5× savings in size for minimal computational and

implementation effort.
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Fig. 1. Performance of pruned networks by remaining network size across different datasets. In each dataset, lines are colored by pruning

heuristic and dashed by pooling feature (solid lines use SQP pooling, dashed lines use R-MAC). No fine-tuning was performed. We observe

that Heuristic 1 consistently performs better than the other heuristics, and the use of SQP features over R-MAC improves performance.

Additionally, we observe that the accuracy graphs of networks

seldom intersect, and so heuristic 1 dominates the entire domain.

This, along with the advantage of requiring minimal computation

and no data, suggests that heuristic 1 is better suited to practical

implementations than the other heuristics proposed.

We also use the data in Figure 1 to compare the performance of

SQP and R-MAC features. Across three out of four datasets, SQP

features perform better than networks with R-MAC features pruned

to the same size. From this, we observe that SQP features are gen-

erally superior, providing around 2 percentage points’ performance

gain over R-MAC. Thus, we choose SQP for fine-tuning in the sub-

sequent sections.

3.2. Fine-tuning

As established by Han et al. [17, 30], fine-tuning pruned networks

can recover image classification performance lost in pruning. To

investigate this effect for image instance retrieval, we fine-tuned net-

works pruned with each heuristic, and then evaluated their perfor-

mance. These networks were pruned to 50% of their original size,

and evaluated with SQP. Figure 2 shows the performance of these

networks before and after fine-tuning.

We observe that in two of the four datasets, fine-tuning improves

performance significantly, regardless of the pruning heuristic. Even

after 50% pruning, the mean average precision of these networks

approaches 80%. Also, after fine-tuning, heuristic 1 reports higher

performance in all datasets. This further supports our earlier recom-

mendation of heuristic 1, and corroborates the work of Han et al.

[17, 30].
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Fig. 2. Performance of 50% pruned networks on different heuris-

tics, grouped by dataset. The colored bar represents performance

before fine-tuning, and the clear bar represents the change in perfor-

mance with fine-tuning for 20 epochs. The number above each bar

is the change in percentage points or value. We observe that fine-

tuning greatly improves the performance across Oxford5k and

Paris6k datasets, suggesting that it is an important step in our

pruning pipeline.

We note that fine-tuning decreases the 4×recall@4 score on the

UKbench dataset, regardless of heuristic used. This is likely be-

cause fine-tuning on the building-centric 3D-Landmarks dataset

transfers well to Oxford5k and Paris6k, but poorly to the

object-centric UKbench dataset.
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Fig. 3. Performance (with SQP pooling) of networks pruned by

heuristic 1, before and after fine-tuning (FT). Pruning the network

reduces performance significantly, but fine-tuning can generally re-

store most of the performance.

3.3. Pruned Network Size

We now investigate the size of the network pruned and its effect on

accuracy. As per our earlier recommendation, we choose several net-

works pruned (to different sizes) with heuristic 1, pooled with SQP,

and fine-tuned. We evaluate their performance on each of testing

datasets before and after fine-tuning, and present the results in Fig-

ure 3.

We note that networks pruned to 20% of the initial model size

exhibit poor performance compared to networks pruned to 50%, but

this gap in performance diminishes upon fine-tuning. Fine-tuning

allows us to improve compression rate from a factor of 2× to 5×
with minimal performance penalty.

This performance improvement does not extend to networks

pruned to 10% of their initial size. While these networks generally

exhibit improvement in performance, their performance does not

reach the performance of networks pruned to 50% of their size. This

discontinuity suggests that the pruning algorithms are no longer able

to exploit redundancy in the model, and further pruning will worsen

performance. The minimum model size without loss of performance

lies between 10− 20% of the original model size.

Further investigation in this threshold is warranted. We observe

this transition at around the same range in all datasets, suggesting

that this is a property of the network or the heuristic. Further experi-

ments may show that the heuristics perform differently at extremely

small sizes and with little redundancy.

3.4. Pruned Layer Sizes

We chart the size of each convolutional layer in the network in Fig-

ure 4 for three different sizes when pruned with heuristic 1. As the

network size shrinks, layers further up the network lose convolu-

tional edges disproportionately more quickly. Even when the net-

work is pruned to 10% of its original size, the lowest layer still re-

tains 95% of its edges, and the highest layers retain only about 8%

of their edges. This same trend is observed across all heuristics.

4. CONCLUSIONS

Pruning edges on convolutional layers is a more challenging opera-

tion than on fully-connected layers. In this work, we presented an

end-to-end framework for compressing CNN, specially tailored to
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Fig. 4. Fraction of each layer remaining after different amounts of

pruning (with heuristic 1). We observe that the layers closest to the

data are pruned the least, a pattern that is consistent with all heuris-

tics. This is likely because our pruning leverages the increasing re-

dundancy in higher layers.

efficiently pruning convolutional edges with a triplet loss function.

We present thorough evaluation across varied pruning parameters

and deep features on several datasets. Our experiments suggest that

pruning and fine-tuning can provide a factor of 2× to 5× compres-

sion with minimal loss in performance.
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