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Highlights

e Image-computable hierarchical neural network models can be naturally extended
to create hierarchical “brain models” that allow direct comparison with biological
neural networks at multiple scales — from single neurons, to population of
neurons, to behavior.

e Single neurons in some of these hierarchical brain models are functionally similar
to single neurons in macaque primate visual cortex (V1)

e Some hierarchical brain models have processing stages in which the entire
distribution of artificial neuron properties closely matches the biological
distributions of those same properties in macaque V1

e Hierarchical brain models whose V1 processing stages better match the macaque
V1 stage also tend to be more aligned with human object recognition behavior at
their output stage
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Summary

Primate visual object recognition relies on the representations in cortical areas at the top
of the ventral stream that are computed by a complex, hierarchical network of neural
populations. While recent work has created reasonably accurate image-computable
hierarchical neural network models of those neural stages, those models do not yet bridge
between the properties of individual neurons and the overall emergent behavior of the
ventral stream. One reason we cannot yet do this is that individual artificial neurons in
multi-stage models have not been shown to be functionally similar to individual biological
neurons. Here, we took an important first step by building and evaluating hundreds of
hierarchical neural network models in how well their artificial single neurons approximate
macaque primary visual cortical (V1) neurons. We found that single neurons in certain
models are surprisingly similar to their biological counterparts and that the distributions of
single neuron properties, such as those related to orientation and spatial frequency
tuning, approximately match those in macaque V1. Critically, we observed that
hierarchical models with V1 stages that better match macaque V1 at the single neuron
level are also more aligned with human object recognition behavior. Finally, we show that
an optimized classical neuroscientific model of V1 is more functionally similar to primate
V1 than all of the tested multi-stage models, suggesting room for further model
improvements with tangible payoffs in closer alignment to human behavior. These results
provide the first multi-stage, multi-scale models that allow our field to ask precisely how
the specific properties of individual V1 neurons relate to recognition behavior.
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Introduction

The primate ventral visual stream, a complex network of hierarchically-organized cortical
areas, has been shown to support visually-guided behaviors (Felleman & Van Essen,
1991; Mishkin, Ungerleider, & Macko, 1983). One such particularly important behavior is
core object recognition -- i.e., the ability to rapidly (~200ms) identify objects in the central
visual field (DiCarlo, Zoccolan, & Rust, 2012; Fabre-Thorpe, Richard, & Thorpe, 1998).
Understanding the computations and neuronal mechanisms underlying this challenging
visual behavior has been a major goal in systems neuroscience (DiCarlo & Cox, 2007).
A critical step towards this goal is the development of accurate, multi-stage, multi-scale
models that can bridge between the properties of individual cells and phenomena at each
of the ventral stream processing stages to the supported visually-guided behaviors, such
as core object recognition. These multi-stage, multi-scale models would, for example,
allow us to begin to understand how functional properties at the cellular level, where we
can most precisely measure and manipulate the system, give rise to visually intelligent
behavior. Successful multi-scale models must be simultaneously accurate at both the
individual neuron level, at the neuronal population level, and at the behavioral level. The
work presented here is one step toward that greater goal.

Prior work has shown that hierarchical networks of artificial neural populations can, when
properly connected, quite closely approximate object recognition behavioral patterns that
are driven by the ventral visual stream, a similarly organized deep hierarchy of biological
neurons (Rajalingham et al., 2018; Schrimpf et al., 2018). In addition, this same model
family has achieved unparalleled success in explaining the response patterns of individual
neurons along the ventral stream areas (Bashivan, Kar, & DiCarlo, 2019; Cadena et al.,
2019; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Schrimpf et al., 2018; Yamins et al.,
2014). Thus, we and others have proposed that these models may serve as multi-stage,
multi-scale models of the mechanisms of object recognition — causally bridging from
single neuron responses at multiple stages of the ventral stream to the observed
recognition behavioral patterns (Kriegeskorte, 2015; Richards et al., 2019; Schrimpf et
al., 2020; Yamins & DiCarlo, 2016). However, this model to brain congruency has not
been without criticism. In particular, these models often contain critical unspecified
parameters such as: the mapping between their input and a physical field-of-view, and
the commitment of specific model stages to specific brain regions. In addition, when using
these models to predict neuronal responses, researchers (including some of the current
authors) have relied on fitting methods that linearly combine thousands of features, or
model neurons, to explain the responses of individual biological neurons (Saxe, Nelli, &
Summerfield, 2021; Serre, 2019). The lack of a pre-specified model-to-brain mapping
means that hierarchical neural networks cannot be yet considered to be accurate multi-
scale models of the neural mechanisms of object recognition. For example, the
congruency tests typically do not require that the individual artificial single neurons are
aligned with individual biological neurons within the proposed congruent cortical area(s).

To address this limitation, we here hypothesized that these hierarchical models of artificial
neurons might be modified to become accurate, multi-scale models of the neural
mechanisms of visual object recognition. To investigate this, we first created a range of
new candidate “brain models” by using existing base model architectures and exploring
two key model parameters that are biologically critical: model field-of-view and model
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processing stage proposed to correspond to primate V1. We then explicitly mapped
single artificial neurons in each of these hierarchical models to single biological neurons
in the primate primary visual cortex (area V1) in a one-to-one mapping commitment.
Specifically, we avoided the usual model-to-brain fitting procedure and we instead sought
to test the hypothesis that single neurons in a candidate model layer (i.e. a specific
processing stage of a candidate hierarchical model) correspond to single neurons in the
macaque V1, and that the entire artificial neural population at that same model layer
corresponds to the entire V1 neuronal population. That is, we asked if any models were
explicitly well matched to primate V1 at both the single neuron level and the population
level. We were encouraged to pursue this approach to modeling V1 in part because of
prior work demonstrating that one such hierarchical network model contains neural
representations which, when linearly combined using a regression approach, can
reasonably accurately predict the response patterns of V1 (Cadena et al., 2019).

To compare models with primate V1 in this way, we performed in-silico neurophysiological
experiments in hundreds of these V1 candidate brain models to measure 22 single neuron
response properties that have been previously quantified, such as those related to
orientation and spatial frequency tuning and surround and texture modulation, and
compared their distributions to those in macaque V1 from available published studies
(Cavanaugh, Bair, & Movshon, 2002; De Valois, Albrecht, & Thorell, 1982; De Valois,
Yund, & Hepler, 1982; Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013;
Ringach, Shapley, & Hawken, 2002; P. H. Schiller, Finlay, & Volman, 1976; Ziemba,
Freeman, Movshon, & Simoncelli, 2016).

We found that randomly-sampled single artificial neurons in the V1-layers of certain
hierarchical brain models have response characteristics that are surprisingly similar to
those of single neurons in macaque V1. We also found that the population distributions
of response properties also very closely match the biological distributions of those same
response properties. Since all of these hierarchical models were multi-stage candidate
models of the entire ventral stream and its supported object recognition behavior, we then
asked: Do ventral stream models that better align with biological V1 at their proposed V1
processing stage also better align with the behavioral patterns of human core object
recognition? Indeed, we found that hierarchical models with a V1 stage that better
matched macaque V1, had behavioral “output” that was more closely matched to human
behavior. Thus, this work describes, for the first time, image-computable, multi-stage
models of the primate visual ventral stream that bridge from single neurons in V1, the first
visual cortical area, all the way to object recognition behavior.

Importantly however, we found that no evaluated ventral stream model was able to
perfectly account for all the V1 response properties and all tested models underperformed
when compared to an optimized classical neuroscientific model of V1. This shows that
the causal, multi-scale models of the ventral stream developed here can be further
improved, and argues that improvements -- even at just the V1 processing stage -- will
lead to better causal models of human object recognition behavior.
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Results

Our overarching goal is to build accurate, multi-stage, multi-scale models of how the
primate ventral visual stream supports object recognition behaviors. By definition, such
models must be accurate at the level of single neurons and the level of populations of
such neurons (multi-scale), as well as at all ventral stream stages and ventral stream
behaviors (multi-stage). In this work, we focus on primate visual area V1 and we evaluate
how well specific hierarchical artificial neural networks (ANNs), some of which are the
current leading models of the ventral visual stream (see Schrimpf et al., 2018 and
accompanying website for the current leading models; Cadena et al., 2019; Kubilius et
al., 2019; Yamins et al., 2014), directly align at the level of V1 single neurons. Contrary
to prior approaches that used fitting high dimensional feature spaces in the models to the
responses of relatively small neuronal populations (Cadena et al., 2019) we here tested
the even stronger hypothesis that single neurons in variants of the existing hierarchical
ventral stream models may qualitatively and quantitatively align with single neuron
functional properties in macaque V1 in a one-to-one manner (see Fig. 1, bottom).

To test this hypothesis, we developed a three-step approach for building hundreds of
candidate models of V1 using specific, hierarchical ANNs that are already among the
leading models of the ventral visual stream (Figure 1, top). First, we choose a base model
(Schrimpf et al., 2020) consisting of a hierarchical network architecture and all its synaptic
weights which are typically obtained by standard training on the object classification
ImageNet dataset, though we also used models with their weights optimized differently
(see Methods). Second, since the base model’s input is solely defined by its resolution in
pixels (the model’s input sensors, 224x224 in all the models used) with no connection to
physical quantities, we specified the region of visual space (in degrees) that corresponds
to the model's input and we termed that the field-of-view (FoV). In this study we
considered multiple model FoVs. Relative to models with a smaller FoV, models with a
larger FoV have the same number of input sensors, but each individual sensor integrates
over a larger spatial extent, resulting in a larger combined sampled spatial extent (i.e. a
larger FoV). Third, we assign all the artificial neurons within a specific layer of the
hierarchical model as a candidate model of the macaque V1 neural population. Due to
the convolutional architecture of the neural networks used, each model layer consists of
multiple feature spatial maps and thus each candidate V1 contains w x h x d artificial
neurons (range 10K-3M artificial neurons). To obtain a one-to-one mapping of artificial
neurons to biological neurons, we discard information about each neuron’s spatial
location and feature number and treat it as a putative single neuron in foveal macaque
V1. In other words, for each candidate V1 we randomly sample artificial neurons from this
pool as if we were randomly sampling individual neurons with a recording electrode. We
then quantify the response properties of these individually sampled artificial individual
neurons and compare them with analogous measurements of individual biological V1
neurons from multiple experiments.

In total, we considered: (1) 13 different base models including AlexNet (Krizhevsky,
Sutskever, & Geoffrey E., 2012), VGG (Simonyan & Zisserman, 2015), ResNet (He,
Zhang, Ren, & Sun, 2016), CORnet (Kubilius et al., 2019), and bagnet (Brendel & Bethge,
2019); (2) four different FoVs (between 4 and 10 degrees); and (3) multiple early and
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intermediate layers for each base model. This resulted in 736 candidate V1 models (see
methods for a complete description).

Building a V1 model based on a
hierarchical neural network
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Figure 1. Building V1 models at the level of single neurons using hierarchical neural networks. Top, building a
candidate model of macaque V1 involves three steps: (1) the choice of a base model defined by its architecture and
synaptic weights, (2) the choice of the field-of-view (FoV) in physical units (degrees), and (3) the choice of the
processing stage, i.e. layer, to map to V1. Bottom, the model of V1 based on a hierarchical neural network is a
convolutional layer containing w X h x d neurons, where w, h, and d, are the width, height, and number of features,
respectively. This modeling framework assumes a one-to-one mapping at the level of single neurons, i.e., each artificial
neuron in the model corresponds to a putative biological neuron in macaque foveal V1.

Single artificial neurons in some hierarchical networks have response patterns
that are qualitatively similar to those of single neurons in macaque V1

Over the last several decades, responses of individual neurons in macaque V1 have been
extensively characterized using different types of parametric stimuli such as gratings with
varying phase, orientation, spatial frequency (SF) and size, and naturalistic textures and
noise images (Figure 2B,C). Simple cells show responses strongly modulated by the
phase of gratings while complex cells are invariant to this stimulus property (Skottun et
al., 1991). Furthermore, V1 neurons vary widely in their orientation (De Valois, Yund, et
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al., 1982; Ringach et al., 2002; Peter H Schiller, Finlay, & Volman, 1976) and SF
selectivities (De Valois, Albrecht, et al., 1982; P. H. Schiller et al., 1976) selectivities,
receptive field (RF) sizes, and the degree to which stimuli outside their RFs modulate
their responses (Cavanaugh et al., 2002; H. E. Jones, Grieve, Wang, & Sillito, 2001;
Kapadia, Ito, Gilbert, & Westheimer, 1995; Lamme, 1995; Sceniak, Ringach, Hawken, &
Shapley, 1999). Finally, V1 neurons tend to respond similarly to texture stimuli and noise
images with matching spatially averaged orientation and SF structure (Freeman et al.,
2013; Ziemba et al., 2016). In prior experimental work, these characteristics of neuronal
responses were quantified by calculating response properties (Figure 2C) such as: the
F1/FO0 ratio (ratio of the first harmonic and the DC component of responses to drifting
gratings, also known as phase modulation ratio), preferred orientation and circular
variance (CV; quantifies how selective the responses to different orientations are), peak
SF and SF bandwidth, grating summation field (GSF; size of the stimulus for which the
response is maximized; related to the size of the excitatory component of the RF) and
surround suppression index (SSI, quantifies how much responses are suppressed by
stimuli outside the classical RF), and texture modulation index (TMI, quantifies how much
stronger neurons respond to naturalistic textures versus noise images).

Using the V1 candidate models previously described, we performed a series of in silico
recordings to characterize the responses of their single neurons. After mapping the RFs
of individual model neurons by presenting small gratings at different locations (Figure 2A;
methods), we recorded their visual responses to the presentation of stimuli typically used
to study macaque V1 (Figure 2B,D). We found that single neurons in some V1 candidate
models show responses to visual stimuli that are similar to single neurons in macaque
V1, allowing us to calculate response properties exactly the same way as with
neurophysiology data (Figure 2D). Like in macaque V1, single artificial neurons within the
same V1 model vary widely in their responses. For example, they vary in their selectivity
to phase, orientation and SF of gratings, RF size, and in how their responses are inhibited
by the presence of surrounding stimuli (Figure 2D).

In addition to the intra-model variability, we found that median single neuron response
properties also vary considerably across alternative candidate V1 models. This inter-
model variation is driven by the choice of: base model, field-of-view (FoV), and the layer
(Supplementary Figure 1). Some response properties vary with these V1 model choices
in an intuitive way. For example, a V1 model’s median neuronal RF size (as determined
by the GSF) increases with the layer depth and with the FoV size: V1 candidate models
selected from deep layers in the base model contain neurons that can potentially integrate
input from larger portions of the visual field (relative to more shallow layers), and V1
candidate models with larger FoVs can potentially integrate over larger portions of visual
space as measured in degrees (Supplementary Figure 1). Similarly, a V1 model’'s median
neuronal peak preferred spatial frequency decreases with increasing FoV. On the other
hand, other response properties, which show a strong dependency on the layer depth,
are not particularly affected by the FoV. For some base models, such as ResNet-34,
circular variance increases monotonically with layer depth, which is analogous to a
decrease in the number of orientation selective neurons observed along the primate
ventral stream (Matteucci, Marotti, Riggi, Rosselli, & Zoccolan, 2019). Similarly, texture
modulation index also increases with layer depth which once again is also observed along
the primate ventral stream hierarchy (Freeman et al., 2013; Laskar, Giraldo, & Schwartz,
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2018). An identical trend was observed for surround suppression, a key property of
macaque V1 that is thought to be mediated by lateral and feedback connections (Bair,
Cavanaugh, & Movshon, 2003; Nassi, Lomber, & Born, 2013; Nurminen, Merlin,
Bijanzadeh, Federer, & Angelucci, 2018). Surprisingly, we observe that even in purely
feedforward hierarchical neural network candidate V1 models, single artificial neurons
also exhibit suppression of responses from surrounding stimuli (Figure 2D and

Supplementary Figure 1).
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Figure 2. Single neurons in certain V1 models show responses similar to those of neurons in macaque V1. A.
Field-of-view of example V1 model with 8 deg. Red circle shows center of gaze. Dashed circle represents the location
of a stimulus with a circular aperture (2deg diameter). Colored contours show the receptive field locations of three
example neurons aligned with the stimulus center. B. Example stimuli used in the in-silico neurophysiology
characterization of single neurons in V1. From left to right: gratings with varying phase, gratings with varying orientation,
gratings with varying spatial frequency, gratings with varying size, and naturalistic texture and noise images. C.
Example responses of neurons in macaque V1. From left to right: phase, orientation, spatial frequency, and size tuning
curves, and responses to naturalistic textures (dark tone) and spectrally matched noise images (light tone). Plots are
vertically aligned with the corresponding example stimuli on B. Responses are taken from published studies and each
plot corresponds to a different neuron. Values of example single neuron properties calculated from these responses
are shown at the top of each corresponding plot (phase modulation ratio, circular variance, spatial-frequency bandwidth,
surround suppression index, and texture modulation index). Arrows indicate the preferred orientation, peak spatial
frequency, and grating summation field in their respective plots. D. Similar to C but for three example neurons from a
neural network V1 model (Layer2.1 of ResNet34 with a FoV of 8deg). The plots on each row correspond to the same
neuron with the receptive field shown in A with matching color. Within the same layer of the hierarchical neural network
model, single neurons exhibit very different response characteristics. The neuron in the top row has a simple-cell like
response with a strong phase modulation while the other two neurons show more complex-like responses. All nheurons
are strongly orientation and spatial-frequency selective but with different preferences and bandwidths. Neurons show
different amounts of surround suppression and texture modulation.
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These results thus far qualitatively demonstrate that despite their much simpler
architecture when compared to cortical circuits, single artificial neurons in certain
hierarchical neural network models respond to visual stimuli similarly to single macaque
V1 neurons. Furthermore, response properties of single artificial neurons in these
hierarchical models depend on different aspects of the model commitment to biology (e.g.
assumed field-of-view), and, in some cases, in unexpected ways.

Distributions of single neuron properties in specific processing stages of certain
hierarchical neural networks quantitatively approximate those in macaque V1

Because single artificial neurons in some of the V1 candidate models respond similarly
to single neurons in macaque V1, we next sought to quantify the responses of these
individual artificial neurons and compare them to those of many individual neurons in
macaque V1. For example, it is possible that some V1 neuronal subpopulations are
completely absent in some candidate V1 models or that the V1 model neuronal
populations are biased towards some response types. Specifically, we compared the
distributions of response properties in the V1 models with the respective empirical
distributions measured in macaque V1. We focused on 22 single neuron response
properties that we extracted from published V1 studies (Supplementary Table 1;
Cavanaugh et al., 2002; De Valois, Albrecht, et al., 1982; De Valois, Yund, et al., 1982;
Freeman et al., 2013; Ringach et al., 2002; P. H. Schiller et al., 1976; Ziemba et al., 2016)
and replicated the corresponding experiments in each V1 candidate model (Figure 3A
and Supplementary Figure 2). Each in silico experiment consisted of estimating an
empirical model neuronal distribution of a random sample of artificial V1 neurons with the
the empirical biological distribution of the same size (presumed random) sample reported
in the corresponding neurophysiological experiment. This procedure was then repeated
1,000 times to estimate the uncertainty with respect to candidate V1 model neuronal
sampling (methods). We considered the distributions of the following response properties:
preferred orientation, circular variance (CV), orientation selectivity, orientation half-
bandwidth, ratio of orthogonal and preferred responses (Orth./Pref.), ratio between CV
and orientation half-bandwidth, difference between the Orth./Pref. and CV, peak SF, SF
selectivity, SF bandwidth, grating summation field, surround diameter, surround
suppression index, texture modulation index, absolute texture modulation index, F1/FO
ratio, texture selectivity, texture sparseness, texture variance ratio, maximum DC
response, maximum texture response, and maximum noise response.

We found that certain V1 models had distributions of response properties that closely
approximated those reported in macaque V1 not only in their range but also their
distributional shape (Figure 3A and Supplementary Figure 2). We defined a normalized
distribution similarity score as (1- KS.”%)/(1- KS,57F), where KS.* is the ceiled
(see methods) Kolmogorov-Smirnov (KS) distance between the empirical model
distribution and the empirical biological distribution and KS.*~* is an estimate of the
expected ceiled KS distance between different biology experiments. A low score means
that the model distribution does not match the biological distribution while a score of 1
means that the model distribution is indistinguishable from the biological distribution
considering experimental variability. We note that the similarity score ceiling is not limited
by the choice of model. Instead, it depends on, and is thus limited by the biological sample
size and number of bins of the empirical biological distribution: smaller number of neurons
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and bins tend to lead to lower ceilings (i.e. more uncertainty about the empirical biological
distribution) and therefore decrease the range of scores for different models. To quantify
how well a V1 model approximates macaque V1 at the single neuron level according to
these response properties, we pooled the property scores in seven groups (Figure 3B):
orientation tuning, spatial frequency tuning, receptive-field size, surround modulation,
texture modulation, response selectivity, and response magnitude. Then, we averaged
the scores within each group, and, finally, averaged the seven group scores, obtaining a
V1 composite properties score (Supplementary Figure 3). This composite score serves
as a summary of the match to the measures that were chosen for this study, weighted as
outlined above.

Since the V1 composite properties score depends on the property distributions of the
model’s individual V1 neurons, the composite score also depends on all of the factors
outlined in the previous section: the choices of base model, FoV, and base model layer
(Supplementary Figure 3). For V1 models derived from the same base model and FoV,
similarity scores vary considerably with the choice of model layer to assign as V1
(Supplementary Figure 3A). In particular, the scores for different V1 properties show
interesting dependencies on these choices that motivates future work: for example,
receptive field size similarity is optimal for a subset of FoV and model layer combinations
(as observed by a narrow band in Supplementary Figure 3B). While some V1 candidate
models achieved very high scores for multiple response properties, no candidate V1
model tested here exactly matched macaque V1 in all the response properties (Figure 3B
shows scores for the V1 model with highest V1 composite properties score).

In summary, we found that single artificial neurons of certain candidate V1 models
contained within hierarchical neural network models exhibit responses similar to those of
single neurons in macaque V1 and closely approximate V1 when considering distributions
over many individual neurons. In spite of this, no model in the large pool of candidate V1
models analyzed (n=736) fully matched the macaque V1 along all the response
properties.
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Figure 3. Distributions of single neuron response properties in a candidate V1 model approximately match
those in macaque V1. A. Distributions of nine example response properties in macaque V1 (from published studies,
black line) and a V1 model (ResNet34-FoV8-Layer2.1, same as in Figure 1). Model distributions are obtained by
performing in silico experiments, thick blue line is the mean over 1,000 experiments and the shaded region is the SD.
All the 22 response property distributions are shown in Supplementary Figure 2. Normalized similarity scores are shown
in each plot at the top right corner. B. Similarity scores for the 22 single neuron response properties for the same V1
model (error bars represent mean and SD). Arrows indicate the response properties shown in A. Response properties
are displayed in seven groups: orientation tuning, spatial frequency tuning, receptive-field size, surround modulation,
texture modulation, response selectivity, and response magnitude.

Different response property similarity scores provide complementary information
about a model’s similarity to V1

Why is no single model able to match the distributions of all V1 response properties? One
hypothesis is that there are some response properties that no model in the family of
feedforward, ImageNet-trained ANN models considered here is able to approximate. An
alternative hypothesis is that all of the biological V1 properties measured thus far are
explained by this model family, but that they are found in different model layers rather
than being expressed in a single population of putative V1 neurons. Distinguishing
between these alternatives could guide future model architectural choices.

To disambiguate these two hypotheses, we first looked at the distributions of all the
property scores over all the V1 models (Figure 4A). The distributions of scores for different
properties varied considerably in their ranges: some properties, such as the preferred
orientation and maximum DC responses had very high scores for most models, while
others, such as the grating summation field and texture variance ratio, had broad
distributions of scores. This is also illustrated by the large spread of score medians over
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the different properties, ranging from 0.41 for the surround diameter to 0.96 for the
preferred orientation. Still, despite the large differences between the distributions of
scores, for most properties, at least one of the candidate V1 models had a very high
score. In particular, only three properties had a maximum score lower than 0.95 (surround
suppression index, texture modulation index, and texture sparseness), and none lower
than 0.9. In sum, the family of ANN-derived multi-stage models we considered is already
capable of matching all of the 22 biological V1 response properties studied here — but no
single model alone captures all of the response properties.

We then looked at the correlations between different property scores across all V1
candidate models. Correlations between scores of different properties showed great
variability (Figure 4B). We found that some pairs of properties such as the ratio of
orthogonal and preferred responses and circular variance were highly correlated over V1
models — models that tend to match one property also tend to match the other (Figure 4B
top left, r=0.87, p-value=9.3E-232). Scores of other pairs such as the surround
suppression index and spatial-frequency bandwidth are not correlated at all (Figure 4B
top middle, r=0.04, p-value=0.29). Most interestingly, we found that some pairs of
properties scores were anti-correlated (Figure 4B top right), e.g. grating summation field
and absolute texture modulation index (r=-0.59, p-value=3.9E-70). That is, V1 models
that capture one property, tend to do worse on the other property. We also found that
scores of properties that belong to the same group, i.e., that relate to similarly named
phenomena, were significantly more correlated than scores of properties of different
groups (rsame= 0.33+0.28 vs rgifrerent= 0.12+0.23; t-test, t=4.04, p-value=2.2E-4). When
considering all the properties, scores were on average weakly correlated (Figure 4C).

Next, we analyzed whether the property scores could be explained by simple model
parameters. As previously mentioned, within the same base model, some property scores
depend on model parameters such as the FoV and layer depth (Supplementary Figure
3). When we consider all the models, we observed some interesting relationships
between property scores and model parameters that were not always aligned
(Supplementary Figure 4A). For example, both the receptive field size and the texture
modulation property scores vary with the model’s theoretical receptive field and layer
depth but were optimal for different values (Supplementary Figure 4A). We then
performed a sequential ANOVA to identify which model parameters contributed the most
to explain variance in the property scores and quantify how much of the variance in scores
can be attributed to the model parameters (Supplementary Figure 4B; model parameters
considered were the model total depth, FoV, layer depth, theoretical receptive field, layer
type, and number of neurons). Theoretical receptive field was the most important model
parameter in explaining the variance in scores of four property groups (orientation tuning,
spatial frequency tuning, receptive field size, and response magnitude) as well as in the
V1 composite properties. On the other hand, layer depth was the model parameter that
explained the most variance for surround modulation, texture modulation and response
selectivity properties. In total, the six model parameters accounted for 67.3% of the
variance in the V1 composite properties scores.

These results show that within the set of V1 candidate models analyzed here, there is at

least one model that approximates each of the macaque V1 property distributions
reasonably well (score over 0.9). However, since scores of different properties are on
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average weakly correlated and some pairs of property scores are, in fact, anti-correlated,
no model was able to simultaneously match all of the V1 empirical distributions. This
suggests that different properties reflect different aspects of model similarity to V1, which
are not necessarily aligned, and that there may exist constraints in the model architecture
(e.g. feedforward only except for the CORnet-S architecture), limiting the ability to fully
approximate biological V1. Finally, a large fraction of the variance in the scores can be
explained by simple model parameters such as the theoretical receptive field and layer

depth.
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Figure 4. Single neuron response property similarity scores are on average weakly correlated across V1
candidate models. A. Violin plots show the distributions of similarity scores over 736 ANN V1 models for the 22 single
neuron response properties. Thick blue lines indicate the median of each distribution and the red dots the maximum.
There is significant variability in the individual property scores across models. B. Top, scatter plots comparing three
pairs of different response property similarity scores. Left, similarity scores of circular variance and ratio between
orthogonal and preferred orientation responses are positively correlated. Middle, similarity scores of surround
suppression index and spatial frequency bandwidth are not correlated. Right, similarity scores of absolute texture
modulation index and grating summation field are negatively correlated. Bottom, pair-wise correlations between the 22
single neuron response property scores grouped in the seven groups (correlations are calculated across all models).
Lines connect to the corresponding scatter plots on top. C. Mean pair-wise correlations for each response property with
all the others (errorbars represent mean and SD). On average single neuron response property scores are weakly
correlated.

Single neuron property similarity scores correlate with similarity scores derived
from standard neural predictivity metrics

Conventional model evaluation methods deployed over the last several years fit a map
between model neurons and individual biological neurons and then score the ability of the
model to predict the responses of each mapped biological neuron to new (held out) stimuli
such as complex images. How do the V1 property scores described here compare to
these conventional methods that evaluate the model's similarity to V1 (Cadena et al.,
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2019; Dapello et al., 2020; Schrimpf et al., 2018)? To address this question, we calculated
for each V1 candidate model how well it explained stimulus driven responses of V1
neurons using a conventional neural predictivity methodology based on the partial least
square regression (PLS) model mapping method (Helland, 2006; Schrimpf et al., 2018;
Yamins et al., 2014). We used a neuronal dataset containing extracellular recordings from
102 single-units while presenting naturalistic textures and noise images which had been
originally published in a study analyzing texture modulation in macaque V1 and V2
(Freeman et al., 2013). The dataset consisted of stimulus-evoked responses to 315
images (20 repetitions and averaged over 150ms). For each model, biological neurons
were mapped to the V1 model neuronal population linearly using a PLS regression of the
model with 25 components. Model predictions were evaluated using a 10-fold cross-
validation strategy. V1 explained variance was then normalized by the neuronal internal
consistency to arrive at the specific V1 explained variance benchmark that we consider
next.

Across all V1 models, we found that the neuronal explained variance benchmark was
strongly correlated with the V1 composite properties score outlined above (Figure 5A,
r=0.61, p-value=1.8e-76). On average, individual property groups were also correlated
with the V1 explained variance benchmark, though there was considerable variability
across groups (Figure 5B,C; r=0.31+£0.09, mean and SD). Increasing the number of
property groups averaged gradually improves the alignment of the V1 component
property scores with explained variance under this dataset (Figure 5B). This correlation
was not exclusive to V1 explained variance using PLS regression, since it was present
when using other neural predictivity methods on this same neural dataset. In particular,
response property distribution similarity scores were also correlated with explained
variance using single neuron mapping (choosing the single neuron in the model that best
predicts a single macaque V1 neuron; r=0.50, p-value=9.4E-49) (Arend et al., 2018), and
with representational similarity metrics such as representational dissimilarity matrix
(RDM; r=0.62, p-value=6.9E-79) (Kriegeskorte et al., 2008), and center kernel alignment
(CKA; r=0.23, p-value=5.7E-10) (Kornblith, Norouzi, Lee, & Hinton, 2019) that do not
involve fitting model features. Considering all the different metrics tested, we found that
spatial frequency tuning and response selectivity were the V1 component property scores
that were most correlated with V1 explained variance and representational similarity on
this particular V1 dataset (Figure 5C). Finally, the alignment between the V1 composite
properties scores and the V1 explained variance was not an artifact of the way that the
individual property scores were first averaged in groups (Supplementary Figure 5). When
directly calculating the mean of the 22 individual property scores, the correlation with V1
explained variance persisted (r=0.56, p-value=2.7E-62), even when removing the seven
response properties that overlap with the neuronal dataset used for determining the
explained variance (r=0.42, p-value=1.0E-32, methods).

In sum, we found that the V1 property scores are partially aligned with more conventional
methods for evaluating a candidate V1 model’s similarity to V1. While this result is not
entirely surprising, it serves as an important sanity check, showing that there is signal in
the response property distributions similarity scores for benchmarking models in how well
they explain V1. In addition, this result can be interpreted as at least a partial validation
of regression-based methods for evaluating neural predictivity of ANN-based models, in
spite of their reliance on a fitting step (see Discussion).
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Figure 5. Single neuron response property similarity scores correlate with the V1 model’s ability to predict
neuronal responses using standard measures (cross-validated explained variance and representational
similarity analysis). A. Comparison of model’s ability to explain variance in macaque V1 responses in a neuronal
dataset (Freeman, Ziemba et al 2013) using PLS regression and V1 composite properties scores (across 736 V1
models). Model’s cross-validated explained variance is positively correlated with the V1 composite properties scores.
B. Averaging over an increasingly higher number of property group scores improves correlation with V1 explained
variance. C. Top, correlation of V1 property groups and composite properties scores with different V1 neural predictivity
metrics (explained variance with PLS regression and single neuron mapping, and representational similarity analysis
with RDM and CKA). Open black circle indicates the correlation shown in A. Bottom, same as above but showing the
mean and SD across the different explained variance metrics.

Hierarchical models that have more brain-like V1 stages are more aligned with
primate object recognition behavior

While accurately modeling primate V1 is an important goal in and of itself, our larger goal
is to do this in the service of multi-scale, multi-stage models of the ventral visual stream
and visually-driven behaviors. Thus, we next asked: do multi-stage artificial neural
network models that better align with biological V1 also tend to better align with biological
behavior? Building on prior work, we here focused on primate core object recognition
behavior. Specifically, when assessed via batteries of core object recognition tasks,
humans and monkeys show highly aligned difficulty and confusion patterns at the object-
and image-level (Rajalingham et al., 2015; Rajalingham et al., 2018). That is, humans
and monkeys not only show similar levels of accuracy in a visual categorization task, but
they also reliably show the same patterns of successes and failures when scored at the
grain of object categories (pooling over subjects and images of the same category) or at
the grain of individual images (pooling over subjects), and those reliable patterns can thus
be used to assess the biological fidelity of any image-computable model at the behavioral
level. Indeed, while some hierarchical neural network models accurately match typical
primate patterns of object confusion, they do not yet match those patterns at the image-
level (Rajalingham et al., 2018) and some models match better than others (Schrimpf et
al., 2018 and accompanying website). Thus, we here asked if hierarchical models with
intermediate layers that better match V1, i.e. more brain-like V1-layers, also better match
human (and monkey) core object recognition patterns of behavior using these same prior
benchmarks.

Each hierarchical model with a specific FoV was here taken as a candidate multi-scale,

multi-stage neural network model of the ventral stream and its resultant behavior. For
each of these candidate ventral stream models (n=52, 13 base models with 4 different
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FoVs), we chose the layer that best approximated macaque V1 according to the layer’'s
single neuron composite properties score (above). We then performed psychophysical
experiments on each model to evaluate how well the overall mode