
 

 1 

Title 
 
Multi-scale hierarchical neural network models that bridge from single neurons in the 
primate primary visual cortex to object recognition behavior  
 
 

Authors 
 
Tiago Marques1,2*, Martin Schrimpf1,2 and James J. DiCarlo1,2 

 
1. McGovern Institute for Brain Research and Department of Brain and Cognitive 

Sciences, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA 
2. Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, 

Cambridge, MA, 01239, USA 
 

Correspondence 
 

*Correspondence should be addressed to Tiago Marques. 
 

Contact Info 
 
McGovern Institute for Brain Research 
Massachusetts Institute of Technology, 
77 Massachusetts Institute of Technology, 46-6161, 
Cambridge, MA 02139 
E-mail: tmarques@mit.edu 
 
 
Highlights 

• Image-computable hierarchical neural network models can be naturally extended 
to create hierarchical “brain models” that allow direct comparison with biological 
neural networks at multiple scales – from single neurons, to population of 
neurons, to behavior. 

• Single neurons in some of these hierarchical brain models are functionally similar 
to single neurons in macaque primate visual cortex (V1)  

• Some hierarchical brain models have processing stages in which the entire 
distribution of artificial neuron properties closely matches the biological 
distributions of those same properties in macaque V1   

• Hierarchical brain models whose V1 processing stages better match the macaque 
V1 stage also tend to be more aligned with human object recognition behavior at 
their output stage 
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Summary  
 
Primate visual object recognition relies on the representations in cortical areas at the top 
of the ventral stream that are computed by a complex, hierarchical network of neural 
populations. While recent work has created reasonably accurate image-computable 
hierarchical neural network models of those neural stages, those models do not yet bridge 
between the properties of individual neurons and the overall emergent behavior of the 
ventral stream. One reason we cannot yet do this is that individual artificial neurons in 
multi-stage models have not been shown to be functionally similar to individual biological 
neurons. Here, we took an important first step by building and evaluating hundreds of 
hierarchical neural network models in how well their artificial single neurons approximate 
macaque primary visual cortical (V1) neurons. We found that single neurons in certain 
models are surprisingly similar to their biological counterparts and that the distributions of 
single neuron properties, such as those related to orientation and spatial frequency 
tuning, approximately match those in macaque V1. Critically, we observed that 
hierarchical models with V1 stages that better match macaque V1 at the single neuron 
level are also more aligned with human object recognition behavior. Finally, we show that 
an optimized classical neuroscientific model of V1 is more functionally similar to primate 
V1 than all of the tested multi-stage models, suggesting room for further model 
improvements with tangible payoffs in closer alignment to human behavior. These results 
provide the first multi-stage, multi-scale models that allow our field to ask precisely how 
the specific properties of individual V1 neurons relate to recognition behavior. 
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Introduction 
 
The primate ventral visual stream, a complex network of hierarchically-organized cortical 
areas, has been shown to support visually-guided behaviors (Felleman & Van Essen, 
1991; Mishkin, Ungerleider, & Macko, 1983). One such particularly important behavior is 
core object recognition -- i.e., the ability to rapidly (~200ms) identify objects in the central 
visual field (DiCarlo, Zoccolan, & Rust, 2012; Fabre-Thorpe, Richard, & Thorpe, 1998). 
Understanding the computations and neuronal mechanisms underlying this challenging 
visual behavior has been a major goal in systems neuroscience (DiCarlo & Cox, 2007). 
A critical step towards this goal is the development of accurate, multi-stage, multi-scale 
models that can bridge between the properties of individual cells and phenomena at each 
of the ventral stream processing stages to the supported visually-guided behaviors, such 
as core object recognition. These multi-stage, multi-scale models would, for example, 
allow us to begin to understand how functional properties at the cellular level, where we 
can most precisely measure and manipulate the system, give rise to visually intelligent 
behavior.  Successful multi-scale models must be simultaneously accurate at both the 
individual neuron level, at the neuronal population level, and at the behavioral level.  The 
work presented here is one step toward that greater goal.  
 
Prior work has shown that hierarchical networks of artificial neural populations can, when 
properly connected, quite closely approximate object recognition behavioral patterns that 
are driven by the ventral visual stream, a similarly organized deep hierarchy of biological 
neurons (Rajalingham et al., 2018; Schrimpf et al., 2018). In addition, this same model 
family has achieved unparalleled success in explaining the response patterns of individual 
neurons along the ventral stream areas (Bashivan, Kar, & DiCarlo, 2019; Cadena et al., 
2019; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019; Schrimpf et al., 2018; Yamins et al., 
2014).   Thus, we and others have proposed that these models may serve as multi-stage, 
multi-scale models of the mechanisms of object recognition – causally bridging from 
single neuron responses at multiple stages of the ventral stream to the observed 
recognition behavioral patterns (Kriegeskorte, 2015; Richards et al., 2019; Schrimpf et 
al., 2020; Yamins & DiCarlo, 2016). However, this model to brain congruency has not 
been without criticism. In particular, these models often contain critical unspecified 
parameters such as: the mapping between their input and a physical field-of-view, and 
the commitment of specific model stages to specific brain regions. In addition, when using 
these models to predict neuronal responses, researchers (including some of the current 
authors) have relied on fitting methods that linearly combine thousands of features, or 
model neurons, to explain the responses of individual biological neurons (Saxe, Nelli, & 
Summerfield, 2021; Serre, 2019). The lack of a pre-specified model-to-brain mapping 
means that hierarchical neural networks cannot be yet considered to be accurate multi-
scale models of the neural mechanisms of object recognition. For example, the 
congruency tests typically do not require that the individual artificial single neurons are 
aligned with individual biological neurons within the proposed congruent cortical area(s).  
 
To address this limitation, we here hypothesized that these hierarchical models of artificial 
neurons might be modified to become accurate, multi-scale models of the neural 
mechanisms of visual object recognition. To investigate this, we first created a range of 
new candidate “brain models” by using existing base model architectures and exploring 
two key model parameters that are biologically critical: model field-of-view and model 
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processing stage proposed to correspond to primate V1.  We then explicitly mapped 
single artificial neurons in each of these hierarchical models to single biological neurons 
in the primate primary visual cortex (area V1) in a one-to-one mapping commitment. 
Specifically, we avoided the usual model-to-brain fitting procedure and we instead sought 
to test the hypothesis that single neurons in a candidate model layer (i.e. a specific 
processing stage of a candidate hierarchical model) correspond to single neurons in the 
macaque V1, and that the entire artificial neural population at that same model layer 
corresponds to the entire V1 neuronal population.   That is, we asked if any models were 
explicitly well matched to primate V1 at both the single neuron level and the population 
level.  We were encouraged to pursue this approach to modeling V1 in part because of 
prior work demonstrating that one such hierarchical network model contains neural 
representations which, when linearly combined using a regression approach, can 
reasonably accurately predict the response patterns of V1 (Cadena et al., 2019).   
 
To compare models with primate V1 in this way, we performed in-silico neurophysiological 
experiments in hundreds of these V1 candidate brain models to measure 22 single neuron 
response properties that have been previously quantified, such as those related to 
orientation and spatial frequency tuning and surround and texture modulation, and 
compared their distributions to those in macaque V1 from available published studies 
(Cavanaugh, Bair, & Movshon, 2002; De Valois, Albrecht, & Thorell, 1982; De Valois, 
Yund, & Hepler, 1982; Freeman, Ziemba, Heeger, Simoncelli, & Movshon, 2013; 
Ringach, Shapley, & Hawken, 2002; P. H. Schiller, Finlay, & Volman, 1976; Ziemba, 
Freeman, Movshon, & Simoncelli, 2016). 
 
We found that randomly-sampled single artificial neurons in the V1-layers of certain 
hierarchical brain models have response characteristics that are surprisingly similar to 
those of single neurons in macaque V1. We also found that the population distributions 
of response properties also very closely match the biological distributions of those same 
response properties. Since all of these hierarchical models were multi-stage candidate 
models of the entire ventral stream and its supported object recognition behavior, we then 
asked:  Do ventral stream models that better align with biological V1 at their proposed V1 
processing stage also better align with the behavioral patterns of human core object 
recognition? Indeed, we found that hierarchical models with a V1 stage that better 
matched macaque V1, had behavioral “output” that was more closely matched to human 
behavior. Thus, this work describes, for the first time, image-computable, multi-stage 
models of the primate visual ventral stream that bridge from single neurons in V1, the first 
visual cortical area, all the way to object recognition behavior.  
 
Importantly however, we found that no evaluated ventral stream model was able to 
perfectly account for all the V1 response properties and all tested models underperformed 
when compared to an optimized classical neuroscientific model of V1.  This shows that 
the causal, multi-scale models of the ventral stream developed here can be further 
improved, and argues that improvements -- even at just the V1 processing stage -- will 
lead to better causal models of human object recognition behavior. 
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Results 
 
Our overarching goal is to build accurate, multi-stage, multi-scale models of how the 
primate ventral visual stream supports object recognition behaviors.  By definition, such 
models must be accurate at the level of single neurons and the level of populations of 
such neurons (multi-scale), as well as at all ventral stream stages and ventral stream 
behaviors (multi-stage). In this work, we focus on primate visual area V1 and we evaluate 
how well specific hierarchical artificial neural networks (ANNs), some of which are the 
current leading models of the ventral visual stream (see Schrimpf et al., 2018 and 
accompanying website for the current leading models; Cadena et al., 2019; Kubilius et 
al., 2019; Yamins et al., 2014), directly align at the level of V1 single neurons.  Contrary 
to prior approaches that used fitting high dimensional feature spaces in the models to the 
responses of relatively small neuronal populations (Cadena et al., 2019) we here tested 
the even stronger hypothesis that single neurons in variants of the existing hierarchical 
ventral stream models may qualitatively and quantitatively align with single neuron 
functional properties in macaque V1 in a one-to-one manner (see Fig. 1, bottom).  
 
To test this hypothesis, we developed a three-step approach for building hundreds of 
candidate models of V1 using specific, hierarchical ANNs that are already among the 
leading models of the ventral visual stream (Figure 1, top). First, we choose a base model 
(Schrimpf et al., 2020) consisting of a hierarchical network architecture and all its synaptic 
weights which are typically obtained by standard training on the object classification 
ImageNet dataset, though we also used models with their weights optimized differently 
(see Methods). Second, since the base model’s input is solely defined by its resolution in 
pixels (the model’s input sensors, 224x224 in all the models used) with no connection to 
physical quantities, we specified the region of visual space (in degrees) that corresponds 
to the model’s input and we termed that the field-of-view (FoV). In this study we 
considered multiple model FoVs. Relative to models with a smaller FoV, models with a 
larger FoV have the same number of input sensors, but each individual sensor integrates 
over a larger spatial extent, resulting in a larger combined sampled spatial extent (i.e. a 
larger FoV). Third, we assign all the artificial neurons within a specific layer of the 
hierarchical model as a candidate model of the macaque V1 neural population. Due to 
the convolutional architecture of the neural networks used, each model layer consists of 
multiple feature spatial maps and thus each candidate V1 contains 𝑤 × ℎ × 𝑑 artificial 
neurons (range 10K-3M artificial neurons). To obtain a one-to-one mapping of artificial 
neurons to biological neurons, we discard information about each neuron’s spatial 
location and feature number and treat it as a putative single neuron in foveal macaque 
V1. In other words, for each candidate V1 we randomly sample artificial neurons from this 
pool as if we were randomly sampling individual neurons with a recording electrode. We 
then quantify the response properties of these individually sampled artificial individual 
neurons and compare them with analogous measurements of individual biological V1 
neurons from multiple experiments. 
 
In total, we considered: (1) 13 different base models including AlexNet (Krizhevsky, 
Sutskever, & Geoffrey E., 2012), VGG (Simonyan & Zisserman, 2015), ResNet (He, 
Zhang, Ren, & Sun, 2016), CORnet (Kubilius et al., 2019), and bagnet (Brendel & Bethge, 
2019); (2) four different FoVs (between 4 and 10 degrees); and (3) multiple early and 
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intermediate layers for each base model. This resulted in 736 candidate V1 models (see 
methods for a complete description).  
 

 
Figure 1. Building V1 models at the level of single neurons using hierarchical neural networks. Top, building a 
candidate model of macaque V1 involves three steps: (1) the choice of a base model defined by its architecture and 
synaptic weights, (2) the choice of the field-of-view (FoV) in physical units (degrees), and (3) the choice of the 
processing stage, i.e. layer, to map to V1. Bottom, the model of V1 based on a hierarchical neural network is a 
convolutional layer containing 𝑤 × ℎ × 𝑑 neurons, where 𝑤, ℎ, and 𝑑, are the width, height, and number of features, 
respectively. This modeling framework assumes a one-to-one mapping at the level of single neurons, i.e., each artificial 
neuron in the model corresponds to a putative biological neuron in macaque foveal V1. 

 
Single artificial neurons in some hierarchical networks have response patterns 
that are qualitatively similar to those of single neurons in macaque V1  
 
Over the last several decades, responses of individual neurons in macaque V1 have been 
extensively characterized using different types of parametric stimuli such as gratings with 
varying phase, orientation, spatial frequency (SF) and size, and naturalistic textures and 
noise images (Figure 2B,C). Simple cells show responses strongly modulated by the 
phase of gratings while complex cells are invariant to this stimulus property (Skottun et 
al., 1991). Furthermore, V1 neurons vary widely in their orientation (De Valois, Yund, et 
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al., 1982; Ringach et al., 2002; Peter H Schiller, Finlay, & Volman, 1976) and SF 
selectivities (De Valois, Albrecht, et al., 1982; P. H. Schiller et al., 1976) selectivities, 
receptive field (RF) sizes, and the degree to which stimuli outside their RFs modulate 
their responses (Cavanaugh et al., 2002; H. E. Jones, Grieve, Wang, & Sillito, 2001; 
Kapadia, Ito, Gilbert, & Westheimer, 1995; Lamme, 1995; Sceniak, Ringach, Hawken, & 
Shapley, 1999). Finally, V1 neurons tend to respond similarly to texture stimuli and noise 
images with matching spatially averaged orientation and SF structure (Freeman et al., 
2013; Ziemba et al., 2016). In prior experimental work, these characteristics of neuronal 
responses were quantified by calculating response properties (Figure 2C) such as: the 
F1/F0 ratio (ratio of the first harmonic and the DC component of responses to drifting 
gratings, also known as phase modulation ratio), preferred orientation and circular 
variance (CV; quantifies how selective the responses to different orientations are), peak 
SF and SF bandwidth, grating summation field (GSF; size of the stimulus for which the 
response is maximized; related to the size of the excitatory component of the RF) and 
surround suppression index (SSI, quantifies how much responses are suppressed by 
stimuli outside the classical RF), and texture modulation index (TMI, quantifies how much 
stronger neurons respond to naturalistic textures versus noise images). 
 
Using the V1 candidate models previously described, we performed a series of in silico 
recordings to characterize the responses of their single neurons. After mapping the RFs 
of individual model neurons by presenting small gratings at different locations (Figure 2A; 
methods), we recorded their visual responses to the presentation of stimuli typically used 
to study macaque V1 (Figure 2B,D). We found that single neurons in some V1 candidate 
models show responses to visual stimuli that are similar to single neurons in macaque 
V1, allowing us to calculate response properties exactly the same way as with 
neurophysiology data (Figure 2D). Like in macaque V1, single artificial neurons within the 
same V1 model vary widely in their responses.  For example, they vary in their selectivity 
to phase, orientation and SF of gratings, RF size, and in how their responses are inhibited 
by the presence of surrounding stimuli (Figure 2D).  
 
In addition to the intra-model variability, we found that median single neuron response 
properties also vary considerably across alternative candidate V1 models.  This inter-
model variation is driven by the choice of: base model, field-of-view (FoV), and the layer 
(Supplementary Figure 1). Some response properties vary with these V1 model choices 
in an intuitive way. For example, a V1 model’s median neuronal RF size (as determined 
by the GSF) increases with the layer depth and with the FoV size: V1 candidate models 
selected from deep layers in the base model contain neurons that can potentially integrate 
input from larger portions of the visual field (relative to more shallow layers), and V1 
candidate models with larger FoVs can potentially integrate over larger portions of visual 
space as measured in degrees (Supplementary Figure 1). Similarly, a V1 model’s median 
neuronal peak preferred spatial frequency decreases with increasing FoV. On the other 
hand, other response properties, which show a strong dependency on the layer depth, 
are not particularly affected by the FoV. For some base models, such as ResNet-34, 
circular variance increases monotonically with layer depth, which is analogous to a 
decrease in the number of orientation selective neurons observed along the primate 
ventral stream (Matteucci, Marotti, Riggi, Rosselli, & Zoccolan, 2019). Similarly, texture 
modulation index also increases with layer depth which once again is also observed along 
the primate ventral stream hierarchy (Freeman et al., 2013; Laskar, Giraldo, & Schwartz, 
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2018). An identical trend was observed for surround suppression, a key property of 
macaque V1 that is thought to be mediated by lateral and feedback connections (Bair, 
Cavanaugh, & Movshon, 2003; Nassi, Lomber, & Born, 2013; Nurminen, Merlin, 
Bijanzadeh, Federer, & Angelucci, 2018). Surprisingly, we observe that even in purely 
feedforward hierarchical neural network candidate V1 models, single artificial neurons 
also exhibit suppression of responses from surrounding stimuli (Figure 2D and 
Supplementary Figure 1).  
 

 
 
Figure 2. Single neurons in certain V1 models show responses similar to those of neurons in macaque V1. A. 
Field-of-view of example V1 model with 8 deg. Red circle shows center of gaze. Dashed circle represents the location 
of a stimulus with a circular aperture (2deg diameter). Colored contours show the receptive field locations of three 
example neurons aligned with the stimulus center. B. Example stimuli used in the in-silico neurophysiology 
characterization of single neurons in V1. From left to right: gratings with varying phase, gratings with varying orientation, 
gratings with varying spatial frequency, gratings with varying size, and naturalistic texture and noise images.  C. 
Example responses of neurons in macaque V1. From left to right: phase, orientation, spatial frequency, and size tuning 
curves, and responses to naturalistic textures (dark tone) and spectrally matched noise images (light tone). Plots are 
vertically aligned with the corresponding example stimuli on B. Responses are taken from published studies and each 
plot corresponds to a different neuron. Values of example single neuron properties calculated from these responses 
are shown at the top of each corresponding plot (phase modulation ratio, circular variance, spatial-frequency bandwidth, 
surround suppression index, and texture modulation index). Arrows indicate the preferred orientation, peak spatial 
frequency, and grating summation field in their respective plots. D. Similar to C but for three example neurons from a 
neural network V1 model (Layer2.1 of ResNet34 with a FoV of 8deg). The plots on each row correspond to the same 
neuron with the receptive field shown in A with matching color. Within the same layer of the hierarchical neural network 
model, single neurons exhibit very different response characteristics. The neuron in the top row has a simple-cell like 
response with a strong phase modulation while the other two neurons show more complex-like responses. All neurons 
are strongly orientation and spatial-frequency selective but with different preferences and bandwidths. Neurons show 
different amounts of surround suppression and texture modulation.  
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These results thus far qualitatively demonstrate that despite their much simpler 
architecture when compared to cortical circuits, single artificial neurons in certain 
hierarchical neural network models respond to visual stimuli similarly to single macaque 
V1 neurons. Furthermore, response properties of single artificial neurons in these 
hierarchical models depend on different aspects of the model commitment to biology (e.g. 
assumed field-of-view), and, in some cases, in unexpected ways. 
 
Distributions of single neuron properties in specific processing stages of certain 
hierarchical neural networks quantitatively approximate those in macaque V1 
 
Because single artificial neurons in some of the V1 candidate models respond similarly 
to single neurons in macaque V1, we next sought to quantify the responses of these 
individual artificial neurons and compare them to those of many individual neurons in 
macaque V1.  For example, it is possible that some V1 neuronal subpopulations are 
completely absent in some candidate V1 models or that the V1 model neuronal 
populations are biased towards some response types. Specifically, we compared the 
distributions of response properties in the V1 models with the respective empirical 
distributions measured in macaque V1. We focused on 22 single neuron response 
properties that we extracted from published V1 studies (Supplementary Table 1; 
Cavanaugh et al., 2002; De Valois, Albrecht, et al., 1982; De Valois, Yund, et al., 1982; 
Freeman et al., 2013; Ringach et al., 2002; P. H. Schiller et al., 1976; Ziemba et al., 2016) 
and replicated the corresponding experiments in each V1 candidate model (Figure 3A 
and Supplementary Figure 2).  Each in silico experiment consisted of estimating an 
empirical model neuronal distribution of a random sample of artificial V1 neurons with the 
the empirical biological distribution of the same size (presumed random) sample reported 
in the corresponding neurophysiological experiment. This procedure was then repeated 
1,000 times to estimate the uncertainty with respect to candidate V1 model neuronal 
sampling (methods). We considered the distributions of the following response properties: 
preferred orientation, circular variance (CV), orientation selectivity, orientation half-
bandwidth, ratio of orthogonal and preferred responses (Orth./Pref.), ratio between CV 
and orientation half-bandwidth, difference between the Orth./Pref. and CV, peak SF, SF 
selectivity, SF bandwidth, grating summation field, surround diameter, surround 
suppression index, texture modulation index, absolute texture modulation index, F1/F0 
ratio, texture selectivity, texture sparseness, texture variance ratio, maximum DC 
response, maximum texture response, and maximum noise response.  
 
We found that certain V1 models had distributions of response properties that closely 
approximated those reported in macaque V1 not only in their range but also their 
distributional shape (Figure 3A and Supplementary Figure 2). We defined a normalized 
distribution similarity score as (1	–	𝐾𝑆!"#$)/(1	–	𝐾𝑆!$#$), where 𝐾𝑆!"#$ is the ceiled 
(see methods) Kolmogorov-Smirnov (KS) distance between the empirical model 
distribution and the empirical biological distribution and 𝐾𝑆!$#$ is an estimate of the 
expected ceiled KS distance between different biology experiments. A low score means 
that the model distribution does not match the biological distribution while a score of 1 
means that the model distribution is indistinguishable from the biological distribution 
considering experimental variability. We note that the similarity score ceiling is not limited 
by the choice of model. Instead, it depends on, and is thus limited by the biological sample 
size and number of bins of the empirical biological distribution: smaller number of neurons 
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and bins tend to lead to lower ceilings (i.e. more uncertainty about the empirical biological 
distribution) and therefore decrease the range of scores for different models. To quantify 
how well a V1 model approximates macaque V1 at the single neuron level according to 
these response properties, we pooled the property scores in seven groups (Figure 3B): 
orientation tuning, spatial frequency tuning, receptive-field size, surround modulation, 
texture modulation, response selectivity, and response magnitude. Then, we averaged 
the scores within each group, and, finally, averaged the seven group scores, obtaining a 
V1 composite properties score (Supplementary Figure 3).  This composite score serves 
as a summary of the match to the measures that were chosen for this study, weighted as 
outlined above. 
 
Since the V1 composite properties score depends on the property distributions of the 
model’s individual V1 neurons, the composite score also depends on all of the factors 
outlined in the previous section: the choices of base model, FoV, and base model layer 
(Supplementary Figure 3). For V1 models derived from the same base model and FoV, 
similarity scores vary considerably with the choice of model layer to assign as V1 
(Supplementary Figure 3A). In particular, the scores for different V1 properties show 
interesting dependencies on these choices that motivates future work: for example, 
receptive field size similarity is optimal for a subset of FoV and model layer combinations 
(as observed by a narrow band in Supplementary Figure 3B). While some V1 candidate 
models achieved very high scores for multiple response properties, no candidate V1 
model tested here exactly matched macaque V1 in all the response properties (Figure 3B 
shows scores for the V1 model with highest V1 composite properties score).  
 
In summary, we found that single artificial neurons of certain candidate V1 models 
contained within hierarchical neural network models exhibit responses similar to those of 
single neurons in macaque V1 and closely approximate V1 when considering distributions 
over many individual neurons. In spite of this, no model in the large pool of candidate V1 
models analyzed (n=736) fully matched the macaque V1 along all the response 
properties. 
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Figure 3. Distributions of single neuron response properties in a candidate V1 model approximately match 
those in macaque V1. A. Distributions of nine example response properties in macaque V1 (from published studies, 
black line) and a V1 model (ResNet34-FoV8-Layer2.1, same as in Figure 1). Model distributions are obtained by 
performing in silico experiments, thick blue line is the mean over 1,000 experiments and the shaded region is the SD. 
All the 22 response property distributions are shown in Supplementary Figure 2. Normalized similarity scores are shown 
in each plot at the top right corner. B. Similarity scores for the 22 single neuron response properties for the same V1 
model (error bars represent mean and SD). Arrows indicate the response properties shown in A. Response properties 
are displayed in seven groups: orientation tuning, spatial frequency tuning, receptive-field size, surround modulation, 
texture modulation, response selectivity, and response magnitude.  

 
Different response property similarity scores provide complementary information 
about a model’s similarity to V1 
 
Why is no single model able to match the distributions of all V1 response properties? One 
hypothesis is that there are some response properties that no model in the family of 
feedforward, ImageNet-trained ANN models considered here is able to approximate.   An 
alternative hypothesis is that all of the biological V1 properties measured thus far are 
explained by this model family, but that they are found in different model layers rather 
than being expressed in a single population of putative V1 neurons. Distinguishing 
between these alternatives could guide future model architectural choices.    
 
To disambiguate these two hypotheses, we first looked at the distributions of all the 
property scores over all the V1 models (Figure 4A). The distributions of scores for different 
properties varied considerably in their ranges: some properties, such as the preferred 
orientation and maximum DC responses had very high scores for most models, while 
others, such as the grating summation field and texture variance ratio, had broad 
distributions of scores. This is also illustrated by the large spread of score medians over 
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the different properties, ranging from 0.41 for the surround diameter to 0.96 for the 
preferred orientation. Still, despite the large differences between the distributions of 
scores, for most properties, at least one of the candidate V1 models had a very high 
score. In particular, only three properties had a maximum score lower than 0.95 (surround 
suppression index, texture modulation index, and texture sparseness), and none lower 
than 0.9. In sum, the family of ANN-derived multi-stage models we considered is already 
capable of matching all of the 22 biological V1 response properties studied here – but no 
single model alone captures all of the response properties.  
 
We then looked at the correlations between different property scores across all V1 
candidate models. Correlations between scores of different properties showed great 
variability (Figure 4B). We found that some pairs of properties such as the ratio of 
orthogonal and preferred responses and circular variance were highly correlated over V1 
models – models that tend to match one property also tend to match the other (Figure 4B 
top left, r=0.87, p-value=9.3E-232). Scores of other pairs such as the surround 
suppression index and spatial-frequency bandwidth are not correlated at all (Figure 4B 
top middle, r=0.04, p-value=0.29). Most interestingly, we found that some pairs of 
properties scores were anti-correlated (Figure 4B top right), e.g. grating summation field 
and absolute texture modulation index (r=-0.59, p-value=3.9E-70). That is, V1 models 
that capture one property, tend to do worse on the other property.  We also found that 
scores of properties that belong to the same group, i.e., that relate to similarly named 
phenomena, were significantly more correlated than scores of properties of different 
groups (rsame= 0.33±0.28 vs rdifferent= 0.12±0.23; t-test, t=4.04, p-value=2.2E-4). When 
considering all the properties, scores were on average weakly correlated (Figure 4C). 
 
Next, we analyzed whether the property scores could be explained by simple model 
parameters. As previously mentioned, within the same base model, some property scores 
depend on model parameters such as the FoV and layer depth (Supplementary Figure 
3). When we consider all the models, we observed some interesting relationships 
between property scores and model parameters that were not always aligned 
(Supplementary Figure 4A). For example, both the receptive field size and the texture 
modulation property scores vary with the model’s theoretical receptive field and layer 
depth but were optimal for different values (Supplementary Figure 4A). We then 
performed a sequential ANOVA to identify which model parameters contributed the most 
to explain variance in the property scores and quantify how much of the variance in scores 
can be attributed to the model parameters (Supplementary Figure 4B; model parameters 
considered were the model total depth, FoV, layer depth, theoretical receptive field, layer 
type, and number of neurons). Theoretical receptive field was the most important model 
parameter in explaining the variance in scores of four property groups (orientation tuning, 
spatial frequency tuning, receptive field size, and response magnitude) as well as in the 
V1 composite properties. On the other hand, layer depth was the model parameter that 
explained the most variance for surround modulation, texture modulation and response 
selectivity properties. In total, the six model parameters accounted for 67.3% of the 
variance in the V1 composite properties scores. 
 
These results show that within the set of V1 candidate models analyzed here, there is at 
least one model that approximates each of the macaque V1 property distributions 
reasonably well (score over 0.9). However, since scores of different properties are on 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.03.01.433495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433495
http://creativecommons.org/licenses/by/4.0/


 

 13 

average weakly correlated and some pairs of property scores are, in fact, anti-correlated, 
no model was able to simultaneously match all of the V1 empirical distributions. This 
suggests that different properties reflect different aspects of model similarity to V1, which 
are not necessarily aligned, and that there may exist constraints in the model architecture 
(e.g. feedforward only except for the CORnet-S architecture), limiting the ability to fully 
approximate biological V1. Finally, a large fraction of the variance in the scores can be 
explained by simple model parameters such as the theoretical receptive field and layer 
depth.  
 
 

 
 
Figure 4. Single neuron response property similarity scores are on average weakly correlated across V1 
candidate models. A. Violin plots show the distributions of similarity scores over 736 ANN V1 models for the 22 single 
neuron response properties. Thick blue lines indicate the median of each distribution and the red dots the maximum. 
There is significant variability in the individual property scores across models. B. Top, scatter plots comparing three 
pairs of different response property similarity scores. Left, similarity scores of circular variance and ratio between 
orthogonal and preferred orientation responses are positively correlated. Middle, similarity scores of surround 
suppression index and spatial frequency bandwidth are not correlated. Right, similarity scores of absolute texture 
modulation index and grating summation field are negatively correlated. Bottom, pair-wise correlations between the 22 
single neuron response property scores grouped in the seven groups (correlations are calculated across all models). 
Lines connect to the corresponding scatter plots on top. C. Mean pair-wise correlations for each response property with 
all the others (errorbars represent mean and SD). On average single neuron response property scores are weakly 
correlated.  

 
Single neuron property similarity scores correlate with similarity scores derived 
from standard neural predictivity metrics 
 
Conventional model evaluation methods deployed over the last several years fit a map 
between model neurons and individual biological neurons and then score the ability of the 
model to predict the responses of each mapped biological neuron to new (held out) stimuli 
such as complex images. How do the V1 property scores described here compare to 
these conventional methods that evaluate the model’s similarity to V1 (Cadena et al., 
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2019; Dapello et al., 2020; Schrimpf et al., 2018)? To address this question, we calculated 
for each V1 candidate model how well it explained stimulus driven responses of V1 
neurons using a conventional neural predictivity methodology based on the partial least 
square regression (PLS) model mapping method (Helland, 2006; Schrimpf et al., 2018; 
Yamins et al., 2014). We used a neuronal dataset containing extracellular recordings from 
102 single-units while presenting naturalistic textures and noise images which had been 
originally published in a study analyzing texture modulation in macaque V1 and V2 
(Freeman et al., 2013). The dataset consisted of stimulus-evoked responses to 315 
images (20 repetitions and averaged over 150ms). For each model, biological neurons 
were mapped to the V1 model neuronal population linearly using a PLS regression of the 
model with 25 components. Model predictions were evaluated using a 10-fold cross-
validation strategy. V1 explained variance was then normalized by the neuronal internal 
consistency to arrive at the specific V1 explained variance benchmark that we consider 
next. 
 
Across all V1 models, we found that the neuronal explained variance benchmark was 
strongly correlated with the V1 composite properties score outlined above (Figure 5A, 
r=0.61, p-value=1.8e-76). On average, individual property groups were also correlated 
with the V1 explained variance benchmark, though there was considerable variability 
across groups (Figure 5B,C; r=0.31±0.09, mean and SD). Increasing the number of 
property groups averaged gradually improves the alignment of the V1 component 
property scores with explained variance under this dataset (Figure 5B). This correlation 
was not exclusive to V1 explained variance using PLS regression, since it was present 
when using other neural predictivity methods on this same neural dataset. In particular, 
response property distribution similarity scores were also correlated with explained 
variance using single neuron mapping (choosing the single neuron in the model that best 
predicts a single macaque V1 neuron; r=0.50, p-value=9.4E-49) (Arend et al., 2018), and 
with representational similarity metrics such as representational dissimilarity matrix 
(RDM; r=0.62, p-value=6.9E-79) (Kriegeskorte et al., 2008), and center kernel alignment 
(CKA; r=0.23, p-value=5.7E-10) (Kornblith, Norouzi, Lee, & Hinton, 2019) that do not 
involve fitting model features. Considering all the different metrics tested, we found that 
spatial frequency tuning and response selectivity were the V1 component property scores 
that were most correlated with V1 explained variance and representational similarity on 
this particular V1 dataset (Figure 5C). Finally, the alignment between the V1 composite 
properties scores and the V1 explained variance was not an artifact of the way that the 
individual property scores were first averaged in groups (Supplementary Figure 5). When 
directly calculating the mean of the 22 individual property scores, the correlation with V1 
explained variance persisted (r=0.56, p-value=2.7E-62), even when removing the seven 
response properties that overlap with the neuronal dataset used for determining the 
explained variance (r=0.42, p-value=1.0E-32, methods).  
 
In sum, we found that the V1 property scores are partially aligned with more conventional 
methods for evaluating a candidate V1 model’s similarity to V1. While this result is not 
entirely surprising, it serves as an important sanity check, showing that there is signal in 
the response property distributions similarity scores for benchmarking models in how well 
they explain V1. In addition, this result can be interpreted as at least a partial validation 
of regression-based methods for evaluating neural predictivity of ANN-based models, in 
spite of their reliance on a fitting step (see Discussion).  
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Figure 5. Single neuron response property similarity scores correlate with the V1 model’s ability to predict 
neuronal responses using standard measures (cross-validated explained variance and representational 
similarity analysis). A. Comparison of model’s ability to explain variance in macaque V1 responses in a neuronal 
dataset (Freeman, Ziemba et al 2013) using PLS regression and V1 composite properties scores (across 736 V1 
models). Model’s cross-validated explained variance is positively correlated with the V1 composite properties scores.  
B. Averaging over an increasingly higher number of property group scores improves correlation with V1 explained 
variance. C. Top, correlation of V1 property groups and composite properties scores with different V1 neural predictivity 
metrics (explained variance with PLS regression and single neuron mapping, and representational similarity analysis 
with RDM and CKA). Open black circle indicates the correlation shown in A. Bottom, same as above but showing the 
mean and SD across the different explained variance metrics. 

 
Hierarchical models that have more brain-like V1 stages are more aligned with 
primate object recognition behavior 
 
While accurately modeling primate V1 is an important goal in and of itself, our larger goal 
is to do this in the service of multi-scale, multi-stage models of the ventral visual stream 
and visually-driven behaviors.  Thus, we next asked: do multi-stage artificial neural 
network models that better align with biological V1 also tend to better align with biological 
behavior?   Building on prior work, we here focused on primate core object recognition 
behavior. Specifically, when assessed via batteries of core object recognition tasks, 
humans and monkeys show highly aligned difficulty and confusion patterns at the object- 
and image-level (Rajalingham et al., 2015; Rajalingham et al., 2018). That is, humans 
and monkeys not only show similar levels of accuracy in a visual categorization task, but 
they also reliably show the same patterns of successes and failures when scored at the 
grain of object categories (pooling over subjects and images of the same category) or at 
the grain of individual images (pooling over subjects), and those reliable patterns can thus 
be used to assess the biological fidelity of any image-computable model at the behavioral 
level. Indeed, while some hierarchical neural network models accurately match typical 
primate patterns of object confusion, they do not yet match those patterns at the image-
level (Rajalingham et al., 2018) and some models match better than others (Schrimpf et 
al., 2018 and accompanying website).  Thus, we here asked if hierarchical models with 
intermediate layers that better match V1, i.e. more brain-like V1-layers, also better match 
human (and monkey) core object recognition patterns of behavior using these same prior 
benchmarks. 
 
Each hierarchical model with a specific FoV was here taken as a candidate multi-scale, 
multi-stage neural network model of the ventral stream and its resultant behavior.  For 
each of these candidate ventral stream models (n=52, 13 base models with 4 different 
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FoVs), we chose the layer that best approximated macaque V1 according to the layer’s 
single neuron composite properties score (above). We then performed psychophysical 
experiments on each model to evaluate how well the overall model aligned with human 
image-level behavior in classifying a set of naturalistic synthetic images using the same 
benchmarks and methods described in prior work (Rajalingham et al., 2018): Images 
consisted of objects belonging to 24 categories (10 images per category, 240 in total) 
displayed at different positions, orientations, and sizes, and overlayed on a random 
natural background. For each hierarchical model, we used standard methods of 
producing object recognition behavior from each model (Rajalingham et al., 2018).   
Specifically, we trained a behavioral decoder to classify the images using the activations 
of the model’s penultimate layer (last layer before the 1000-way class probability layer 
trained on ImageNet). The behavioral decoder was trained on a separate set of 2160 
images of the same object categories.  
 
We found that match (aka “consistency”) of the hierarchical neural network models with 
human image-level behavioral patterns was strongly correlated with the model’s V1 
composite properties score of its most V1-like internal layer (Figure 6A, r=0.79, p-
value=5.0e-12). Reducing the number of V1 property groups that are included (averaged) 
in the V1 properties composite score reduced the correlation between model V1 match 
scores and model behavioral consistency with humans (Figure 6B). This suggests that all 
V1 properties measured here are at least partially important to understanding V1’s role in 
supporting recognition behavior. However, we also found considerable variability 
between the correlation of single response property scores and behavioral consistency 
under this benchmark, with response selectivity showing little to no correlation, and 
orientation tuning being anti-correlated (Figure 6C). Despite object-level behavioral 
consistencies being considerably higher than image-level consistencies, the alignment 
between V1 property scores and behavioral consistency was very similar for all the 
different behavioral metrics (Figure 6C). Finally, the V1 similarity on the neuronal dataset 
previously described, as measured by the explained variance and representational 
similarity analysis, was considerably less correlated with behavioral consistency than the 
V1 composite properties scores (Figure 6C). 
 
In sum, we found an empirical, multi-scale linkage between single neuron response 
properties and object recognition behavior: multi-stage neural network models with an 
internal V1 layer that better matches the distribution of individual V1 biological neuronal 
properties tends to also better match biological behavior. 
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Figure 6. Hierarchical models with internal processing stages (layers) that better match macaque V1 at the 
single neuron level have output behavioral patterns that are better matched to human behavioral patterns. A. 
Comparison of human object recognition behavioral consistency and V1 composite properties scores for 52 hierarchical 
models. Behavioral consistency represents the alignment between the models’ output classification (i.e. model 
“behavior”) and humans performing a two-alternative forced choice object recognition task at the image-level (I2n 
metric, image-level normalized confusion patterns, see (Rajalingham et al., 2018; Schrimpf et al., 2018)). For each 
hierarchical neural network, the internal model layer with the highest V1 composite properties score was chosen. B. 
Increasing the number of V1 response property groups considered in the overall V1 score improves the correlation with 
behavioral consistency (the plot in A shows the result when all seven property groups are included). C. Top, correlation 
of V1 property group scores, V1 composite properties scores and V1 neural predictivity (average of explained variance 
and representational similarity analysis metrics) with behavioral consistency metrics with varying granularity: object 
difficulties, object confusion patterns, image normalized difficulties, and image normalized confusion patterns. Open 
black circle indicates the correlation shown in A. Bottom, same as above but showing the mean and SD across the 
different behavioral consistency metrics. 

 
How do the candidate V1 models tested here compare with classical models of V1?   
 
As previously mentioned, no V1 model derived from the family of ventral stream models 
considered here was able to completely match macaque V1 along all the single neuron 
response properties considered. We wondered whether a classical neuroscientific model 
of V1 might do better, given that such models were constructed largely guided by the 
kinds of empirical results used here. While those classical models are limited in that they 
do not bridge all the way to behavior, their match to V1 is nonetheless an important 
reference in determining future ventral stream modeling efforts. Answering how good the 
classical neuroscientific model is turns out to be non-trivial as there is no standard, 
agreed-upon classical neuroscientific model. For example, Cadena et al. showed that a 
task-optimized ANN outperformed one variant of the classical linear-nonlinear model of 
V1 based on a Gabor filter bank (GFB) followed by simple- and complex-cell nonlinearities 
in predicting responses in macaque V1 (Cadena et al., 2019). However, Dapello, Marques 
et al. more recently showed that constraining the GFB parameters with empirical data 
(i.e. a different variant of the classical model) substantially improves its ability to explain 
V1 response variance (Dapello et al., 2020).  
 
To answer our original reference question (above) and to help clarify the current state of 
the art in image-computable V1 models, we implemented both of these V1 classical 
models: a data-constrained classical V1 model consisting of a GFB (J. P. Jones & Palmer, 
1987), simple- and complex-cell (Adelson & Bergen, 1985) nonlinearities and a simple 
divisive normalization stage (Carandini, Heeger, & Movshon, 1997; Heeger, Simoncelli, 
& Movshon, 1996) (classical V1 model variant 1; see Methods), and the GFB model used 
in Cadena et al. (classical V1 model variant 2).  We then compared both of these classical 
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model variants with the candidate V1 models derived from hierarchical ANNs considered 
in this study (above). Using the V1 properties scores developed here, we found that the 
classical V1 model variant 1 outperformed all the ANN-derived V1 models by a wide 
margin, but that many of the ANN-derived models outperformed the classical V1 model 
variant 2 (Figure 7A,C; V1 composite properties scores: classical V1 model variant 1 
0.90±0.03, classical V1 model variant 2 0.70±0.03, best V1 model based on hierarchical 
ANNs 0.81±0.03).   
 
Interestingly, when using standard V1 neural predictivity metrics (explained variance and 
representational similarity analysis) on the neuronal dataset described before, we found 
that a V1 model derived from an adversarially-trained hierarchical ANN (Engstrom, Ilyas, 
Santurkar, & Tsipras, 2019; Madry, Makelov, Schmidt, Tsipras, & Vladu, 2019) was better 
than all the other ANNs (Figure 7B,C; average V1 neural predictivity: adversarially-trained 
ANN 0.43±0.02, classical V1 model variant 1 0.40±0.03, classical V1 model variant 2 
0.30±0.02, best standard ImageNet-trained ANN-based model 0.36±0.02). This result 
had already been reported by some of the authors (Dapello et al., 2020) but here we 
extend to other metrics.  
 

 
Figure 7. An optimized classical neuroscientific V1 model outperforms V1 models based on hierarchical neural 
network models in approximating macaque V1. A. Violin plots represent distributions of scores for the seven groups 
of V1 properties as well as the V1 composite properties for the most V1-like layer in 52 hierarchical models (13 base 
models with 4 FoVs). Green line represents the GFB model used in Cadena et al 2019 as the classical V1 model 
control. Red line represents an optimized neuroscientific model of V1 with a GFB, simple- and complex-cell 
nonlinearities, and divisive normalization stage. B. Same as in A but for V1 neuronal predictivity using different metrics 
(PLS regression, single neuron mapping, CKA, and RDM) and the average of all metrics. C. V1 composite properties 
score (top), average neuronal predictivity (middle), and V1 overall score (bottom) for the best combination of layer and 
FoV for each base hierarchical model and the two classical V1 models. V1 models based on hierarchical ANNs are 
sorted according to their V1 overall score. An optimized classical V1 model outperforms all hierarchical models on the 
V1 composite properties scores and overall and is only surpassed by an adversarially-trained model in neuronal 
predictivity. The adversarially-trained ResNet50 outperformed all other models in V1 neuronal predictivity. 
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In sum, using the V1 composite properties score, the classical V1 model variant 1 is a 
better match to macaque V1 than all the ANN-derived V1 models explored in this study. 
The same holds true even when averaging both the V1 composite properties scores with 
the V1 neural predictivity (Figure 7C, bottom). However, none of the models we tested 
were able to fully approximate biological V1. Together, these results suggest that there is 
still considerable room to improve current models of macaque V1, which will likely lead to 
better ventral stream models of core object recognition. 
 
Discussion 
 
In this work, we evaluated whether hierarchical neural networks of artificial neurons are 
accurate, multi-scale, multi-stage models of the first stage of cortical processing of the 
primate ventral visual stream.  The long-term goal of such work is to use such models to 
bridge between the properties of individual cells all the way to visually driven behaviors 
such as object recognition. While it was known that some of the models we tested are 
moderately accurate in predicting neuronal responses along the ventral stream areas 
using regression methods and representational similarity analysis, how their single 
neurons relate to single neurons in the brain had not been studied before, to the best of 
our knowledge.  
 
Specifically, our goals in this study were: (1) to build end-to-end neural network models 
of the ventral stream (using known hierarchical neural network architectures, but here 
exploring and specifying critical open parameters such as model FoV), (2) to evaluate 
whether single neurons in V1 levels of those new, specific brain models were functionally 
similar to single neurons in macaque V1; (3) to test whether the distributions of single 
neuron response properties in the V1-layers of these models matched those in macaque 
V1 for a range of previously reported core biological response properties; and (4) to ask 
if hierarchical models with better V1 layers (i.e. more similar to macaque V1 at the single 
neuron level) were also more similar to primate behavior at their output (i.e. behavioral) 
level.   
 
Our results show that single neurons in V1-layers of hierarchical models of the primate 
ventral visual stream have response characteristics that are surprisingly similar to their 
biological counterparts, and also that the distributions of response properties in some 
models’ V1-layers approximately match those in macaque V1. Furthermore, we observed 
that hierarchical models with more brain-like V1-layers, were also more aligned with 
human object recognition behavior (at their output layers). Together with prior work, these 
results suggest that the hierarchical neural network models that we built here are 
reasonably accurate, multi-scale models of the primate ventral visual stream and its 
support of object recognition behavior.  We have made the specific leading models we 
found here publicly available for community use and further exploration.  Nevertheless, 
these results also show that none of these models are perfect, and they provide pointers 
to future modeling improvement avenues.  
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Multi-scale, hierarchical models of the primate ventral stream 
 
Certain hierarchical artificial neural networks have achieved unparalleled accuracy in 
predicting visual neuronal responses in low- (Cadena et al., 2019) and high-level (Yamins 
et al., 2014) visual cortical areas, as well as object recognition behavior (Rajalingham et 
al., 2018), making these specific models the current best scientific hypotheses of the 
neural processing mechanisms at work along the primate ventral stream (Schrimpf et al., 
2018). However, these models are far from perfect. For instance, they cannot completely 
account for all the explainable response variance in the neural and behavioral data 
(Schrimpf et al., 2018). Furthermore, these models tend to be largely feedforward, making 
it hard for them to model the recurrent processing dynamics in the ventral stream; though 
we and others have recently started to address this (Kietzmann, Spoerer, Sörensen, 
Cichy, & Hauk, 2019; Kubilius et al., 2019; Nayebi et al., 2018; Tang et al., 2018).  
 
In this study, we focused on another critical aspect that the leading hierarchical ANNs still 
lack:  if any such model claims to be a causal, multi-scale, multi-stage, neurally-
mechanistic model of the primate ventral visual stream it must have key parameters fully 
specified (e.g. FoV) and it must have alignment with cortical areas at the level of individual 
neurons.  Specifically, past studies using multi-stage ANN models to explain single 
neuronal responses in primate ventral stream areas have used the model neurons as an 
encoding basis (Cadena et al., 2019; Schrimpf et al., 2018; Yamins et al., 2014) or with 
representational similarity analysis (Cadieu et al., 2014; Güçlü & van Gerven, 2015; 
Khaligh-Razavi & Kriegeskorte, 2014). While the first approach accurately fits and 
predicts individual biological neuronal responses, it does so by combining the activity of 
thousands of model neurons and it also implicitly allows key model parameters to be left 
unspecified.  Similarly, the latter approach compares the representational spaces 
between a neuronal population in the model and a neuronal population in the brain. In 
both cases, single neurons in the model are not explicitly mapped to individual neurons 
in ventral stream areas. Here, we take first steps towards hierarchical models of the 
primate ventral stream that are truly multi-scale, multi-stage and thus can bridge between 
properties of individual cells in intermediate model levels to visually-guided behavior.  
 
Our approach consisted in hypothesizing a one-to-one mapping at the level of single 
neurons between macaque V1 and a particular choice of processing stage in each 
hierarchical model with a committed FoV which we refer to as a candidate V1 model. 
Then, by performing a series of in silico experiments replicating neurophysiological 
studies, we characterized single neuron responses in the model V1-layer and compared 
them to those in the macaque V1. This approach presents multiple advantages when 
compared to existing methods for evaluating V1 similarity. The first, and most obvious 
one, is the one-to-one single neuron mapping which ensures the alignment at the level of 
single neurons between the candidate V1 model and the corresponding cortical area. 
This, in turn, dispenses the standard regression fitting procedure, which can give rise to 
situations of under- and over-fitting depending on the availability and variability of the 
data. Another important advantage of the approach used here is the improved 
interpretability of the response property distribution similarity scores. Conventional 
methods for evaluating a model’s match to neuronal data only provide an answer to the 
question “How much variance does the model explain?”. Our approach, on the other 
hand, gives a more detailed description of “Which aspects of the neuronal responses are 
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explained by the V1 model and which aspects are not?” In addition, it does so in a 
language familiar to the visual neuroscience community by relying on single neuron 
response properties extensively used in V1 neurophysiology. Finally, the proposed 
methodology builds on published primate V1 studies without requiring additional 
recordings, meaning that the approach presented here can be further extended to include 
other aspects of V1 processing without requiring new biological experiments. Other single 
neuron response properties such as those related to color tuning (Horwitz & Hass, 2012), 
figure-ground modulation (Lamme, 1995), and border ownership (Zhou, Friedman, von  
R, & von der Heydt, 2000) are viable properties to operationalize into quantitative 
benchmarks to give an even more complete evaluation of the model’s similarity to V1 at 
the level of single neurons. 
 
Modeling macaque V1 with hierarchical neural network models at the level of 
single neurons 
 
We here report that some hierarchical neural network models provide moderately 
accurate models of macaque V1 at the level of single neurons. This result extends prior 
work that used similar models to predict neuronal responses in macaque V1 using 
regression-based methods (Cadena et al., 2019; Dapello et al., 2020; Schrimpf et al., 
2018). However, we report that no model was able to simultaneously match all the 22 
single neuron response property distributions (highest V1 composite properties score was 
0.81±0.03). This was not due to some individual response properties being impossible to 
match by this model family since there was always at least one model that approximately 
matched each of the V1 single neuron response property distributions (similarity score 
larger than 0.9). Instead, the reason for the failure to match all of the response properties 
is likely due to the limitations of the model architectures we considered. Scores for some 
response properties varied with particular model properties and in several cases in non-
optimal ways.  
 
Not surprisingly, we found that V1 similarity at the level of single neurons was somewhat 
aligned with V1 neuronal predictivity using conventional approaches (explained variance 
and representational similarity analysis). Still, this alignment was not perfect suggesting 
that each individual comparison benchmark reflects only a particular, and incomplete, 
measure of a given model’s match to biological V1. This is true for each of the single 
neuron property distribution similarity scores, which only evaluate V1 similarity in a very 
specific phenomenon, as well as for the V1 neuronal predictivity which is limited by the 
type of stimuli and size of the dataset. This observation reinforces the idea that, to best 
evaluate the ability of a model to explain brain processing, one should consider multiple 
and varied benchmarks in an integrative manner (Schrimpf et al., 2018, 2020). 
 
Unlike Cadena et al. 2019, we found that V1 models derived from hierarchical ANNs 
underperformed in explaining V1 neuronal phenomena when compared to an optimized 
classical neuroscientific model. This was true for both the single neuron property 
distribution similarity scores and the V1 neuronal predictivity (except for the adversarially-
trained model). While there are several differences in the neuronal datasets and the fitting 
procedures used in the two studies, we believe that the main reason for this apparent 
discrepancy in results is due to differences in the classical V1 models used.  Indeed, when 
we used an off-the-shelf classical V1 model identical to the one used in the Cadena et al. 
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study (here called “variant 2”), we qualitatively replicated their result in that we also found 
that many ANN-derived V1 models matched the biological V1 better than that classical 
V1 model. However, we also found that a better optimized classical V1 model (here called 
“variant 1”) that outperforms (on average) all of the tested ANN-derived models. This has 
important implications since it suggests that current hierarchical ANN architectures are 
not yet the best model class for approximating macaque V1.  
 
How can we further improve models of V1? Our results suggest several possibilities. First, 
by tweaking the architectural parameters of hierarchical neural networks, such as the 
kernel sizes of the convolutions, it may be possible to remove the observed sub-optimal 
interactions and, thus, improve V1 similarity. In addition, we can expand the model space 
by including new circuit motifs inspired by neurobiology, such as local recurrence. The 
implementation of these types of architectural changes could potentially be guided by the 
V1 similarity scores described here. Another alternative is exploring other task-
optimization procedures for training the model weights. Similarly to another recent study 
(Dapello et al., 2020), we found that adversarially-trained models had the highest V1 
neuronal predictivity using conventional metrics. Exploring other types of data 
augmentation during training may result in even stronger V1 similarity. Finally, the higher 
V1 similarity scores of the classical neuroscientific model suggests that there may be 
opportunities in merging that type of mathematically elegant model with task-optimized 
neural networks. Such an approach has been successfully used to improve the 
adversarial robustness of neural network models for object recognition (Dapello et al., 
2020). However, we must remain wary of the possibility that the space of firing-rate based 
hierarchical architectures considered here may not allow to completely approximate 
macaque V1.  
 
Bridging from single neuron properties to behavioral phenomena 
 
Prior to this work, it might have been argued that modeling individual V1 neurons is a low 
level problem for neuroscientists and modeling object recognition behavior is a high level 
problem for cognitive scientists.  Here we empirically demonstrate – for the first time -- 
that those two problems are closely intertwined and that a unified systems modeling 
approach produces gains in both.  Building such a bridge is a longstanding goal of 
systems neuroscience, and models of the type tested here provide a path to reach that 
goal.  
 
By evaluating the ability of hierarchical neural network models to match macaque V1 at 
the single neuron level, we were able to produce models that offer a bridge from the level 
of single neuron properties in the first visual cortical area all the way to object recognition 
behavioral phenomena. The alignment of V1 similarity with behavioral consistency in 
these hierarchical models suggests that object recognition behavior is derived, at least in 
part, from low-level visual processing in V1. This is in agreement with the recent result 
showing that V1 similarity also correlates with robustness to image perturbations (Dapello 
et al., 2020). Together, these results all point towards the same conclusion: that working 
to build better models of low-level visual processing has tangible payoffs in improving 
models of visual behavior.  
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Going forward, we believe that the approach used here will lead to a deeper 
understanding of the neural processing along the ventral visual stream and its support of 
visual object recognition and other visually driven behaviors. By building even more 
accurate, multi-scale, multi-stage models of the primate ventral stream, we will begin to 
uncover how specific cellular mechanisms at work along the multiple ventral stream areas 
contribute to different aspects of visual intelligence. 
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Methods 
 
Hierarchical neural network models of the primate ventral visual stream 
In this study we considered 13 pre-trained artificial neural networks (ANNs) to build multi-
scale, hierarchical models of the primate ventral visual stream. All models were accessed 
via the Brain Score platform (Schrimpf et al., 2018). The models considered were the 
following: AlexNet (Krizhevsky et al., 2012), VGG16 and VGG19 (Simonyan & Zisserman, 
2015), CORnet-Z and CORnet-S (Kubilius et al., 2019, 2018), ResNet18, ResNet34 and 
ResNet50 (He et al., 2016), bagnet17 and bagnet33 (Brendel & Bethge, 2019), 
ResNet50-SIN and ResNet50-SIN_IN_IN, which are trained on a stylized ImageNet 
dataset (Geirhos et al., 2019), and an adversarially-trained ResNet50 with a ‖𝛿‖% =
4/255 constraint (Engstrom et al., 2019). All models were implemented with Pytorch 
(Paszke et al., 2019) except the VGG models which used Keras (Chollet, 2015). For each 
ANN base model, we built multiple V1 models using a three-step commitment as 
described in the Results section for a total of 736 V1 models. 
 
Empirical macaque V1 single neuron property distributions 
To evaluate the ability of hierarchical neural network models of explaining macaque V1 
at the single neuron level, we extracted from the literature the empirical distributions of 
22 single neuron response properties in macaque V1 (Supplementary Table 1). Since 
some response properties depend on eccentricity, we chose distributions that 
corresponded to foveal neurons (eccentricities less than 5deg). In most cases, the 
distributions were directly taken from the paper figures using an assistance digital tool 
(WebPlotDigitizer). The distributions were rounded to integers and normalized to ensure 
the same total number of neurons reported in the paper. The single neuron response 
properties from Ringach et al. 2002 are publicly available online (http://ringachlab.net). 
The single neuron response properties from Freeman, Ziemba et al. 2013 and Ziemba, 
Freeman et al. 2016 were calculated from the neuronal responses generously provided 
by the authors.  
 
In silico neurophysiology experiments 
To calculate the V1 model distributions for all the single neuron response properties, we 
performed in silico neurophysiology experiments that attempted to approximate the 
biological experiments carried out in the V1 studies. However, to facilitate their 
implementation, we made a methodological simplification that does not alter our results. 
Since all the layers of the ANNs considered here were convolutional layers, neurons 
respond identically at all the locations of the visual space. Due to this, instead of randomly 
sampling neurons with receptive fields (RF) spread along the whole visual space, we fixed 
a single location to record where we centered the stimuli (deviated from the center of 
gaze by 0.5deg on each axis resulting at an eccentricity of 0.7deg). 
 
We first estimated the functional receptive field (RF) for all the neurons in the V1 model 
by presenting small gratings (0.33deg diameter, 3cpd spatial frequency, four orientations 
and two opposing phases) in a grid with a spacing of 0.25deg, and averaging the 
responses for each position. We then selected all the neurons that had their RF centers 
aligned with the stimulus location (within 0.15deg).  
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Depending on the single neuron response property, we presented the respective stimulus 
set. In total we used four different stimulus sets: gratings for orientation tuning (8 phases, 
12 orientations, 4 spatial frequencies, 3 diameters per spatial frequency), gratings for 
spatial frequency tuning (8 phases, 6 orientations, 22 spatial frequencies, 1 diameter), 
gratings for size tuning (8 phases, 6 orientations, 4 spatial frequencies, 12 diameters), 
naturalistic textures and noise images (for both types 15 texture families and 15 samples 
per family). In addition, we used a homogeneous gray stimulus for obtaining the baseline 
responses. For each model, to convert its artificial neurons activations to neuronal firing 
rates, we calculated the affine transformation such that the median of the baseline 
responses and the median of the maximum DC responses in the orientation tuning 
stimulus set matches those in V1 (median of baseline responses = 0.82 spikes per 
second, sps; median of maximum DC responses = 33.8 sps, Ringach et al. 2002). We 
then applied the corresponding affine transformation for each model activations to obtain 
the firing rates. For each study, we selected responsive neurons based on a 
responsiveness criterion that emulates the one used in experimental characterization. 
Response properties for each neuron were then calculated from the responses to the 
corresponding stimuli following the methodology used in the original study. In some 
cases, the neuronal responses were baseline subtracted prior to calculating the property 
(Supplementary Table 1).  
 
We sampled the same number of artificial neurons as those sampled in the empirical 
biological distribution of the corresponding experimental study (Supplementary Table 1). 
For some properties the number of neurons sampled in the models does not correspond 
to the number of neurons included in the neurobiological empirical distribution. For 
example, 87 neurons were considered for spatial frequency tuning in the Schiller et al 
study, but of those only 73 were SF selective and therefore included in the SF bandwidth 
distribution in the study. When performing these experiments in the model we sampled 
the same number of the total neurons (in this case 87). We then calculated the histogram 
of the in silico experiment using the same bins as in the empirical biological distribution. 
We computed a similarity score (1	–	𝐾𝑆!"#$) where 𝐾𝑆!"#$ is the ceiled Kolmogorov-
Smirnov (KS) distance between the empirical model distribution and the empirical 
biological distribution. The ceiled KS distance is calculated as the ratio between the actual 
KS distance and the maximum possible KS distance given the empirical biological 
distribution. We normalized the similarity score by an estimate of the similarity between 
empirical biological distributions (1	–	𝐾𝑆!$#$) calculated by bootstrapping the empirical 
biological distribution. Thus, the final normalized distribution similarity score is calculated 
as (1	–	𝐾𝑆!"#$)/(1	–	𝐾𝑆!$#$). This procedure was repeated 1,000 times, each time with 
a different sample of artificial neurons, to estimate the uncertainty with respect to the V1 
model neuronal sampling. Values reported are mean and SD. 
 
Statistics 
Statistical significance was defined with p-value < 0.05 and the exact p-values are 
reported. Exact values of n and what n represents are described in the Results section 
and Figure captions. Reported correlations correspond to Pearson correlation 
coefficients. T-test was performed two-sided for two independent samples. Statistical 
analyses were done using the Scipy library for Python (Virtanen et al., 2020). 
The ANOVA for determining the variance in the similarity scores explained by the model 
parameters (Supplementary Figure 4) was done using the statsmodels library for Python 
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(Seabold & Perktold, 2010). First, for each model parameter, scores were divided in 
roughly equally populated bins (model depth, 4 bins; FoV, 4 values; layer depth, 6 bins; 
theoretical receptive field, 6 bins; number of neurons, 4 bins). The exception to this was 
the layer type, for which there were considerably more models with convolutional layers 
than pooling layers (convolutional, 632 models; pooling, 104 models). For each score 
type (V1 response property score or neural predictivity score), we sequentially searched 
for the model property that best explained the variance in the scores using a linear model 
without interaction terms. We started with a single model property and continued adding 
sequentially the remaining model parameters according to the increase in variance 
explained. 
 
Data in the text is mean ± SD.  
 
V1 Neural Predictivity 
The neuronal dataset used for the V1 neural predictivity contains extracellular recordings 
from 102 single-units while presenting naturalistic textures and noise images and was 
originally published in a study analyzing texture modulation in macaque V1 and V2 
(Freeman et al., 2013). Here, we considered the stimulus-evoked responses to a subset 
of 315 images (20 repetitions averaged for 150ms) spanning 4deg of the visual space 
which constitutes the Brain-Score private dataset for the V1 neural predictivity 
benchmark. We considered four metrics of neural predictivity: explained variance with 
partial least squares (PLS) regression (25 components), explained variance with single 
neuron mapping, representational dissimilarity matrix (RDM), and centered kernel 
alignment (CKA).  
 
For the explained variance with PLS regression we followed the same procedure as in 
Schrimpf et al., 2018. First, we presented the stimuli to the model after properly resizing 
it taking into account the model’s FoV and recorded the responses in the corresponding 
V1 layer. Then, we mapped the model neurons to the recorded biological neurons using 
a linear transformation: 

𝑦 = W𝑥 
where y are the biological neuronal responses, x are model neuronal responses and W 
are the linear regression weights. W was calculated with a PLS regression with 25 
components using the Python library scikit-learn (Pedregosa et al., 2011). The mapping 
procedure was implemented using a 10-fold cross-validation strategy. In each cross-
validation split, the weights are fit using training images and then used to predict the 
responses y’ for the held-out images. To obtain a neural predictivity score, for each 
biological recorded neuron, we calculated the Pearson correlation coefficient of the 
predicted responses y’ and the measured responses y. We then calculated the median 
over all the neurons normalized by their internal consistency. We used the split-half 
reliability as a measure of internal consistency between neural responses: we split neural 
responses in half across repetitions and computed the Pearson correlation coefficient 
between the two splits using the Spearman-Brown correction. To obtain the explained 
variance values reported in the Results section, we squared the normalized the neural 
predictivity divided by the internal consistency. Mean and standard deviations were 
calculated across the ten cross-validation splits. 
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For the explained variance using single neuron mapping, the procedure was identical with 
the exception that instead of using PLS regression to find the mapping between the 
biological neurons and the model neurons, for each single recorded neuron, we found the 
single neuron in the model that showed the most correlated responses. 
 
We compared population representations using representational dissimilarity matrices 
(RDM) as in Kriegeskorte et al., 2008. For both the model’s activations and the V1 
neuronal responses, we computed RDM according to: 

RDM&,( = 1-
cov=𝑟)??⃗ , 𝑟*??⃗ B

Cvar(𝑟)??⃗ ).var=𝑟*??⃗ B
 

where 𝑟)??⃗  and 𝑟*??⃗  are the response vectors to the presentation of two images. We evaluated 
the similarity between the representations by calculating the Spearman rank correlations 
between the elements in the upper triangular regions of each of the RDMs. We normalized 
the score by an estimate of the noise ceiling, which was calculated by computing the RDM 
similarity between two splits of the neuronal data and corrected with the Spearman-Brown 
formula. 
 
In addition to RDM, we also used linear centered kernel alignment (CKA), as a 
representational similarity metric. We implemented CKA according to Kornblith et al 2019: 

CKA(𝑋, 𝑌) =
‖𝑌+𝑋‖,-

	‖𝑋+𝑋‖,‖𝑌+𝑌‖,
 

where 𝑋 ∈ ℝ.×0 is the matrix of V1 neuronal responses of 𝑛 neurons to 𝑝 images and 𝑌 ∈
ℝ.×1 is the matrix of V1 model activations of 𝑚 model neurons to the same 𝑝 images. 
Similarly to the RDM metric, we normalized the CKA score by an estimate of the noise 
ceiling using split-half reliability. 
 
Object Recognition Behavioral Consistency 
The behavioral data used in this study, as well as the corresponding analyses and 
comparisons with models, has been described in detail in Rajalingham et al 2015, 2018 
and Schrimpf et al 2018. Here, we considered behavioral choices of human subjects 
performing a core object recognition behavioral paradigm. In total we used data belonging 
to 1,472 subjects acquired on Amazon Mechanical Turk. At each trial, an image spanning 
approximately 8deg was presented for 100ms followed by two response choices: one 
corresponding to the target object present in the image and the other, a distractor, being 
one of the remaining object categories. Participants responded by choosing which object 
was present in the image. Images consisted of objects belonging to 24 categories (10 
images per category, 240 in total) displayed at different positions, orientations, and sizes, 
and overlayed on a random natural background. Over 300.000 responses for each target-
distractor pair were obtained from multiple participants, resulting in a 240 x 24 (images x 
objects) response matrix when averaged across participants. 
 
We compared the consistency between models and human behavior at four different 
levels: object difficulties (O1), object confusions (O2), normalized image difficulties (I1n) 
and normalized image confusions (I2n). For all these metrics, the procedure was 
analogous. First, we trained a behavioral decoder using a 24-way logistic regression (24 
is the number of classes) to classify the images using the activations of the model’s 
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penultimate layer (last layer before the 1000-way class probability layer trained on 
ImageNet). The behavioral decoder was trained on a separate set of 2160 images of the 
same object categories. We then used this regression to estimate probabilities for the test 
images (the ones with the behavioral data). We computed all normalized target-distractor 
pair probabilities, obtaining a 240 x 24 matrix (images x objects). Each entry 𝑖𝑗 of this 
matrix is given by: 

𝑝(𝑡𝑎𝑟𝑔𝑒𝑡|𝑖𝑚𝑎𝑔𝑒&)
𝑝(𝑡𝑎𝑟𝑔𝑒𝑡|𝑖𝑚𝑎𝑔𝑒&) + 𝑝=𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑜𝑟(|𝑖𝑚𝑎𝑔𝑒&B

 

where i is the image index and j the distractor class index (different than the target index).  
 
Prior to comparing human and model behavioral patterns, we first transform the 
accuracies to a discriminability measure, d’: 

𝑑2 = 𝑍(Hit	Rate) − 𝑍(False	Alarms	Rate) 
where Z is the estimated z-score of responses, Hit Rate is the accuracy of a given target-
distractor pair and False Alarms Rate corresponds to how often the observers incorrectly 
reported seeing that target object in images where another object was present instead.  
 
The calculation of d’ depends on the level of comparison. For O1, we calculated the 
discriminability of one-versus-all object choices, resulting in a vector with 24 independent 
values. For O2, we calculated the discriminability between each pair of object-level target-
distractor, resulting in a 24x24 symmetric matrix, which we considered the off-diagonal 
elements on one half. For I1n, we calculated the discriminability of each image from all 
other objects, resulting in a vector with 240 elements. Finally, for the I2n, we calculated 
the discriminability of each image from each distractor object, resulting in a 5520 
independent values (240 x 23). For the image-level comparisons (I1n and I2n), the 
response matrices were normalized by subtracting the mean Hit Rate at the 
corresponding level. Such normalization exposes variance unique to each image 
removing object-level trends. 
 
Consistency between human and model’s discriminability was calculated with a Pearson 
correlation coefficient and normalized by an estimate of the noise ceiling (see Schrimpf 
et al 2018 for a detailed description). 
 
Classical V1 models 
We implemented two variants of a classical V1 model containing a Gabor filter bank 
(GFB). The classical V1 model variant 1 consisted of an update to the V1 model front-
end added to ANNs in Dapello, Marques et al., 2020. The original model contained a GFB 
constrained by empirical biological distributions, simple- and complex-cell nonlinearities, 
and a neuronal stochasticity generator. Here, we removed the neuronal stochasticity 
generator and added a divisive normalization stage.  
 
We used a resolution of 224x224px and a FoV of 8deg. We implemented the GFB as a 
convolutional layer with a stride of four, originating a 56x56 spatial map of responses with 
a certain number of different channels (or cell types). Each channel in the GFB convolves 
the input image with a specific Gabor, parameterized by the following function: 

𝐺3,4,5,0!,0"(𝑥, 𝑦) =
1

2𝜋𝜎6𝜎7
exp k−0.5 m

𝑥89:-

𝜎6-
+
𝑦89:-

𝜎7-
no cos(2𝜋𝑓 + 𝜑) 
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where 
𝑥89: = 𝑥 cos 𝜃 + 𝑦 sin 𝜃			 					𝜎6 =

𝑛6
𝑓t

𝑦89: = −𝑥 sin 𝜃 + 𝑦 cos 𝜃 					𝜎7 =
𝑛7

𝑓t
 

𝑥89: and 𝑦89: are the orthogonal and parallel orientations relative to the grating edge, 𝜃 is 
the grating angular orientation, 𝑓 is the spatial frequency of the grating, 𝜑 is the phase of 
the grating relative to the Gaussian envelope, and 𝜎6 and 𝜎7 are the standard deviations 
of the Gaussian envelope orthogonal and parallel to the grating edge, which can be 
defined as multiples (𝑛6 and 𝑛7) of the grating cycle (inverse of the frequency). 
 
Except for the phase, 𝜑, which was uniformly sampled, we relied on published V1 
neurophysiology studies to generate the Gabor parameters for all of the channels. To 
cover this multi-dimensional space of Gabors, we considered 128 simple-cell channels 
and 128 complex-cell channels in the model. We used the distribution of preferred 
orientation in De Valois et al 1982a to sample 𝜃 for all the channels in the model. We 
used the peak spatial frequency distributions of simple- and complex-cells in De Valois et 
al 1982b to sample 𝑓 for the simple- and complex-cell channels separately. We used the 
joint distribution of (𝑛6 , 𝑛7) in Ringach et al 2002 to sample these parameters for all the 
channels. We introduced a model hyperparameter that controls the covariance between 
𝑛6 and 𝑓 (𝜌4,06). When this value is 0, 𝑛6 and 𝑓 are sampled independently. When this 
value is positive, the random variables used to sample the 𝑛6 and 𝑓 distributions are 
positively correlated (Gabors with higher spatial frequencies will also have higher number 
of cycles). While the Gabors vary considerably in size, we restricted the kernel size of the 
Gabors to be 25x25, which corresponds to a square with 0.9deg. 
 
After the GFB we applied two different nonlinear functions to simple- and complex-cell 
channels: a rectified linear transformation for simple-cells, and the spectral power of a 
quadrature phase-pair for complex-cells: 

𝑆3,4,5,0!,0"
0; = v

𝑆3,4,5,0!,0"
; ,				if	𝑆3,4,5,0!,0"

; > 0
0,																				otherwise										

𝐶3,4,5,0!,0"
0; =

1
√2

C𝐶3,4,5,0!,0"
; - + 𝐶3,4,5<= -> ,0!,0"

; -
 

where 𝑆…;  and 𝑆…0; are the linear and nonlinear responses of a simple-cell channel and  𝐶…;  
and 𝐶…0; are the same for a complex-cell channel.  
 
The final component of the V1 model variant 1 is a simple local divisive normalization 
stage: 

𝑅&9@: =
𝑅&0;

1 + 𝑘A𝐷

𝑘A = 𝑘 �
1

1 − SSI
− 1�

𝐷 = 𝐺B# ∗
1
𝑁
� 𝑅&0;

C

&

 

𝜎A =	𝑘B
𝜎6 + 𝜎7

2  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2021. ; https://doi.org/10.1101/2021.03.01.433495doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.01.433495
http://creativecommons.org/licenses/by/4.0/


 

 36 

 
where 𝑅…9@: is the output response of the channel, 𝑅…0; is the response after the nonlinear 
stage, 𝑘A is the factor controlling the magnitude of the divisive normalization and 𝐷 is the 
local response activity. This local response activity is the average response across all 
channels convolved with a Gaussian kernel of size 𝜎A. 𝑘A and 𝜎A are defined separately 
per channel. 𝑘A is related to the surround suppression index (SSI) of the channel: for 
each channel we sampled the SSI distribution from Cavanaugh et al 2002 and introduced 
a multiplicative factor 𝑘 common to all the channels as a model hyperparameter. We 
defined each channel’s 𝜎A as the product of a hyperparameter 𝑘B and the Gabor size (𝜎6 
and 𝜎7). 
 
In total, we generated 80 instantiations of the V1 model variant 1 by assigning multiple 
values to the three hyperparameters of the model family: 𝜌4,06, 𝑘 and 𝑘B. We calculated 
the V1 single neuron property scores and the V1 neural predictivity scores for all these 
models, showing the best model in Figure 7. The total number of classical V1 variant 1 
models is considerably smaller than the number of ANN models considered in the same 
analysis (80 classical V1 variant 1 models vs 736 ANN-based V1 models). 
 
The classical V1 model variant 2 is an implementation of the classical model used as a 
control in Cadena et al 2019, containing a GFB with fixed parameters and simple- and 
complex-cell nonlinearities. The model was implemented similarly to the classical V1 
model variant 1 but the Gabor parameters were not constrained by neuronal data and, 
instead, were fixed to cover a range of values. The model contained 72 combinations of 
orientation (𝜃, eight different values spaced by 45deg), size (𝑛6 = 𝑛7, three values), and 
spatial-frequency (𝑓, three values per size). We considered two phases in quadrature 
(𝜑 ∈ �0, 𝜋 2t �) for a total of 144 simple-cell channels and the corresponding 72 complex-
cell channels. 
 
Code availability 
 
Code for calculating the 22 single neuron response properties, evaluating ANNs on the 
V1 response property similarity scores, V1 explain variance, and behavioral consistency 
is available in the author’s fork of the Brain-Score repository: 
https://github.com/tiagogmarques/brain-score 
 
Code for creating candidate end-to-end models of the primate ventral stream from base 
ANNs will be available in a repository in the author’s github. Code for the classical V1 
models will also be available in a dedicated repository in the author’s github. 
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Supplementary Material 
 

Property # 
neurons 

#  
bins Scale Response Type Reference 

Preferred 
orientation 385 4 Linear DC DeValois et al. 1982a 

Circular  
variance 308 13 Linear DC Ringach et al. 2002 

Orientation 
selective 308 2 Binary DC Ringach et al. 2002 

Orientation half-
bandwidth 308 9 Linear DC Ringach et al. 2002 

Orthogonal / 
Preferred ratio 308 13 Linear DC Ringach et al. 2002 

CV /  
Half-bandwidth 308 15 Log. DC Ringach et al. 2002 

(Orth./Pref.) - 
 CV 308 19 Linear DC Ringach et al. 2002 

Peak Spatial 
Frequency 363 12 Log. AC or DC (baseline 

subtracted) DeValois et al. 1982b 

SF 
 Selective 87 2 Binary DC Schiller et al. 1976 

SF 
 Bandwidth 

87  
(73) 10 Linear DC Schiller et al. 1976 

Grating 
Summation Field 

190  
(148) 8 Log. AC or DC (baseline 

subtracted) 
Cavanaugh et al. 

2002 
Surround 
Diameter 

190  
(148) 8 Log. AC or DC (baseline 

subtracted) 
Cavanaugh et al. 

2002 
Surround 

Suppression Index 190 10 Linear AC or DC (baseline 
subtracted) 

Cavanaugh et al. 
2002 

Texture 
Modulation Index 102 24 Linear Textures and Noise 

stimuli 
Freeman, Ziemba et 

al. 2013 
Absolute Texture 
Modulation Index 102 12 Linear Textures and Noise 

stimuli 
Freeman, Ziemba et 

al. 2013 
F1/F0  
ratio 308 10 Linear AC and DC Ringach et al. 2002 

Texture  
Selectivity 102 10 Linear Textures stimuli Ziemba, Freeman et 

al. 2016 
Texture 

Sparseness 102 10 Linear Textures stimuli Ziemba, Freeman et 
al. 2016 

Texture Variance 
Ratio 102 12 Log. Textures stimuli Ziemba, Freeman et 

al. 2016 
Max DC 

Response 308 9 Log. DC Ringach et al. 2002 

Max Texture 
Response 102 12 Log. Textures stimuli Freeman, Ziemba et 

al. 2013 
Max Noise 
Response 102 12 Log. Noise stimuli Freeman, Ziemba et 

al. 2013 
 
Supplementary Table 1. Empirical response properties details. Details for the 22 single neuron response properties 
considered in this study. Empirical distributions were obtained from the references in the last column. Histograms for 
all the response properties are shown in Supplementary Figure 2. For some properties there are two values in the 
number of neurons column. The values on top represent the total number of neurons sampled to evaluate on that 
property, and the numbers below in parentheses represent the number of neurons that were actually included in the 
neurobiological empirical distribution due to the neurons having to pass a certain criterion (see methods).  
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Supplementary Figure 1. Response properties of V1 models vary with base model, field-of-view, and layer. 
Medians of four example response properties for the V1 models resulting from three base hierarchical models (AlexNet, 
VGG-19, and ResNet34). From top to bottom, circular variance, peak spatial frequency, grating summation field, 
surround suppression index, and texture modulation index. These examples illustrate how different response properties 
vary with the three steps of the model commitment: choice of base model, choice of FoV, and choice of V1-layer.  
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Supplementary Figure 2. Comparison of distributions of response properties between example V1 model and 
macaque V1. Distributions for all the 22 single neuron response properties in macaque V1 (from published studies, 
black line) and an example V1 model (ResNet34-FoV8-layer2.1; obtained by performing in silico experiments in the 
model, thick blue line is the mean over 1,000 experiments and the shaded region is the SD). Normalized similarity 
score, shown in each plot at the top right corner. Response properties are organized in seven groups: orientation tuning, 
spatial frequency tuning, receptive field size, surround modulation, texture modulation, response selectivity, and 
response magnitude. 
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Supplementary Figure 3. Response property similarity scores for V1 models based on the ResNet34 base 
model. A. Similarity scores for the 22 V1 response properties for all the layers of the ResNet34 with a FoV of 8 degrees. 
No layer is able to simultaneously approximate the distributions of all the response properties in macaque V1. Different 
response properties have different optimal layers. For example, grating summation field similarity score peaks at layer 
2.2, while for texture modulation the score peaks at earlier layers (layer 1.0). B. Average scores for the seven response 
property groups as well as the overall V1 composite properties scores for all the V1 models based on the ResNet34 
base model (all layers and FoV). For some property groups scores, there is a strong interaction between the layer and 
FoV. For example, for the receptive field size scores, the best models are either intermediate layers with large input 
FoV or higher layers with small input FoV. Best overall V1 model based on the ResNet34 base model is the one with a 
FoV of 8 degrees and layer 2.1 (model represented with a circle in the V1 composite properties scores and is the same 
model as in Figure 2, and 3).  
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Supplementary Figure 4. Model properties account for the majority of the variance in the response property 
scores. A. Similarity scores for three example response property groups (spatial frequency tuning, receptive field size, 
and texture modulation) and V1 composite properties as a function of the model’s theoretical receptive field size and 
layer depth for all the V1 ANN-based models (n=736). Black line is the moving average (window of 100). Depending 
on the response properties, over all the models, V1 similarity scores vary with model properties. For example, receptive 
field size similarity scores are optimal for models with theoretical receptive field sizes of ~4 degrees. B. Sequential 
ANOVA for determining how much variance in the property scores can be explained by model properties excluding 
interactions (see methods). For the V1 composite properties scores, most of the variance (67.3%) can be explained by 
six model properties: model depth, FoV, layer depth, theoretical receptive field, layer type and number of neurons. The 
theoretical receptive field corresponds to the fraction of the visual input that neurons can be influenced by (in degrees) 
and does not correspond to the receptive field size as determined by the in silico electrophysiology experiments. Layer 
depth is defined as the cumulative number of non-linear processing stages until the model layer and model depth is 
the total number of non-linear processing stages in the ANN. Layer type can be either convolution followed by a ReLU 
or a maxpool operation. Theoretical receptive field size is the model property that explains most variance in the V1 
composite and property groups scores, followed by the layer depth. C. Same as B but for different V1 neural predictivity 
metrics in a given neuronal dataset. 
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Supplementary Figure 5. Correlation of model’s property distribution similarity scores with neural predictivity 
is robust. A. Similar to Figure 5 A but V1 property scores are averaged directly along the 22 response properties and 
not pre-pooled in groups. Comparison of model’s ability to explain variance in macaque V1 responses in a neuronal 
dataset (Freeman, Ziemba et al 2013) using PLS regression and V1 properties average scores (across 736 ANN V1 
models). Model’s explained variance is positively correlated with the V1 properties average scores. B. Same as A but 
discarding the response property scores that are calculated using the same stimuli and neuronal responses that are 
used for the V1 explained variance: texture modulation index, absolute texture modulation index, texture selectivity, 
texture sparseness, variance ratio, maximum texture response, and maximum noise response. There is still a significant 
correlation between the V1 explained variance and the average of the limited pool of non-overlapping response property 
scores (15 response properties). C. Top, correlation of the three distinct ways to pool the V1 property scores (composite, 
average, and limited average with different V1 neural predictivity metrics (explained variance with PLS regression and 
single neuron mapping, and representational similarity analysis with RDM and CKA). Bottom, same as above but 
showing the mean and SD across the different neural predictivity metrics. 
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