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Abstract

Cells in the hippocampus tuned to spatial location (place cells) typically change their
tuning when an animal changes context, a phenomenon known as remapping. A
fundamental challenge to understanding remapping is the fact that what counts as a
“context change” has never been precisely defined. Furthermore, different remapping
phenomena have been classified on the basis of how much the tuning changes after
different types and degrees of context change, but the relationship between these
variables is not clear. We address these ambiguities by formalizing remapping in
terms of hidden state inference. According to this view, remapping does not directly
reflect objective, observable properties of the environment, but rather subjective
beliefs about the hidden state of the environment. We show how the hidden state
framework can resolve a number of puzzles about the nature of remapping.

Introduction

Place cells of the hippocampus fire when an animal occupies specific spatial locations
(place fields; O’Keefe, 1976). Each place cell has its own respective place fields,
so collectively the population of place cell comprise a map of an environment, in
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which each location corresponds to activity of a particular subset of place cells. The
hippocampus is thought to use independent maps for each context. These indepen-
dent maps can be observed through “place field remapping”, in which the location
of a place field may change or the place field may disappear entirely between con-
texts (Muller and Kubie, 1987; Colgin et al., 2008). The sensitivity of place cells to
context changes is consistent with many other studies implicating the hippocampus
in context-dependent behavior (Holland and Bouton, 1999; Gershman et al., 2010;
Smith and Mizumori, 2006b; Anagnostaras et al., 2001). Despite its acknowledged
importance, the precise relationship between context changes and remapping has
remained elusive, due in part to ambiguity as to what counts as context change.

Researchers have operationalized context in many different ways. For example,
some researchers investigated the role of sensory cues (Knierim et al., 1998; O’Keefe
and Conway, 1978; Muller and Kubie, 1987), whereas others investigated the effect of
changing spatial location or geometry (Skaggs and McNaughton, 1998; Lever et al.,
2002), or changing the task (O’Keefe and Speakman, 1987; Markus et al., 1995). Not
surprisingly, different effects have been observed for these different manipulations,
without cohering into a unified picture of how context changes determine remapping.

Some of the confusion about what counts as a context change is due to inconsistent
definitions of the word “context”. Sometimes “context” refers to experimenter-
defined variables, such as physical location or sensory cues. In other cases, “context”
refers to the animal’s internal assessment of the environment as indicated by neural
activity or behavioral response. For example, in the fear conditioning literature,
animals are assumed to preferentially freeze in the “same” context as that in which
they received the shock. This doesn’t necessarily have to be physically the same
environment, as long as the animal infers that it is the same environment (Chang
and Liang, 2017; Gershman et al., 2010). Invoking subjective inferential factors in
the interpretation of remapping compels us to consider basic questions about the
nature of these inferences. What is the animal’s hypothesis space? How does it
represent and update beliefs over this hypothesis space?

The goal of this paper is to develop formal answers to these questions, and thereby
provide a coherent account of diverse experimental findings. Key to this account is
the idea that the relationship between observable properties of the environment
(including context) and remapping is mediated by inferences about unobservable
properties of the environment (hidden states). According to this view (see also Fuhs
and Touretzky, 2007; Gershman et al., 2014; Penny et al., 2013), place fields remap
when the animal believes that it has entered a new hidden state. By specifying the
animal’s internal model of how hidden states relate to observable stimuli, we can
make principled predictions about when, why and how place fields remap.
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Before describing the details and applications of this computational framework,
we will briefly review some of the key empirical and theoretical background.

Empirical background

Remapping phenomena have been divided into several classes (Colgin et al., 2008;
Muller, 1996). At the extremes, there is “global” or “complete” remapping (where
no place fields are shared between contexts) and “null” or “lack of” remapping
(where all place fields are shared between contexts). Between these extremes is
“partial remapping” (where some place fields are shared between contexts but some
are not) and “rate remapping” (where place fields are shared between contexts but
have characteristically different firing rates). However, none of these categories can
be regarded as strictly exclusive.

The extent to which place fields are shared between contexts can be quantified
by looking at the spatial correlations of place cell firing rates between contexts.
Although studies report correlations near zero between place fields in different con-
texts (Leutgeb et al., 2004; Muller and Kubie, 1987; Schlesiger et al., 2015), there are
reasons to believe that correlations are not actually zero. A recent report suggests
that previous observations of global remapping might be artifacts of misalignment
of maps between contexts (Kinsky et al., 2018). Some place cells have been found
to consistently encode reward across virtual reality contexts that otherwise express
“global remapping” (Gauthier and Tank, 2018), so there is at least one class of
place cells that have recently been found not to remap across contexts. More gener-
ally, many studies reporting global remapping report low but non-zero correlations
(Leutgeb et al., 2004, 2005b; Skaggs and McNaughton, 1998; Spiers et al., 2015).

Conversely, studies reporting lack of remapping never report perfect place field
overlap between contexts. Indeed, even within a single context, patterns of spatial
firing show variability over time, as if more than a single map is used in a given
context (Fenton and Muller, 1998; Kay et al., 2019; Kelemen and Fenton, 2016).
Additionally, the extent of remapping for repeated presentations of the same context
depends on the amount of experience the animal has had (Law et al., 2016).

Rate remapping is also not a strict category. Manipulations used to generate rate
remapping do so for a fraction of the place cell population, while other cells in the
population maintain or lose their place fields (Wood et al., 2000; Leutgeb et al.,
2005b). In this way, rate remapping is always accompanied by partial remapping.
Additionally, protocols for generating rate remapping can sometimes produce a range
of remapping states during learning, ranging from no remapping to global remapping.
For example, Leutgeb et al. (2005b) found rate remapping when comparing place
field maps between circle and square enclosures. However, Lever et al. (2002) make
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the same comparison between circle and square enclosures, and find rate remapping
as an intermediate state as the animal transitions from no remapping to global
remapping over the course of learning.

The complications discussed above highlight the fact that virtually all remapping
is partial remapping. Place cell responses to manipulations are extremely heteroge-
neous (Lee et al., 2004; Shapiro et al., 1997; Chen et al., 2013; Anderson and Jeffery,
2003). Additionally, remapping behavior can vary across animals (Wills et al., 2005;
Lever et al., 2002) as well as across laboratories (Guzowski et al., 2004; Wills et
al., 2005; Leutgeb et al., 2005a; Colgin et al., 2010, see the “Morph Experiments”
section of the Results for an in-depth exploration of one example). We will argue
that this heterogeneity arises from variability in beliefs across animals.

Theoretical background

Our theory of hidden state inference is motivated by, and builds upon, prior research
into the nature of context-dependent learning. Since Pavlov, experimentalists have
recognized that extinguishing an association after Pavlovian conditioning is not the
same as unlearning it. The association can return under a variety of circumstances
(Bouton, 2004), such as returning the animal to the conditioning context, or simply
waiting a period of time before testing the animal. These phenomena seem to suggest
that the animal is forming a new memory during extinction, which could compete
with the conditioning memory at the time of retrieval. Context, on this view, serves
as a particularly powerful retrieval cue. The fundamental challenge posed by this
interpretation is to define precisely the conditions under which a new memory is
formed or an old memory is updated, and the conditions under which a particular
memory is retrieved at the time of test.

One approach to these questions is to frame them in terms of hidden state infer-
ence (Gershman et al., 2010, 2017): new memories are formed when an animal has
inferred that it has encountered an unfamiliar (previously unvisited) state, and old
memories are updated when it has inferred that it has encountered a familiar state.
As we formalize below, these inferences can be calculated using Bayes’ rule, which
computes a posterior probability distribution over hidden states by integrating prior
beliefs about the hidden states with the likelihood of those hidden states given the
animal’s observations. The hidden states are sometimes interpreted as latent causes
(Courville et al., 2006; Gershman and Niv, 2012), to emphasize the idea that the
animal is forming beliefs about the causal structure of the environment.

The state inference framework can naturally explain many animal learning phe-
nomena (see Gershman et al., 2015, for a review). For example, a conditioned
response takes longer to extinguish when reward is delivered probabilistically during
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the acquisition phase, a phenomenon known as the partial reinforcement extinction
effect (e.g., Gibbon et al., 1980). This phenomenon is surprising for classical as-
sociative learning accounts, since the learned association should be weaker under
partial reinforcement, and hence should be faster to extinguish. According to the
state inference framework, partial reinforcement renders the hidden state ambigu-
ous; it takes more extinction trials until the animal is confident that acquisition and
extinction trials were generated by different states (Courville et al., 2006; Gershman
and Blei, 2012).

In this paper, we argue that the same framework can unify many different place
field remapping phenomena, under the assumptions that (i) each map corresponds
to a unique hidden state, and (ii) a map is activated in proportion to the posterior
probability of the corresponding hidden state. A closely related idea was pursued by
Fuhs and Touretzky (2007), to which we owe the inspiration for the present work.
Our goal is to explain a significantly broader range of phenomena using a somewhat
simpler model, and to resolve a number of lingering empirical puzzles.

Results

Conceptual overview of the model

The computational problem facing the animal is to infer the posterior probability
of each hidden state c given its observations y (e.g., geometric or color features of a
box), as stipulated by Bayes’ rule:

P (c|y) ∝ P (y|c)P (c), (1)

where P (y|c) is the likelihood of the observations under the hypothetical state c,
and P (c) is the prior probability of state c. A more detailed formal description of
these terms can be found in the Materials and Methods. In this section, we describe
intuitively what they mean and how they work.

The animal is presented with observations that are generated by an unknown
number of states through a process that the animal is not aware of (left side of
Fig. 1A). The animal builds an internal model of the world (thought bubble in
Fig. 1A). That model doesn’t have to mimic the world exactly, it simply needs to
be flexible enough to be able to capture the structure that it is presented with.
We suggest that the animal’s internal model provides a generative “recipe” through
which it assumes observations are produced: first a state is sampled from P (c),
and then an observation is sampled from the distribution associated with that state
P (y|c). The job of the animal is to invert this generative process and infer the
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posterior probability of each hidden state c given its observations y. Since different
states could theoretically produce the same observations, the animal is faced with
fundamental ambiguity. The posterior distribution P (c|y) represents the animal’s
uncertainty about the hidden state. As it collects more observations and thereby
reduces its uncertainty, the posterior will tend to progressively concentrate on a
single explanation of which observations come from which states.

Because there is no reason to assume that the animal has a priori knowledge
about the set of states, we allow the state space to potentially grow as the animal
collects new observations. The animal starts off with a single state, and at each new
observation it can assign some probability to a new state or one of its previously
inferred states. As detailed in the Materials and Methods, we accomplish this using
a Bayesian nonparametric prior over hidden states. Importantly, this prior favors
a small number of hidden states, encoding a form of “simplicity bias” or Occam’s
razor.

As mentioned in the Introduction, we assume a one-to-one correspondence be-
tween hidden states and maps. Thus, we transpose the question “did the place field
remap?” to “were these observations generated by the same hidden state?” More
precisely, we report the log posterior probability ratio between 1-state and 2-state
hypotheses (or evidence ratio, for brevity), which we take to be related to the de-
gree of remapping (see Materials and Methods for definitions of two versions of the
evidence ratio: the partition evidence ratio and the state evidence ratio). When the
evidence ratio is near 0, the animal is indifferent between the two hypotheses, and
in this case we expect partial remapping. No remapping occurs when the evidence
ratio is strongly positive (favoring the 1-state hypothesis), rate remapping occurs
when the log probability ratio is weakly positive, and global remapping occurs when
it is strongly negative. Keep in mind, following our overview of the literature in the
Introduction, that these are heuristic categories without strict boundaries. On the
probabilistic view, these categories occupy different points along a spectrum.

To develop some intuitions for how the model works, we begin with a toy example.
We generate observations from a 2D Gaussian with mean µ = [0, 0] and a diagonal
covariance matrix with standard deviations σ = [1, 0.2], such that the distribution
is more spread out along feature 1 than along feature 2. Figure 1B shows a single
observation drawn from that distribution (black x). Conditional on this observa-
tion, we can measure, for each point in the feature space, the state evidence ratio
(i.e., the relative probability that a particular point would be assigned to the same
hidden state as the previous observations as compared to a novel hidden state). The
state evidence ratio is shown as a heat map in Fig. 1B. Points close to the original
observation are more likely to be assigned to the same state as the original observa-
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Figure 1: (A) Schematic of hidden state inference. We impute an internal genera-
tive model to the animal, according to which observations are generated by a small
number of hidden states. States are sampled from the Chinese Restaurant Process,
parametrized by α (see Materials and Methods for details). Each state is associated
with a particular distribution over observations. The animal receives those observa-
tions but does not have direct access to the states that generated them. We model
the animal as probabilistically inverting this generative model by computing the
posterior distribution over hidden states given observations. (B-C) Demonstration
of inference process. Observations are black x’s, background color is the relative
probability of assigning a new observation to same hidden state as black x’s (as
opposed to assigning it to a novel hidden state) after (B) 1 observation and (C) 20
observations.
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tion. Overall, the model is relatively uncertain, reflected in the fact that the state
evidence ratio is near 0 for all points in the panel.

The probability of assigning novel observations to the same state as past observa-
tions changes over the course of learning. Computing the state evidence ratio after
the model has seen 20 draws from the same distribution (black x’s in Fig. 1C), we see
that the model has increased certainty: the probability of assigning a point to the
same hidden state has a higher central peak and falls off more quickly with distance
from the previous observations. Moreover, the model has learned the shape of the
generative distribution.

This example showcases a trade-off of hidden state inference: it can capture the
shape of the data, but requires experience in order to do so.

The effect of sensory cues

One of the first questions asked about hippocampal remapping was which sensory cue
controls whether a map is used. The first study of remapping (O’Keefe and Conway,
1978) found that in an environment with four cues, some place fields disappeared
with the removal of one or two cues, but most place fields maintained their firing
with the removal of any two cues. In more modern terms, removal of a subset of cues
caused partial remapping, but there was not a one-to-one correspondence between
place fields and cues. Thus, from the very beginning it was clear that remapping
is not in response to cues but in response to cue constellations (see also Shapiro
et al., 1997; Fenton et al., 2000; Muller and Kubie, 1987). Each of these studies
involved separately rotating or removing groups of stimuli, finding that many place
fields that rotated when a given stimuli was rotated still maintained their firing when
that stimuli was removed. A similar early result was that of O’Keefe and Speakman
(1987), where cues necessary for orientation of the map were removed, but the place
cell map was maintained. The significance of these results is that the place field
map is responsive to cues but is not controlled by cues in a one-to-one fashion.

Viewing remapping as hidden state inference provides an important insight into
this behavior. Our model posits that the cues jointly inform the posterior over hidden
states. Individual cues will typically only exert a weak effect on the posterior, and
hence exert only a weak effect on remapping.

To simulate the effect of cue configurations on remapping, we assume that the
observation vector consists of four features, each drawn from a Gaussian with mean
0 and standard deviation of 0.3. We provide the model with 20 observations drawn
from that distribution and then provide one of four probe observations. For each
probe, we compute the state evidence ratio (Fig 2).

The first probe is an observation where each feature has a value of 0 (no cues
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changed). The model prefers assigning the probe observation to the same hidden
state as the previous observations, corresponding to no remapping. The second probe
is an observation where the first feature has a value of 1 and the other features have
a value of 0 (cue 1 changed). The third probe is an observation where the first and
last features have a value of 1 and the other features have a value of 0 (cues 1 and 4
changed). For both of these, the model produces an evidence ratio near 0, registering
a high level of uncertainty about the hidden state (i.e., partial remapping). The
fourth probe is an observation where all four features have a value of 1 (all cues
changed), for which the model prefers assigning the probe observation to a new
hidden state, corresponding to global remapping. These simulations demonstrate
how the model is sensitive to the configuration of cues; no one cue completely controls
remapping, consistent with the experimental data reviewed above.

Another aspect of these simulations worth highlighting is the fact that they are
probabilistic. The representation of uncertainty in hidden state identity corresponds
in an important way with the result that hippocampal maps during two experiences
are almost never entirely overlapping nor entirely independent. From the perspec-
tive of our model, this “partial remapping” reflects the inherent uncertainty about
whether different observations are drawn from the same distribution.

Experience-dependent remapping

The previous section addressed the study of how sensory cues control place field
remapping. Another line of research has studied how more diffuse contextual cues
control remapping, but the answer was invariably that it depended on prior experi-
ence (Knierim et al., 1995; Sharp et al., 1990; O’Keefe and Speakman, 1987; Breese et
al., 1989; Knierim et al., 1998; Bostock et al., 1991; Shapiro et al., 1997). One prime
example of this is the role of environmental geometry (the shape of the recording
arena). Initially, it was thought that different geometries necessarily corresponded
to different maps (Muller and Kubie, 1987; Quirk et al., 1992) , but recordings had
always been done in familiar environments. The first group to record throughout
the course of learning found that there was no consistent relationship between en-
vironment shape and inferred hidden state (Lever et al., 2002). In this experiment,
place cells were recorded in rats who were alternately placed in square and circle
boxes occupying the same location in the recording room day after day. Early in
learning, there was limited remapping. Only after extensive experience in the two
boxes did the animals remap between the two boxes (Fig. 3A). This indicates that
the sensitivity to context changes changes with experience. Analogous results have
been found for the effects of experience on remapping in response to other manipula-
tions (Bostock et al., 1991; Shapiro et al., 1997). These effects are hard to explain in
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Figure 2: Observations are generated from a distribution with four features, each
drawn from a Gaussian with mean 0 and standard deviation of 0.3. We train the
model with 20 observations drawn from that distribution. We then compare the
posterior probability of assigning a probe observation to the same hidden state as
the previous observations vs. assigning it to a novel hidden state (Eq. 10 for same
c vs. novel c). The first probe is an observation where each feature has a value
of 0 (no cues changed). The model prefers assigning this probe observation to the
same hidden state as the previous observations, corresponding to no remapping. The
second probe is an observation where the first feature has a value of 1 and the other
features have values of 0 (cue 1 changed). The third probe is an observation where
the first and last features have a value of 1 and the other features have values of 0
(cues 1 and 4 changed). For both of these, the model assigns a state evidence ratio
near 0, representing relatively high uncertainty about hidden state assignment, which
corresponds to partial remapping. The grey background has saturation proportional
to a Gaussian centered at 0 with a standard deviation of 5; values with a grey
background can be heuristically thought of as partial remapping, whereas values
with a white background can be thought of as either complete remapping or lack of
remapping depending on whether 2 states are more likely (negative values) or 1 state
is more likely (positive values). The fourth probe is an observation where all four
features have values of 1 (all cues changed), for which the model prefers assigning
the probe observation to a new hidden state, corresponding to global remapping.
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terms of fixed contextual boundaries governing remapping. It is naturally explained
by the hidden state inference perspective, which posits that uncertainty about hid-
den states evolves as more data are observed. In particular, distinctions between
hidden states are acquired gradually, such that substantial remapping should only
be observed after extensive experience, counteracting the “simplicity bias” favoring
a small number of hidden states.

We simulate these experiments qualitatively in the following way. We take obser-
vations to be 1D for simplicity, where the single dimension is the feature along which
the distinction is learned. For example, in the circle-square experiment (Lever et
al., 2002), the dimension would be the shape of the enclosure. We generate obser-
vations from two Gaussians (corresponding to the circle and square contexts) with
µ1 = −0.5, µ2 = 0.5, σ1 = σ2 = 0.1 (Fig. 3B). We alternate drawing observations
from each distribution. After each pair of draws, we compute the partition evidence
ratio (in this case, the relative probability of the hypothesis that all observations up
to that point were drawn from a single hidden state against the hypothesis that all
observations up to that point had been drawn from two alternating hidden states).

Early in training, there is uncertainty about how many hidden states there are
(Fig. 3C); the evidence provided by the observations is not yet sufficiently strong
to overwhelm the simplicity bias of the prior. As more data are observed, The two-
state hypothesis is eventually favored over the one-state hypothesis. The hidden
state inference perspective thus explains why context-dependent remapping only
emerges gradually with experience.

Stabilization of maps over time

Maps take time to stabilize: repetition of a novel environment induces less map
similarity than repetitions of a familiar environment (Frank et al., 2004; Leutgeb et
al., 2004; Law et al., 2016). In particular, Law et al. (2016) alternated presentation
of two environments. They found that intra-environment map similarity went up
as a function of experience (Fig. 4A). These results are difficult to explain under
the assumption that remapping is induced by the discrepancy between expectations
and current cues exceeding a fixed threshold (Jeffery, 2003). Long-term potentia-
tion (LTP) had been tied to map stabilization (Kentros et al., 1998; Cobar et al.,
2017), but the speed with which LTP can create place fields (single trials; Bittner et
al., 2017) is inconsistent with the slowness of map stabilization. The hidden state
inference perspective offers a different interpretation of map stabilization: as an an-
imal gains more experience with a particular state, it sharpens its representation
of that state (i.e., its uncertainty about the distributional statistics decreases), and
consequently it becomes more confident in recognizing repetitions of that state.
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Figure 3: (A) Data from Lever, et al.
(2002), who compared place cell rep-
resentations between alternating pre-
sentations of square and circle boxes.
Field Divergence is expressed in per-
cent and represents the fraction of
place fields that remap between the
two enclosures. The representations
of the enclosures are initially similar,
but diverge with learning. (B) Sim-
ulated observations (black dots) are
generated from Gaussians centered at
-0.5, 0.5. The model compares the
posterior probability of the observa-
tions coming from 1 inferred hidden
state (red) or 2 inferred hidden states
(blue). (C) The relative probabil-
ity assigned to the observations com-
ing from 2 hidden states vs. 1 hid-
den state (Eq. 7) is shown as a func-
tion of amount of experience. Early
on, there is uncertainty about how
many hidden states there are, whereas
later 2 hidden states is more proba-
ble, similar to the empirical observa-
tions. As in Fig. 2, values with a grey
background can be thought of as par-
tial remapping whereas values with a
white background can be thought of
as either complete remapping or lack
of remapping depending on whether
2 states are more likely or 1 state is
more likely. Note that the axis here
has been flipped relative to Fig. 2 in
order to match the axis of the empir-
ical results shown in panel A.
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From Law, et al. 2016

Figure 4: (A) Data from Law et al.
(2016), showing the spatial correlation of
the hippocampal map in repeated presen-
tations of the same environment over mul-
tiple training days. Initially, the corre-
lation is low, indicating extensive remap-
ping between observations, but over the
course of training the extent of remapping
between observations decreases. (B) For
each observation from the simulations in
Fig. 3, we calculate the relative probabil-
ity of assigning that observation to pre-
vious observations from that hidden state
compared to coming from a novel hidden
state (Eq. 10). The probability associated
with the novel hidden state (and tran-
sitively, with remapping) decreases over
the course of training. (C) Observations
(black dots) are generated from two Gaus-
sians, both of which are centered at 0.
The model compares the posterior prob-
ability of the observations coming from 1
inferred hidden state (red) or 2 inferred
hidden states (blue). D) The relative
probability assigned to the observations
coming from 1 hidden state vs. 2 hid-
den states (Eq. 7) is shown as a function
of amount of experience. Early in train-
ing, the two hypotheses have similar prob-
abilities, whereas later 1 hidden state is
overwhelmingly more probable. This cor-
responds to an increase in certainty over
training, which would translate into a de-
creased tendency to remap, similar to the
empirical observations. Note that the axis
here has been flipped relative to Fig. 3C
in order to match the axis of the empirical
results shown in panel A.
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We can model the dynamics of stabilization using a variant of the simulation
described in the last section (Fig. 3B-C). The generative model in that simulation
matches the experiment of Law et al. (2016) in that observations were drawn in an
alternating fashion from two distinct distributions. At each observation, we take the
log ratio of the probability that the current observation was drawn from the inferred
alternating distributions that the previous observations were assumed to be drawn
from (inferred blue distributions in Fig. 3B) compared to the probability of assigning
to a novel state. The relative probability of assigning to a novel state gradually
decreases over time, corresponding to the emergence of a “stable” map. Another
way to understand map stabilization is to consider observations which are generated
from a single distribution with mean 0. We can consider the same hypotheses as were
considered in Fig. 3, namely, that there are either 1 or 2 hidden states. We consider
the same hypotheses but the actual generative process has the opposite structure as
Fig. 3. Early in learning, the partition evidence ratio is approximately indifferent
between the one-state and two-state hypotheses, but gradually accumulates evidence
in favor of the one-state hypothesis, corresponding to the emergence of a “stable”
map. Indeed, early in learning, the animal does not know whether it is receiving
observations from the simulation of Fig. 3B-C or the simulation of Fig. 4C-D, as
they are indistinguishable. Only after extensive experience is the animal able to
identify which generative process is generating its observations.

Remapping due to non-Sensory changes

Remapping is not solely driven by sensory aspects of experience. For example, place
fields can remap depending on internal variables such as movement direction or task
(Smith and Mizumori, 2006a; Sanders et al., 2019; Wood et al., 2000; Muller et
al., 1994). In general, it is known that place fields can remap depending on which
direction the animal is running on a linear track (Markus et al., 1995; Battaglia et
al., 2004). However, place fields tend not to remap based on running direction in an
open field. This is most clearly shown in Markus et al. (1995). They compared two
conditions, both of which occurred in an open field: one in which the animal was
randomly foraging, and one in which the animal was running between four specific
locations in one of two directions. They found that the extent of remapping in
response to movement direction was larger in the directed foraging condition than
in the random foraging condition (Fig. 5A) despite having the same sensory cues in
the two conditions.

From the perspective of hidden state inference, we can draw an analogy with the
remapping observed after training in the circle and square boxes (Fig. 3), replacing
the sensory features of the environment with the non-sensory information about self-
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motion. In the directed foraging case, observations are clearly separated into two
states (clockwise movement and counterclockwise movement), whereas in the ran-
dom foraging case, there is no consistent partition that could support the inference
of multiple states.

We model this experiment in the following way. Again, we take observations to
be 1-dimensional for simplicity, where the single feature is the animal’s movement
direction. This feature is represented as a circular (angular) variable, as movement
direction is circular. We model the random foraging condition as observations drawn
from a uniform distribution over the circle (red dots in Fig. 5B). We model the
directed foraging as observations drawn from a Von Mises distribution with µ =
0, κ = 10 alternating with a Von Mises distribution with µ = π, κ = 10 (blue dots
in Fig. 5B). For each condition, we separate the observations into two groups with
a line for which the distance from any observations is maximum (red and blue lines
in Fig. 5B). After 10 observations, we ask the model what the relative probability
is that the observations were drawn from a single hidden state or drawn from two
hidden states split by the line of maximum separation. The model assigns greater
probability to the two-state hypothesis for directed foraging. In contrast, it assigns
greater probability to the one-state hypothesis for random foraging (Fig. 5C). This
corresponds to the empirical finding that place fields were more likely to remap
under the directed foraging condition compared to the random foraging condition.

Morph experiments

A persistent puzzle in the field is the inconsistent results from “morph” environments
that interpolate between different geometries (e.g., square and circle). Different labs
have found different results with experimental setups that are not directly compa-
rable (Wills et al., 2005; Leutgeb et al., 2005a; Colgin et al., 2010). We summarize
the past results here and suggest an interpretation that leads to a novel prediction.

In 2005, two groups each performed an experiment to answer the question, “How
does the hippocampus represent a novel environment that is intermediate between
two familiar environments?” Both groups familiarized rats in square and circle en-
vironments, and then tested them in intermediate environments (polygons with a
variable number of sides). The two papers had different results (Fig. 6A), character-
ized at the time in terms of whether the similarity curve had a discrete switch or a
gradual switch. However, this difference is extremely hard to robustly characterize,
considering that the variation in similarity between repetitions of the same environ-
ment was half as large as the entire range of similarity variations for the entire morph
sequence (compare first and last points in Leutgeb et al., 2005a, their Fig. 6E)). The
other difference that was discussed at the time was whether the population response
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Figure 5: (A) Data from Markus, et al., 1995, showing that place field remapping
depends on the animal’s direction more when the animal is running in a stereotyped
path than when the animal is running in random directions. (B) The model re-
ceives circular observations corresponding to the animal’s running direction. The
model either receives observations drawn from a uniform distribution (red dots) or
alternating from two Von Mises distributions with means of 0 and 180 degrees, and
κ = 10 (blue dots). These observations are separated into two groups with a line
that is the farthest from any observations (red and blue lines). (C) The partition
evidence ratio between the hypothesis that all observations having been drawn from
two hidden states separated by the lines in panel B vs. having been drawn from
a single hidden state (Eq. 7) after 10 observations. The model is more likely to
put probability on the hypothesis that there are two hidden states when given the
directional observations as opposed to the uniform observations. This is similar to
the empirical results, where place fields are more likely to remap (more likely to infer
two hidden states) when the animal is running in a directed fashion.
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was coherent or heterogeneous. While both studies showed heterogeneous popula-
tion responses, they did show different levels of heterogeneity, and we discuss this
below.

A much more striking point of comparison was the difference in the extent of
remapping between the extreme square and circle environments. Complete remap-
ping was observed between the square and circle in Wills et al. (2005), whereas
partial remapping was observed in Leutgeb et al. (2005a). We believe that the find-
ings of partial vs. complete remapping is the major difference in the findings of these
papers, and is the one we focus on explaining.

What differences in protocols led to these differences in results? In addition
to all the idiosyncrasies of individual lab protocols, there were two major explicitly
described differences between their protocols. One is that they used different training
protocols. Wills et al. (2005) used a training protocol designed for inducing complete
remapping between square and circle in 6 days, and excluded animals that did not
meet that criterion. Leutgeb et al. (2005a) used a similar training as Lever et
al. (2002, see Fig. 3) for three weeks. The second difference was that Wills et
al. (2005) presented the intermediate shapes in a scrambled order on the test day,
whereas Leutgeb et al. (2005a) presented the intermediate shapes sequentially based
on number of sides on the test day.

The second difference was the focus of several theoretical explanations (Blumen-
feld et al., 2006; Gershman et al., 2014), but a replication of Wills et al. (2005) using
scrambled presentation resulted in limited remapping (Colgin et al., 2010), demon-
strating that a scrambled presentation was not sufficient to force the hippocampus
to use complete coherent remapping. Differences in the training protocol remain
as a possible explanation. However, the problem remains that Colgin et al. (2010)
attempted an exact replication of Wills et al. (2005), but got the opposite result.
These differences can be seen in Fig. 6A.

These results fit into a broader pattern of inconsistent results across two labs. Two
experiments that led to complete remapping in the O’Keefe lab ended up leading
to partial (and/or rate) remapping in the Moser lab. Training in alternating square
and circle environments led to partial remapping initially and to complete remapping
after 18 days in the O’Keefe lab (Lever et al., 2002), but led to partial remapping
after 18 days of comparable training in the Moser lab (Leutgeb et al., 2005b,a).
A 6 day white/morph circle-square training protocol led to complete remapping in
the O’Keefe lab (Wills et al., 2005), but led to partial remapping in the Moser
lab (Colgin et al., 2010). We do not believe either lab’s training to be inherently
superior, but we do wish to point out that there are likely unreported idiosyncrasies
of training that cause animals to consistently progress through partial remapping
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Figure 6: (A) Different experimental protocols give different results for the morph
experiment. The results in the fourth column show the similarities in population
representation of the intermediate morph shapes compared to the square shape. All
values are shown on a scale ranging from 0 to 1, where 1 is complete concordance of
population representations and 0 is random concordance. We classify the results into
two qualitative classes: the first and third rows have results where all levels of morph
result in partial remapping, whereas the second and fourth rows switch between no
remapping and complete remapping as morph level increases. Scrambling during
testing does not seem to be related to this effect. Moreover, the same experimental
protocol can have qualitatively different results in different labs (compare second
and third rows). (B) We provide observations from two alternating Gaussians with
means -0.5 and +0.5, just as in Fig. 3. We test after 2 (red) or 20 (blue) training
observations by providing intermediate values and measuring the relative probability
of being assigned to the same hidden state as the -0.5 mean observations. We thus
predict that both qualitative results can be achieved in the same lab simply by
performing the morph testing at different points of training.
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to global remapping more slowly in the Moser lab than in the O’Keefe lab (at
least during the years 2000-2010). The main implication of this is that remapping
behavior does not have a one-to-one mapping to the experimenter-defined conditions;
rather, remapping behavior responds to a huge array of experiential factors, and the
experimenter is only aware of a subset of these factors. Practically, this means
that attempts to compare remapping behavior must be done between comparable
controlled setups (as performed in the internal comparisons of Colgin et al., 2010),
and comparisons should ideally not be made across labs.

To summarize, various experimental protocols for measuring remapping behavior
in response to intermediate “morph” environments give divergent results, which can
be split into two categories: heterogeneous responses when there is only partial
remapping between the extremes, and population-wide coherent responses when
there is complete remapping between the extremes (Fig. 6A). As we explored above
(Fig. 3), partial remapping and complete remapping can be observed in a single
experimental protocol early and late in training, respectively. We therefore predict
that both sets of results can be observed in the same lab, with the same experimental
protocol, simply by presenting the intermediate “morph” environments early or late
in training.

We show simulations of this prediction in Fig. 6B. Specifically, we compute the
probability that the training observations came from a single hidden state P (c1)
and the probability they came from two hidden states P (c2) according to Eq. 6. We
then calculate the probability that the morph test is assigned to the same hidden
state as the square assuming that the training observations came from two hidden
states P (cprobe = csquare|c2) (Eq. 8). The hypotheses that correspond to the morph
being assigned the same hidden state as the square are S1) that there is a single
hidden state for the training and the morph is from the same state and S2) that
there are two hidden states for the training and the morph is from the same state as
the square. The hypotheses that correspond to the morph being assigned a different
hidden state than the square are D1) that there is a single hidden state for the
training and the morph is from a novel state and D2) that there are two hidden
states for the training and the morph is from the same state as the circle and D3)
that there are two hidden states for the training and the morph is from a novel state.
We take the log posterior ratio between the S hypotheses and the D hypotheses and
plot that in Fig. 6B for varying number of training experiences. The probability of
assigning intermediate “morph” environments to the same hidden state as one of
the extreme environments increases with the amount of training.

Thus, we suggest that a key distinction between classes of past morph results is
whether there is complete or partial remapping between the extreme environments,
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and that complete or partial remapping can be achieved by a wide range of training
protocols (as described throughout the paper) including amount of experience (as
described in Fig. 3).

Animal-to-animal variability

One challenge in the study of hippocampal remapping is that different animals re-
spond differently to the same environments. Indeed, many of the previously dis-
cussed studies reported significant heterogeneity across animals in remapping behav-
ior. Studies of the development of remapping over the course of learning frequently
report that different animals learn at differing rates (Bostock et al., 1991; Lever et
al., 2002). In fact, the variability across animals is frequently a nuisance in running
experiments. The pre-training for one of the morph experiments described above
(Wills et al., 2005) had three different ways that the observations could be parti-
tioned. Out of the six animals they trained, four animals partitioned the observations
in the way the experimenters expected, and the other two animals partitioned the
observations in the other two possible ways (and therefore were excluded from the
rest of the study).

The hidden state inference model offers one way to capture this heterogeneity
across animals. The concentration parameter α (see Materials and Methods) con-
trols the tendency to infer new hidden states when unexpected data are observed.
Variation in this parameter was previously used to model age-dependent (Gersh-
man et al., 2010, 2017) and individual (Gershman and Hartley, 2015) variability in
learning. While partitioning large amounts of cleanly separated data is insensitive
to changes of α over several orders of magnitude, α can have effects on partitioning
of ambiguous or insufficient data. For example, if we take the learning of remapping
explored in Fig. 3, changes in the value of α can alter the speed at which the model
switches from preferring a one-state hypothesis to a two-state hypothesis (Fig. 7A).
Moreover, if we take evidence ratios around 0 as indicative of partial remapping, dif-
ferent α values can lead to different lengths of time spent in the partial remapping
regime, even for the exact same set of experiences.

To explore a second manifestation of animal variability, we ran a simulation re-
sembling the training of Wills et al. (2005). We characterize observations with two
features: shape and color of the enclosure. The white circle is characterized by a 2D
Gaussian with means [0.5, 0.5], the morph circle is characterized by means [0.5, -0.5],
and the morph square is characterized by means [-0.5, -0.5]; all standard deviations
are 0.1. We provided the model with observations from these generative distributions
according to the schedule used by Wills et al. (2005) (Fig. 7B). We then asked the
model to assign an unnormalized posterior probability to the following hypotheses:
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1. Each of the environments were drawn from separate hidden states (Fig. 7C, red
bars), corresponding to “did not show wooden circle to morph-circle pattern
transfer.”

2. The circles were the same and were different from the square (Fig. 7C, blue
bars), corresponding to the selection criterion adopted by Wills et al. (2005).

3. All the experiences were drawn from a single hidden state (Fig. 7C, purple bars),
corresponding to “failed to show rapid remapping in the morph-square and the
wooden circle.”

Different values of α lead to variation in relative preferences for these hypotheses.
These results invite the interpretation that animal variability may be understood

in terms of individual differences in the α parameter (though of course other para-
metric variations might produce some of the same effects).

The effect of cue variability

In this section, we explore an experimental prediction of the model that highlights
one of its key insights: remapping critically depends on past experience. Consider
an environment that is characterized by two features. We can separate animals into
two training groups: one in which feature 1 is highly variable and one in which
feature 2 is highly variable (cyan and magenta dots in Fig 8A). We then probe with
an observation that has a novel value in feature 1 (red x in Fig. 8A). The model
predicts that an animal trained with higher variability in feature 1 will be more
likely to assign the novel observation to the same state as the previous observations
(i.e., not to remap; Fig. 8B). Intuitively, high variability will make the place fields
more “tolerant” of deviations from the central tendency of the distribution.

By analogy, imagine a building with many similar conference rooms. One con-
ference room always has its chairs arranged in a particular configuration (a low
variability context), whereas another conference room frequently has different con-
figurations (a high variability context). Intuitively, a change in the expected con-
figuration in the low variability context will prompt the inference that you must
be in a different room (and hence the place cells in your hippocampus will remap),
whereas a change in the expected configuration in the high variability context will
not. In the high variability context, you expect the unexpected (cf. the concept of
“expected uncertainty” in Yu and Dayan, 2005).
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Figure 7: (A) Simulations from
Fig. 3C with different values of α.
Larger values of alpha lead to a
greater tendency to infer a larger
number of hidden states, and
therefore a faster transition from
preferring the single-state model
to the two-state model. (B) The
training protocol from Wills, et
al. (2005). (C) In red is the prob-
ability assigned to the hypothesis
that the white circle, morph cir-
cle, and morph square are all gen-
erated by separate hidden states.
In blue is the probability assigned
to the hypothesis that the white
circle and morph circle are gener-
ated by the same hidden state and
the morph square is generated by
a separate hidden state, which is
the hypothesis that the authors
expected. In purple is the prob-
ability assigned to the hypothesis
that all of the enclosures are gen-
erated by the same hidden state
(Eq. 6). Different settings of α re-
sult in different preferred assign-
ments of observations to hidden
states, corresponding to the find-
ing that different animals had dif-
ferent remapping behaviors.
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Figure 8: (A) Two training protocols (cyan and magenta) give (B) qualitatively
different hidden state inferences when presented with the same novel observation
(red dot in A). The cyan training is drawn from a Gaussian with mean [-5,0] and
standard deviations [2, 0.1], whereas the magenta training is drawn from a Gaussian
with mean [0,0] and standard deviations [0.1, 2]. The probe is presented after 20
training observations. The state evidence ratio here is the comparison between the
assignment of the probe to the same hidden state as the training samples vs. a novel
hidden state (Eq. 10).
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Discussion

We have proposed that hippocampal remapping provides a window into the process
of hidden state inference. According to our framework, animals receive a stream
of observations (data points), which they attempt to partition according to the
hypothetical hidden states that generated them. Bayesian inference offers a natu-
ral solution to this problem. The specific form of Bayesian nonparametric model
that we employed here has been previously invoked to explain a number of other
hippocampal-dependent behavioral phenomena (Gershman et al., 2010, 2017, 2014).
In this paper, we showed that this model recapitulates a broad range of remapping
phenomena.

Central to our account is the idea that remapping reflects inferences about the
hidden state, and in particular that partial remapping corresponds to high levels of
uncertainty. Manipulations of sensory cues, environmental geometry, and training
can all be understood in terms of their effects on state uncertainty. While this
account has the potential to unify many phenomena under a common theoretical
umbrella, there are still many loose ends and open questions, which we discuss below.

What is the feature space?

Our model takes feature vectors as its inputs, but what are these features? In
our simulations, we allowed them to be highly abstract idealizations. Ultimately,
a biologically grounded theory must specify these features in terms of the inputs
to the hippocampus. Furthermore, it will be necessary to more explicitly specify
what timescale the model is operating on, since different features are relevant at
different timescales. Although we have focused on the timescale of hours to days,
map switches can occur on the subsecond timescale (Olypher et al., 2002; Jezek et
al., 2011; Kelemen and Fenton, 2016).

One general hypothesis about the feature space encoded by the hippocampus is
the successor representation theory (Stachenfeld et al., 2017), which posits that place
cells encode a predictive map of the state space. On this view, the feature inputs to
the hippocampus correspond to state features. This raises the intriguing possibility
that remapping should be sensitive to predictive relationships between states. Many
studies have observed that place cells are modulated by prospective information like
the animal’s future trajectory (e.g., Battaglia et al., 2004; Ferbinteanu and Shapiro,
2003). It is less clear whether there is any evidence for global remapping as a function
of changes in prospective information.
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Approximate inference

As discussed in the first section of the Results, exact inference over assignments of
observations to hidden states is intractable, because the number of possible partitions
is too large. As a result of this intractability, for most of the paper, we have limited
ourselves to comparisons between a small number of hypotheses (selected based
on the fact that most of the posterior probability will be concentrated on these
hypotheses). This should be understood as an analytical heuristic rather than as
an algorithmic theory of how the brain approximates probabilistic inference. A
complete algorithmic theory must explain how the brain deals with arbitrarily large
hypothesis spaces.

One idea is to model the hippocampus as stochastically sampling the hypothe-
sis space (Fox and Prescott, 2010; Savin et al., 2014). According to this view, a
sampling approximation approach would discretely represent each hypothesis with a
frequency proportional to its probability. This fits nicely with the empirical finding
that multiple maps can alternate rapidly (Kelemen and Fenton, 2016, 2010; Jack-
son and Redish, 2007; Kay et al., 2019; Jezek et al., 2011). Some of these findings
suggest an oscillatory implementation, whereby each theta cycle plays the role of a
single sample from the distribution of possible hidden states, and the extent of map
switching corresponds to the degree of uncertainty about hidden state assignment.
Indeed, map switching increases at points of uncertainty (Jezek et al., 2011). We
would additionally predict that measures of map switching such as overdispersion
would decrease over the course of experience in protocols such as that of Lever et
al. (2002) as one hypothesis dominates (i.e., the evidence ratio between alternative
hypotheses gets farther from 0 in Fig. 3C).

Rotation experiments

There are several classes of empirical results that are related to the results explained
in this paper, but not directly explained by our model. For example, in rotation
experiments, the experimenters manipulated cues associated with the environment
itself (“proximal cues” or “maze cues”) and/or manipulated cues associated with
the room that the recording environment was placed in (“distal cues” or “room
cues”). They asked questions such as whether the place cells followed the rotation
of the maze cues or the room cues (Shapiro et al., 1997), and whether the place cells
followed the animal’s own motion or the motion of the cues (Knierim et al., 1998).
The answers to these questions were generally inconclusive, as they were sensitive
to slight differences in protocol across labs. However, a consistent finding was that
the results changed over the course of experience. For example, when a cue was
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repeatedly moved relative to other cues in an unstructured way, the cue lost control
over the rotational alignment of the place fields (Knierim et al., 1995). While we
do not explicitly model spatial relationships in our simulations, Knierim’s finding is
similar to the training variance effect described in Fig 8: when the model is trained
with observations for which a cue has high variance, further variation in that cue is
less likely to cause a new hidden state to be inferred.

Conversely, in Shapiro et al. (1997), the maze cues and room cues were each
rotated 90 degrees in opposite directions. Initially, the place cell representation
split, some following room cues and some following maze cues. However, after a
few repetitions, the place cell representation remapped between the two conditions.
This is reminiscent of the simulations in Fig. 3, where a particular cue manipulation
(square-circle) initially does not cause remapping, but after sufficient repetition,
the place cells remap between the conditions; more evidence has been gathered to
support the hypothesis that two distinct hidden states exist.

Types of remapping

An influential interpretation of the literature has been that there are two main types
of remapping: “global remapping” and “rate remapping”. In particular, it has been
argued that global remapping corresponds to changes in physical location whereas
rate remapping corresponds to changes in condition that occur at those locations
(Leutgeb et al., 2005b; Colgin et al., 2010, 2008; Alme et al., 2014; Lisman et al.,
2017). As discussed in the Introduction, the lines between global remapping and rate
remapping are not so sharp. Global remapping can occur between conditions at the
same physical location (Wills et al., 2005), and rate remapping can occur between
different physical locations (Spiers et al., 2015). Moreover, the same manipulation
can cause global remapping or rate remapping at different points in training (Lever et
al., 2002). Our work provides an explanation for why there are not clear delineations
of which manipulations cause which types of remapping. The animal must infer
hidden states from its observations. Alternative hypotheses must be considered as
long as ambiguity exists about the appropriate assignment of observations to hidden
states. This uncertainty about hidden state assignment can manifest as “partial”
or “rate” remapping. The statistics of these hidden states can be learned over the
course of experience, leading to increased certainty about hidden state assignments.
This increased certainty can be observed as more definitive “global” remapping or
conversely, lack of remapping. One of our key points is that these categories are
better thought of as existing along a continuum defined by state uncertainty.
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Relationship to other theories

How does this proposal relate to other theoretical perspectives on hippocampal
remapping? We can contrast our model with a basic similarity threshold model,
according to which each state is associated with a fixed set of features, and new ob-
servations would be classified as the same or different based on whether they exceed
some threshold of change detection. This model does not capture some of the key
phenomena associated with remapping; in particular, it cannot account for any of
the ways in which learning affects remapping.

One major model of remapping is the attractor network. Based on early work
by Hopfield (1982), the idea is that activity patterns associated with particular ob-
servations are learned by the network so as to be able to recover those activity
patterns when degraded versions are presented. One attractor network implemen-
tation that has been specifically used to model remapping results was proposed by
Blumenfeld et al. (2006). They sought to explain the difference in results between
Wills et al. (2005) and Leutgeb et al. (2005a) by focusing on the scrambled order of
the morph sequence. Their model was a conventional Hopfield network augmented
with a “weight” term to change the pattern strength based on the novelty of that
pattern. This led to attractors that were lumped together when the morph experi-
ences were presented in sequential order instead of in a scrambled order. However,
later work (Colgin et al., 2010) demonstrated that the order of presentation of the
morph experiences was not the decisive factor in the qualitative results of the morph
experiments (as described in more detail in the “Morph Experiments” section of the
Results).

The attractor network perspective can be connected to our hidden state inference
model by examining the probabilistic version of the Hopfield network, known as the
Boltzmann machine (Ackley et al., 1985). The basins of attraction can be understood
heuristically as feature configurations for distinct hidden states. One can make this
heuristic connection more precise by defining an explicitly state-dependent energy
function combined with a distribution over states, which would correspond to a
mixture of Boltzmann machines (Nair and Hinton, 2009; Salakhutdinov et al., 2012).

In computational neuroscience, attractor networks are usually used as mechanistic
descriptions of neuronal dynamics, unlike our hidden state inference model that
operates at a higher level of abstraction. Thus, comparison of the two approaches is
not entirely straightforward. It is possible that an attractor network could be used
as an implementation of parts of the hidden state inference model. For example,
inference about new states vs. old states is conceptually similar to the distinction
between “pattern separation” in the dentate gyrus and “pattern completion” in CA3
(Knierim and Neunuebel, 2015; Rolls and Kesner, 2006). The attractor network
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describes how pattern separation and completion work. The hidden state inference
model describes why pattern separation and completion work the way they do.

Our hidden state inference model is similar in spirit to the probabilistic model of
remapping developed by Fuhs and Touretzky (2007). In that model, each context is
represented by a Hidden Markov Model. Remapping is then formalized as a model
comparison problem. Like our model, their calculation weighs both simplicity of a
hypothetical partition and its fit with the observed data. They use their model to
explain gradual remapping Lever et al. (2002), failure to generalize Hayman et al.
(2003), and some aspects of reversal learning and sequence learning.

Conclusion

Place field remapping has long been one of the most puzzling aspects hippocampal
physiology, yet still lacks a comprehensive theoretical account. In this paper, we have
taken steps towards such an account, starting with a normative formulation of the
problem that we believe remapping is solving, namely hidden state inference. The
algorithmic and biological underpinnings of this theory remain incomplete, setting
a clear agenda for future theoretical work.

Materials and Methods

Generative model

We model the animal’s sensory inputs (observations) as a vector y = [y1, . . . , yD]
consisting of D features. The specific representation of these features varies across
experimental paradigms. The animal assumes that observations are generated by
discrete hidden states. At each time point, a state is stochastically selected accord-
ing to prior P (c), and the observation features are sampled from the observation
distribution associated with that state, P (y|c, θc), where θc represents the param-
eters of the observation distribution for state c. For notational simplicity we will
omit the time index t whenever it is unnecessary for the exposition.

We place a prior P (θc) over the parameters and then marginalize to obtain the
likelihood that a set of m observations Yc = [y1, . . . ,yt, . . . ,ym] came from a single
state c

P (Yc|c) =

∫
θc

[
m∏
t=1

P (yt|c, θc)P (θc)

]
dθc (2)

which we can extend to obtain the likelihood that a set of observations Y came from
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a set of K hidden states c

P (Y|c) =

K∏
k=1

P (Yck|ck) (3)

We model real-valued features with a multivariate normal observation distribution.
The parameter vector is given by θc = (µc,Λc), where µc is the mean vector, and
Λc is the covariance matrix. We place a conjugate normal-Wishart distribution over
these parameters (see Murphy, 2007, for more details), with hyperparameter values
µ0 = 0 (prior mean), κ0 = 0.001 (scale parameter), ν0 = 0.02 (degrees of freedom),
and T0 = 0.02 ∗ I (scale matrix), where I is the D-dimensional identity matrix.

We model circular variables with a Von Mises observation distribution and a
normal-gamma prior over the parameters. The hyperparamters of the prior are given
by: µ0 = 0 (prior mean), κ0 = 0.001 (scale parameter), α0 = 0.01 (shape parameter),
and β0 = 0.01 (rate parameter). Because in this case we cannot marginalize over
parameters analytically, we used numerical integration.

To motivate our prior over hidden states, we start with a few basic desiderata:
(i) the prior should be defined over an unbounded state space, allowing new states
to be continually created; and (ii) the prior should prefer a small number of states,
to facilitate generalization across observations (a form of Occam’s razor). These as-
sumptions are satisfied by a simple nonparametric distribution known as the Chinese
restaurant process (CRP; Aldous, 1985; Gershman and Blei, 2012), which samples
states according to the following sequential process:

P (ct = k|c1:t−1) =


mk

t− 1 + α
if k ≤ K

α

t− 1 + α
if k = K + 1

(4)

where mk is the number of previous observations assigned to state k, K is the
total number of states created prior to time point t, and α ≥ 0 is a concentration
parameter that controls the propensity to create new states. When α = 0, all
observations will be generated by the same state. As α approaches infinity, each
observations will be generated by a unique state. More generally, the expected
number of states after N observations is α logN . Another way of using the CRP
prior is to analytically calculate an unnormalized log probability to a given list of
hidden state assignments c:

logP (c) = K ∗ log(α) +

K∑
k=1

log
(
Γ (mk)

)
+ log

(
Γ (α)

)
− log

(
Γ (T + α)

)
(5)
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We set α = 0.001 for all figures except Fig. 7, in which we explicitly explore the
effects of variation in α. We emphasize that using this prior does not mean that the
world actually generates hidden states through this process; it simply means that
we are imputing this to the animal as its internal model of the world.

Inference

To compute the posterior over hidden states, the likelihood is combined with a
prior over state assignments, P (c), according to Bayes’ rule (Eq. 1). Because we are
typically dealing with a set of observations, and hence a combinatorial space of state
partitions (i.e., all possible assignments of observations to states), exact inference is
intractable. However, because we are generally only interested in a small number
of “plausible” partitions, we can simplify the problem by only assessing the relative
probability of those states. The probability of each of those partitions c given a set
of observations Y

P (c|Y) ∝ P (Y|c)P (c) (6)

In particular, most of our simulations concern the question of whether two or three
sets of observations are assigned to the same or different states. If we assume that
all other partitions have probability close to 0, then we can ignore them without too
much loss in accuracy. We use Eq. 6 in Fig. 7C.

The partition evidence ratio reported in the main text is the log odds ratio between
the posterior probabilities of two hypotheses (partitions c and c′):

partition evidence ratio = log
P (Y|c)P (c)

P (Y|c′)P (c′)
(7)

where Y denotes the set of observations, P (Y|c) is given by Eq. 3 and P (c) is given
by Eq. 5. We use Eq. 7 in Figs. 3C,4D,5C, and 7A.

In some cases, we are interested in computing the posterior probability that a
new observation yt+1 is assigned to a particular state conditional on a hypothetical
assignment of all past observations:

P (ct+1|yt+1,Y1:t, c1:t) ∝ P (yt+1|ct+1,Y1:t, c1:t)P (ct+1|c1:t) (8)

where P (ct+1|c1:t) is from Eq. 4 and P (yt+1|ct+1,Y1:t, c1:t) = P (yt+1|Yck) is the
posterior predictive distribution characterizing the probability of observing a value
of yt+1 generated by a given hidden state ck given all previous observations Yck with
that hidden state assignment. For a Multivariate Normal likelihood function with a
normal-Wishart prior, this is given by:

P (yt+1|Yck) = gentνmk
−d+1

(
µmk

,
Tmk

(κmk
+ 1)

κmk
(νmk

− d+ 1)

)
(9)
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where gent is the generalized Student-t distribution with hyperparameters

νmk
= ν0+mk, µmk

=
κ0µ0+mkȲck

κ0+mk
, Tmk

= T0+mkcov(Yck)+
κ0mk

κ0+mk
(µ0−Ȳck)(µ0−Ȳck)T ,

κmk
= κ0 +mk as discussed in Section 8.3 of Murphy (2007).

The state evidence ratio reported in the main text is the log odds ratio between
the posterior probabilities of two state assignments c and c′ for a given observation
yt+1 given past state assignments c1:t for past observations Y1:t

state evidence ratio = log
P (yt+1|c,Y1:t, c1:t)P (c|c1:t)

P (yt+1|c′,Y1:t, c1:t)P (c′|c1:t)
(10)

We use Eq. 10 in Figs. 1B-C,2,4B, and 8B.
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