CENTER FOR
Brains
Minds+
Machines

CBMM Memo No. 105 April 4, 2020

Do Neural Networks for Segmentation Understand
Insideness?

Kimberly Villalobos*, Vilim Stih*2, Amineh Ahmadinejad*,
Shobhita Sundaram!, Jamell Dozier!, Andrew Francl', Frederico Azevedo!,
Tomotake Sasaki%»?’vl, Xavier Boix"!*

*and T indicate equal contribution
! Center for Brains, Minds and Machines, MIT (USA)
2 Max Planck Institute of Neurobiology (Germany)
3 Fujitsu Laboratories Ltd. (Japan)
* Correspondence to xboix@mit .edu

Abstract

The insideness problem is an image segmentation modality that consists of determining which pix-
els are inside and outside a region. Deep Neural Networks (DNNs) excel in segmentation benchmarks,
but it is unclear that they have the ability to solve the insideness problem as it requires evaluating long-
range spatial dependencies. In this paper, the insideness problem is analysed in isolation, without
texture or semantic cues, such that other aspects of segmentation do not interfere in the analysis. We
demonstrate that DNNs for segmentation with few units have sufficient complexity to solve insideness
for any curve. Yet, such DNNs have severe problems to learn general solutions. Only recurrent net-
works trained with small images learn solutions that generalize well to almost any curve. Recurrent
networks can decompose the evaluation of long-range dependencies into a sequence of local opera-
tions, and learning with small images alleviates the common difficulties of training recurrent networks
with a large number of unrolling steps.

5 This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

Do Neural Networks for Segmentation Understand
Insideness?

Kimberly Villalobos*-!, Vilim Stih*1:2, Amineh Ahmadinejad*-,
Shobhita Sundaram', Jamell Dozier', Andrew Francl', Frederico Azevedo',
Tomotake Sasaki' 3!, Xavier Boix1-*

* and ' indicate equal contribution
I Center for Brains, Minds and Machines, MIT (USA)

2 Max Planck Institute of Neurobiology (Germany)

3 Fujitsu Laboratories Ltd. (Japan)

*® Correspondence to xboix@mit .edu

Abstract

The insideness problem is an image segmentation modality that consists of de-
termining which pixels are inside and outside a region. Deep Neural Networks
(DNNs) excel in segmentation benchmarks, but it is unclear that they have the
ability to solve the insideness problem as it requires evaluating long-range spatial
dependencies. In this paper, the insideness problem is analysed in isolation, without
texture or semantic cues, such that other aspects of segmentation do not interfere
in the analysis. We demonstrate that DNNs for segmentation with few units have
sufficient complexity to solve insideness for any curve. Yet, such DNNs have severe
problems to learn general solutions. Only recurrent networks trained with small
images learn solutions that generalize well to almost any curve. Recurrent networks
can decompose the evaluation of long-range dependencies into a sequence of local
operations, and learning with small images alleviates the common difficulties of
training recurrent networks with a large number of unrolling steps.

1 Introduction

A key component of image segmentation is to determine whether a pixel is inside or outside a
region, ie. the “insideness” problem [39} 40]. This problem involves evaluating long-range spatial
dependencies. Capturing such long-range dependencies may be challenging for artificial neural
networks as pointed out in Minsky & Papert’s historic book Perceptrons [31] and recent works on
capturing other spatial relationships such as containment [20] and connectedness [26].

Deep Neural Networks (DNNs) have been tremendously successful in image segmentation bench-
marks, but it is not well understood whether DNNs represent insideness or how. Insideness has
been overlooked in DNNs for segmentation since they have been mainly applied to the modality of
“semantic segmentation”, ie. labelling each pixel with its object category [33} 144, 141} 13}, 7} 29, 22]].
The same could be said for DNNs for more advanced segmentation modalities and applications that
have been recently introduced, e.g. segmentation of individual object instances rather than object
categories [23), 125,137, 16} |16, 130, 28|, [14] and generating realistic images [46]. In such cases, insid-
eness has not been considered because solutions rely on texture, shape and other visual cues. Yet,
investigating whether DNN's understand insideness could reveal new insights about their ability to
capture long-range spatial relationships, which is key for a full image understanding.

In this paper, we investigate analytically-derived and learned representations in DNNSs for insideness.
We take the reductionist approach by isolating insideness such that other components of image
segmentation do not provide additional cues and ensure that our analysis focuses on the long-

range spatial dependencies involved in insideness. Thus, we analyze the segmentation of Jordan
curves, ie. closed curves synthetically generated without texture nor object category.

We analytically demonstrate that state-of-the-art network architectures, ie. DNNs with dilated con-
volutions [44 [7]] and convolutional LSTMs (ConvLSTMs) [43]], among other networks, can exactly
solve the insideness problem for any curve with network sizes that are easily implemented in practice.
The proofs draw on algorithmic ideas from classical work on visual routines [39, 40], namely, the
ray-intersection method and the coloring method, to derive equivalent neural networks that implement
these algorithms. In a series of experiments with synthetically generated closed curves, we evaluate
the capabilities of these DNNs to learn to solve the insideness problem. The experiments show the
DNN's do not learn general solutions for insideness, even though the architectures are complex enough
to capture the long-range relationships. This is because the DNNs learn to recognize specific features
of the family of curves of the training set that do not generalize to new families of curves. Only
the recurrent networks, such as the ConvLSTM, when trained on small images generalize to almost
any given curve of any size. This is because training on small images alleviates the well-known
difficulties of training recurrent networks with a large number of unrolling steps. Also, it facilitates
learning a strategy that deals with long-range dependencies by breaking them into local operations
that are reusable for any curve, even curves in larger images that are not seen during training.

These results add to the growing body of work that shows that DNNs have problems in learning to
solve some elemental visual tasks [26, 27, 142, [36]. Shalev-Shwartz et al. [36] introduced several
tasks that DNNs can in theory learn, as demonstrated mathematically, but were unable to solve in
practice, even for the training dataset, due to difficulties in the optimization with gradient descent.
In contrast, the challenges we report for insideness are related to poor generalization rather than
optimization, as our experiments show the networks succeed in solving insideness for the family of
curves seen during training. Linsley ef al. [26] and Kim ef al. [19] introduced new architectures
that better capture the long-range dependencies in images. Here, we show that the training strategy
has a significant impact on capturing the long-range dependencies, as even DNNs with the capacity
to capture such dependencies do not learn a general solution with standard training strategies. Our
results highlight the need to decompose the long-range dependencies in a sequence of local operations,
that can be learned with recurrent networks by controlling the number of unrolling steps with the
image size.

2 The Reductionist Approach to Insideness

We now introduce the paradigm that will serve to analyze the ability of DNNs to solve insideness.
Rather than using natural images, we use synthetic stimuli that solely contains a closed curve. In this
way, we do not mix the insideness problem with other components of image segmentation found in
natural images, e.g. discontinuity of segments, representation of the hierarchy of segments, efc. This
reductionist methodology that we apply here has the advantage of minimizing the interference of
these other factors in the analysis of the abilities of DNNs to capture long-range spatial dependencies.
Note that if we would include other factors, it will obfuscate if the behaviour of the network is caused
by some of the individual factors or by the combination of them.

Let X € {0,1}"*" be an image or a matrix of size N x N pixels. We use X;; and (X), ,
indistinguishably, to denote the value of the image in position (%, j). We use this notation for indexing
elements in any of the images and matrices that appear in the rest of the paper. Also, in the figures we
use white and black to represent 0 and 1, respectively.

Insideness refers to finding which pixels are in the inside and which ones in the outside of a closed
curve. We assume without loss of generality that there is only one closed curve in the image and that
it is a digital version of a Jordan curve [21], ie. a closed curve without self-crosses nor self-touches
and containing only horizontal and vertical turns, as shown in Fig.[T] We further assume that the
curve does not contain the border of the image. The curve is the set of pixels equal to 1 and is denoted
by Fx = {(i.)| Xi; = 1}.

The pixels in X that are not in Fx can be classified into two categories: the inside and the outside of
the curve [21]]. We define the segmentation of X as S(X) € {0, 1}V *¥, where

_J 0 if X; ; is inside
S(X)i; = { 1 if X; ; is outside ~ M

(b) (©)

Figure 1: Intersections of the Ray and the Curve. (a) Example of ray going from one region to the
opposite one when crossing the curve. (b) Example of ray staying in the same region after intersecting
the curve. (c) All cases in which a ray could intersect a curve. In the three cases above the ray travels
from one region to the opposite one, while in the two cases below the ray does not change regions.

TTTTTTTTTTI

and for the pixels in Fx, the value of S(X'), ; can be either 0 or 1. Note that unlike object recognition,
the definition of insideness is rigorously and uniquely determined by the input image itself.

The number of all digital Jordan curves is enormous even if the image size is relatively small, e.g. it
is more than 10%7 for the size 32 x 32 (App. . In addition, insideness is a global problem; whether
a pixel is inside or outside depends on the entire image, and not just on some local area around the
pixel. Therefore, simple pattern matching, ie. memorization, is impossible in practice.

3 Can DNNs for Segmentation Solve Insideness?

The universal approximation theorem [8]] tells us that even a shallow neural network is able to solve
the insideness problem. Yet, it could be that the amount of units is too large to be implementable in
practice. In this Section, we introduce two DNN architectures that are able to solve the insideness
problem at perfection and they are easily implementable in practice. One architecture is feed-forward
with dilated convolutions [44, [7]] and the other is recurrent, a ConvLSTM [43]].

3.1 Feed-Forward Architecture with Dilated Convolutions

Dilated convolutions facilitate capturing long-range dependencies which are key for segmentation [44,
7. To demonstrate that there are architectures with dilated convolutions that can solve the insideness
problem, we borrow insights from the ray-intersection method. The ray-intersection method [39, 40],
also known as the crossings test or the even-odd test [12], is built on the following fact: Any ray that
goes from a pixel to the border of the image alternates between inside and outside regions every time
it crosses the curve. Therefore, the parity of the total number of such crossings determines the region
to which the pixel belongs. If the parity is odd then the pixel is inside, otherwise it is outside (see
Fig.[Th).

The definition of a crossing should take into account cases like the one depicted in Fig.[Ip, in which
the ray intersects the curve, but does not change region after the intersection. To address these cases,
we enumerate all possible intersections of a ray and a curve, and analyze which cases should count as
crossings and which ones should not. Without loss of generality, we consider only horizontal rays.
As we can see in Fig. [Tk, there are only five cases for how a horizontal ray can intersect the curve.
The three cases at the top of Fig. [Tk, are crosses because the ray goes from one region to the opposite
one, while the two cases at the bottom (like in Fig. E})) are not considered crosses because the ray
remains in the same region.

Let X (i,5) € {0,1}2*N be a horizontal ray starting from pixel (i, j), which we define as
X(i,4) = [Xijs Xijs1, Xijra, -, Xin, 0,0, 2

where zeros are padded to the vector if the ray goes outside the image, such that X (i,7) is always of

dimension N. Let X (i,) - X (i + 1, j) be the inner product of the ray starting from (i, j) and the
ray starting from the pixel below, (i 4 1, j). Note that the contribution to this inner product from the
three cases at the top of Fig. [Tk (the crossings) is odd, whereas the contribution from the other two
intersections is even. Thus, the parity of X (i, 5) - X (i + 1, j) is the same as the parity of the total
number of crosses and determines the insideness of the pixel (i, 7), ie.

S(X)s5 = parity (X(5,7) X0 +1,5)) .)

Dilated convolutions, also called atrous convolutions, are convolutions with upsampled kernels, which
enlarge the receptive fields of the units but preserve the number of parameters of the kernel [44,[7]].
In App. [B] we prove that equation [3]can be easily implemented with a neural network with dilated
convolutions. The demonstration is based on implementing the dot product in equation [3| with
multiple layers of dilated convolutions, as they enable capturing the information across the ray. The
number of dilated convolutional layers is equal to logy(N) (recall N is the image size). The dot
product can also be implemented with two convolutional layers, but with the drawback of using a
long kernel of size 1 x N. The multiple dilated convolutions using 3 x 3 kernels are equivalent
to the long kernel of 1 x N. Finally, the parity function in equation [3|is implemented by adapting
the network introduced by [36]], which yields a two-layer convolutional network with a maximum
of 3N/2 kernels of 1 x 1 size (see App. . Thus, DNNs with dilated convolutions can solve the
insideness problem and are implementable in practice, since the number of layers and the number of
kernels grow logarithmically and linearly with the image size, respectively. In Fig.[B.4] we depict the
neural network architecture and the process to derive the equivalence with dilated convolutions.

Note that the proof introduces the smallest network we could find that solves the insideness problem
with dilated convolutions. Larger networks than the one we introduced can also solve the insideness
problem, as the network size can be reduced by setting kernels to zero and layers to implement the
identity operation.

3.2 Recurrent Architecture: Convolutional LSTMs

Convolutional LSTM (ConvLSTM) [43] is another architecture designed to handle long-range
dependencies and is used in state-of-the-art segmentation architectures [41} 24} 2]]. We now show that
a ConvLSTM with just one kernel of size 3 x 3 is sufficient to solve the insideness problem. This is
achieved by exploiting its internal back-projection of the LSTM, ie. the flow of information from a
posterior layer to an anterior layer.

Our demonstration is inspired by the coloring method [39, 40], which is another algorithm for the
insideness problem. This algorithm is based on the fact that neighboring pixels not separated by the
curve are in the same region. We present a version of this method that will allow us to introduce
the network with an LSTM. This method consists of multiple iterations of two steps: (i) expand
the outside region from the borders of the image (which by assumption are in the outside region)
and (ii) block the expansion when the curve is reached. The blocking operation prevents the outside
region from expanding to the inside of the curve, yielding the solution of the insideness problem, as
depicted in Fig.[Za. We call one iteration of expanding and blocking coloring routine.

We use E! € {0,1}¥*¥ (expansion) and B? € {0,1}V*¥ (blocking) to represent the result of the
two operations after iteration ¢. The coloring routine can then be written as (i) E* = Expand (Bt_l)

and (ii) B* = Block (E?, Fx). Let B*~! maintain a value of 1 for all pixels that are known to be
outside and 0 for all pixels whose region is not yet determined or belong to the curve. Thus, we
initialize B to have value 1 (outside) for all border pixels of the image and 0 for the rest. In step
(i), the outside region of B~ is expanded by setting also to 1 (outside) its neighboring pixels, and
the result is assigned to E*. Next, in step (ii), the pixels in E? that were labeled with 1 (outside)
and belong to the curve, Fx, are reverted to 0 (inside), and the result is assigned to B*. This
algorithm ends when the outside region can not expand anymore, which is at most after N2 iterations
(worst case where each iteration expands the outside region by only one pixel). Therefore, we have

EN = §(X).

In App.|D|we demonstrate that a ConvLSTM with one kernel applied on an image X can implement
the coloring algorithm. In the following we provide a summary of the proof. Let I, Ft, Ot, C?,
and H® € RV*Y be the activations of the input, forget, and output gates, and cell and hidden states
of a ConvLSTM at step t, respectively. By analyzing the equations of the ConvLSTM (equation[TT]
and equation [12]in App. @) we can see that the output layer, O, back-projects to the hidden layer,
H'. In the coloring algorithm, E* and B? are related in a similar manner. Thus, we define O = E*
(expansion) and H? = %Bt (blocking). The % factor is a technicality due to non-linearities, which is
compensated in the output gate and has no relevance in this discussion.

We initialize H® = 1 B (recall B is 1 for all pixels in the border of the image and 0 for the rest).
The output gate expands the hidden representations using one 3 x 3 kernel. To stop the outside region
from expanding to the inside of the curve, H' takes the expansion output O and sets the pixels

i T D
. T a T
! ! ! !
: T ; 1
o o S e e IR a Rl ARR A 2 ER PR
@ (b)

Figure 2: The Coloring Method with ConvLSTM. (a) The coloring method consists of several iterations
of the coloring routine, ie. expanding the outside region and blocking it on the curve. (b) Diagram of
the ConvLSTM implementing the coloring method, we highlight the connections between layers that
are used for insideness. =X denotes the element-wise “Boolean not” of X.

at the curve’s location to 0 (inside). This is the same as the element-wise product of O! and the
“Boolean not” of X, which is denoted as —X. Thus, the blocking operation can be implemented
as H' = 1(0O' ® —X), and can be achieved if C' is equal to =X. In Fig. [2b we depict these
computations.

In App. [D] we show that the weights of a ConvLSTM with just one kernel of size 3 x 3 can be
configured to reproduce these computations. A key component is that many of the weights use a
value that tends to infinity. This value is denoted as ¢ and it is used to saturate the non-linearities
of the ConvLSTM, which are hyperbolic tangents and sigmoids. Note that it is common in practice
to have weights that asymptotically tend to infinity, e.g. when using the cross-entropy loss to train
a network [38]]. In practice, we found that saturating non-linear units using ¢ = 100 is enough to
solve the insideness problem for all curves in our datasets. Note that only one kernel is sufficient
for ConvLSTM to solve the insideness problem, regardless of image size. Furthermore, networks
with multiple stacked ConvLSTM and more than one kernel can implement the coloring method by
setting unnecessary ConvLSTMs to implement the identity operation (App. D) and the unnecessary
kernels to 0.

Finally, we point out that there are networks with a much lower complexity than LSTMs that can
solve the insideness problem, although these networks rarely find applications in practice. In App.
we show that a convolutional recurrent network as small as having one sigmoidal hidden unit per
pixel, with a 3 x 3 kernel, can also solve the insideness problem for any given curve.

4 Can DNNs for Segmentation Learn Insideness?

After having identified DNNs that with few units have sufficient complexity to solve the insideness
problem, we focus on analyzing whether these solutions can be learnt from examples. In the following,
we first describe the experimental setup and then analyze the generalization capabilities of the DNNs
trained in standard manner.

4.1 Experimental Setup

Recall that the goal of the network is to predict for each pixel in the image whether it is inside or
outside of the curve.

Datasets. Given that the number of Jordan curves explodes exponentially with the image size, a
procedure that could provide curves without introducing a bias for learning is unknown. We introduce
three algorithms to generate different types of Jordan curves. For each dataset, we generate 95K
images for training, 5K for validation and 10K for testing. All the datasets are constructed to fulfill
the constraints introduced in Sec. 2| In addition, for testing and validation sets, we only use images
that are dissimilar to all images from the training set. Two images are considered dissimilar if at least
25% of the pixels of the curve are in different locations. In the following, we briefly introduce each
dataset (see App. [F]for details). Fig. [3p, shows examples of curves for each dataset.

- Polar Dataset (32 x 32 pixels): We use polar coordinates to generate this dataset. We randomly

Test Acc. on Polar Test Acc. on Polar

= I
X 100 = £ 100 T
Examples of Jordan Curves of Each Dataset -~ \ X RN N
5 (5] 7’ N ~
v \ o . N ~,
5 0 v D g 98— Dilated \ ® “— Dilated
8 = D 7 D 3 — = Ray-int. \ @ 50 —= Rayint. '\
~ X gg <~ UNet \ © —— UNet \\
a — 2:1STM \ £ —— 2:LSTM \
o C_ £ C_ o .
5 L = 1-LSTM ~~o 5 o 1-LSTM .
o [} o
<
s

£

4 9 14 19 24 4 9 14 19 24

Polar Dataset Polar Dataset

(b) ()

:?] IEJ'—I.| o' & Dilated 2-LSTM
Generalization Acc. on Polar Generalization Acc. on Polar
100 100
Fn o
5 Train Set 5 Train Set

L
©3

24-Polar

-
W
h

i[5 4o

B S S
5 < <
v o [§]
) Q
© —_4 © —_
o 50 —09 o 50 —9
) == @ — 14 e — 14
ol o= =1 [£ — 19 £ — 19
5 — 24 5 — 24
(a) a 0 a 0
4 9 14 19 24 4 9 14 19 24
Polar - Test Set Polar - Test Set

(d) (e)

Figure 3: Datasets and Results in Polar. (a) Images of the curves used to train and test the DNNs.
Each row correspond to a different dataset. Intra-dataset evaluation using (b) per pixel accuracy and
(c) per image accuracy. Evaluation using the testing set of each Polar datasets for (d) Dilated and
(e) 2-LSTM networks.

select the center of the figure and a random number of vertices that are connected with straight lines.
The vertices are determined by their angles and distance with respect to the center of the figure. We
generate 5 datasets with different maximum amount of vertices, namely, 4, 9, 14, 19 and 24, and refer
to each dataset by this number, e.g. 24-Polar.

- Spiral Dataset (42 x 42 pixels): The curves are generated by growing intervals of a spiral in random
directions from a random starting point. The spiral has a random thickness at the different intervals.
- Digs Dataset (42 x 42 pixels): We generate a rectangle of random size and then, we create “digs” of
random thicknesses in the rectangle. The digs are created sequentially a random number of times.

Evaluation metrics. From the definition of the problem in Sec. 2] the pixels in the Jordan curve Fx
are not evaluated. For the rest of the pixels, we use the following metrics:

- Per pixel accuracy (%): It is the average of the accuracy for inside and outside, evaluated separately.
In this way, the metric weights the two categories equally, as there is an imbalance of inside and
outside pixels.

- Per image accuracy (%): We use a second metric which is more stringent. Each image is considered
correctly classified if all the pixels in the image are correctly classified.

Architectures. We evaluate the network architectures that we analyzed theoretically and also other
relevant baselines:

- Feed-forward Architectures: We use the dilated convolutional DNN (Dilated) introduced in Sec.[3.1]
We also evaluate two variants of Dilated, which are the Ray-intersection network (Ray-int.), which
uses a receptive field of 1 x N instead of the dilated convolutions, and a convolutional network
(CNN), which has all the dilation factors set to d = 1. Finally, we also evaluate UNet, which is a
popular architecture with skip connections and de-convolutions [33]].

- Recurrent Architectures. We test the ConvLSTM (/-LSTM) corresponding to the architecture
introduced in Sec.[3.2] We initialize the hidden and cell states to 0 (inside) everywhere except the
border of the image which is initialized to 1 (outside), such that the network can learn to color by
expanding the outside region. We also evaluate a 2-layers ConvLSTM (2-LSTM) by stacking one
1-LSTM after another, both with the initialization of the hidden and cell states of the /-LSTM. Finally,
to evaluate the effect of such initialization, we test the 2-LSTM without it (2-LSTM w/o init.), ie. with
the hidden and cell states initialized all to 0. We use backpropagation through time by unrolling 60,
30 or 10 time steps for training (we select the best performing one). For testing, we unroll until there
is no change in the output labeling.

Learning. The parameters are initialized using Xavier initialization [10]]. The derived parameters
we obtained in the theoretical demonstrations obtain 100% accuracy but we do not use them in this
analysis as they are not learned from examples. The ground-truth consists on the insideness for each
pixel in the image, as in equation [T} For all experiments, we use the cross-entropy with softmax as

Dilated UNet 2—-LSTM 2 — LSTM, w/olnit.

100

Polar -80
v
(7 -60
B Spiral
A -40
[

Digs

28 [20
0
Polar Spiral Both Polar Spiral Both Polar Spiral Both Polar Spiral Both Polar Spiral Both
Train Set Train Set Train Set Train Set Train Set

Figure 4: Cross-dataset Results. Evaluation of the networks trained in 24-Polar, Spiral and both
24-Polar and Spiral datasets. The tesing sets are 24-Polar, Spiral and Digs datasets.

Dilated UNet 2-LSTM Dilated UNet 2-LSTM

DODED HNEE
(bl - - - -
FMEMEN EREE

Figure 5: Qualitative Examples. Networks trained in 24-Polar and Spiral dataset fail to segment in
the Digs dataset.

the loss function averaged accross pixels. Thus, the networks have two outputs per pixel (note that
this does not affect the result that the networks are sufficiently complex to solve insideness, as the
second output can be set to a constant threshold of 0.5). We found that the cross-entropy loss leads
to better accuracy than other losses. Moreover, we found that using a weighted loss improves the
accuracy of the networks. The weight, which we denote as a, multiplies the loss relative to inside,
and (1 — «) multiplies the loss relative to outside. This « is a hyperparamter that we tune and can be
equal to 0.1, 0.2 and 0.4. We try batch sizes of 32, 256 and 2048 when they fit in the GPUs’ memory
(12GB), and we try learning rates from 1 to 1075 (dividing by 10). We train the networks for all
the hyperparameters for at least 50 epochs, and until there is no more improvement of the validation
set loss. In the following, we report the testing accuracy for the hyperparameters that achieved the
highest per image accuracy at the validation set. We test a large set of hyperparameters (we trained
several thousands of networks per dataset), which we report them in detail in App.

4.2 Results

We evaluate the DNNSs trained in the standard manner, ie. using backpropagation with the labeled
datasets as described previously.

Intra-dataset Evaluation. In Fig[3p and ¢ we show per pixel and per image accuracy for the
networks trained on the same Polar dataset that are being tested. Dilated, 2-LSTM and UNet achieve
a testing accuracy very close to 100%, but Ray-int. and I-LSTM perform much worse. Training
accuracy of Ray-int. and 1-LSTM is the same as their testing accuracy (Fig. [.6p and b). This indicates
an optimization problem similar to the cases reported by [36]], as both Ray-int. and 1-LSTM are
complex enough to generalize. It is an open question to understand why backpropagation performs
so differently in each of these architectures that can all generalize in theory. Finally, note that the per
pixel accuracy is in most cases very high, and from now on, we only report the per image accuracy.

Cross-dataset Evaluation. We evaluate if the networks that have achieved very high accuracies
(Dilated, 2-LSTM and UNet), have learnt the general solution of insideness that we introduced in
Sec. E} To do so, we train on one dataset and test on the different one. In FigEkl and e, we observe
that Dilated and 2-LSTM do not generalize to Polar datasets with larger amount of vertices than the

> p BENGSE Ul s B
w%@@@ &5’4’&@@[
T@@ﬁ@@@ QET%@@@

Figure 6: Visualization of the Units Learnt by Dilation. Each block are the 9 images that produce the
maximum activation of a units in a convolutional layer across the test set. The gray dot indicates the
location of the unit in the feature map. Fig. |IL7| shows more examples.

t=0 t=4 t=8 t=12 t=16 t=20 t=0 t=4 t=8 t=12 t=16 t=20

m
H ’\H\ﬁ

o

H@

ﬂ.l

\\7]-'

C(z)

O“’ ex.0

oM ex.1

.l‘ ’ ‘ J
Figure 7: Activation Maps of the Learnt Representations by 2-LSTM. Each row corresponds to a

different layer and each colum to a different time step. For the first stacked LSTM, we show two
different features maps (ex.1 and ex.0).

Polar dataset on which they were trained. Only if the networks are trained in 24-Polar, the networks
generalize in all the Polar datasets. The same conclusions can be extracted for UNet (Fig. [.6f).

We further test generalization capabilities of these networks beyond the Polar dataset. In this more
broad analysis, we also include the CNN and 2-LSTM w/o init, by training them on 24-Polar, Spiral
and both 24-Polar and Spiral, and test them on 24-Polar, Spiral and Digs separately. We can see in
Fig. A that all tested networks generalize to new curves of the same family as the training set. Yet, the
networks do not generalize to curves of other families. In Fig.[5] we show qualitative examples of
failed segmentations produced by networks trained on 24-Polar and Spiral and tested on the Digs
dataset.

Furthermore, note that using a more varied training set (“Both”) does not necessarily lead to better
cross-dataset accuracy in all cases. For example, for UNet and 2-LSTM w/o init., training on Polar
achieves better accuracy in Digs than when training on “Both”. Also, for Dilated, training on “Both”
harms its accuracy: the accuracy drops more than 6% in 24-Polar and Spiral. In this case, the training
accuracy is close to 100%, which indicates a problem of overfitting. We tried to address this problem
by regularizing using weight decay, but it did not improve the accuracy (App. H).

Understanding the Lack of Generalization. We visualize the networks to understand why the
representations learnt do not generalize. In Fig.[6] we analyze different units of Dilated trained
on 24-Polar and Spiral. We display two units of the same kernel from the second and sixth layers,
by showing the nine images in the testing set that produce the unit to be most active across all
images [43]]. For each image, we indicate the unit location in the feature map by a gray dot. The
visualizations suggest that units of the second layer are tuned to local features (e.g. Unit 19 is tuned
to close parallel lines), while in layer 6 they are tuned to more global ones (e.g. Unit 27 captures

the space left in the center of a spiral). Thus, the units are tuned to characteristics of the curves in
the training set rather than to features that could capture the the long-range dependencies to solve
insideness, such as the ones we derived theoretically.

In Fig. |7} we display the feature maps of 2-LSTM trained on 24-Polar and Spiral. The figure shows
the feature maps of the layers at different time steps. We can see that the network expands the borders
of the image, which have been initialized to outside. Yet, it also expands the curve and it is impossible
to know the direction of expansion with only local operations, as in one step of the convLSTM. Note
that our analytical solution only expands the borders of the image (see Fig.[9]for a visualization of
the analytical solution).

Training in Natural Images. Finally, we evaluate if training with the large-scale datasets in natural
images solves the generalization issues that we reported before. We use the off-the-shelf state-
of-the-art architectures, namely DEXTR [30] for instance segmentation and DeepLabv3+ [5] for
semantic segmentation, which have been trained on PASCAL VOC 2012 [9]] and ImageNet [35]].
These methods fail to determine the insideness for a vast majority of curves, even after fine-tuning
in the Both dataset (Deeplabv3+ achieved 36.58% per image accuracy in Both dataset and 2.18%
in Digs, see implementation details and qualitative examples in App. [K).

5 Learning the Coloring Routine with Small Images

Training recurrent networks with backpropagation through time consists of applying backpropagation
to the unrolled version of the network. Recall that for the insideness problem the prediction error
is evaluated after the last unrolling step. Thus, depending on the image size and the shape of the
curve a large number of unrolling steps may be required to train the network (e.g. the number of
unrolling steps for the networks shown in Section is bounded by N?2). It is well known that for a
large number of unrolling steps backpropagation through time has difficulties capturing long-range
relationships [4]]. Moreover, the memory requirements are proportional to the number of unrolling
steps, making it difficult to scale in practice.

A plethora of attempts have been made to alleviate the problems of learning with a large number of
unrolling steps, e.g. [15, 32, |11]. Here we introduce a simple yet effective strategy to reduce the
number of unrolling steps to learn insideness. Our strategy consists of training the network with small
images as they require a smaller number of unrolling steps. To test the network with bigger image
sizes, we just unroll it a larger number of steps. Since the recurrent network can learn the coloring
routine (Section[3.2), it is possible to generalize to larger images and more complex curves. As we
have shown before, this routine does not contain long-range operations because it just takes into
account 3 X 3 neighbourhoods; the long-range relationships are captured by applying the coloring
routine multiple times.

Note that by using small images there is the risk that the dataset lacks enough variability and the
network does not generalize beyond the few cases seen during training. Thus, there is a trade-off
between the variability in the dataset and the number of unrolling steps required. In the following, we
explore this trade-off and show that adjusting the image size and the number of unrolling steps leads
to large gains of generalization accuracy.

5.1 Experimental Setup

The Random Walk Dataset. Polar, Spiral and Digs datasets are hard to adapt to small images
without constraining the dataset variability. We introduce a new family of curves which we call the
Random Walk dataset. The algorithm to generate the curves is based on a random walk following the
connectivity conditions of the Jordan curve we previously introduced. It starts by selecting a random
location in the image and at every iteration chooses a valid direction with uniform probability among
all possible directions. If there are no available directions to expand in, the algorithm backtracks until
there are, and continues until the starting point is reached. In Fig.[8h, we show several examples of
the curves in images of different sizes.

Architecture. In order to show the generality of our results, we test the 2-LSTM and another recurrent
neural network which we denote as RNN. We conducted an architecture search to find a recurrent
network that succeeded: a convolutional recurrent neural network with a sigmoidal hidden layer and
an output layer that is backwardly connected to the hidden layer. The kernel sizes are 3 x 3and 1 x 1

LSTM Tested on 42x42pix size

RNN Tested on 42x42pix size

2 8100 & 8100
Examples of Curves of the Random Walk Dataset g . ¢ %
v -
[© o
o
» B E B @ =
] ﬁ — Polar] ﬁ
§ < = Spiral E <
—_ c
ST oY I i | 55 o 55 o
10 20 30 40 10 20 30 40
Training Image Size Training Image Size
(b) (©)
o g | N | g
— LSTM Trained on 18x18pix size RNN Trained on 14x14pix size
= Tested on 42x42pix size To Tested on 42x42pix size
& g 100 & g 100
.‘n P
S x 0 x
[L g.
o 50 g 50
< g X — Polar [— Polar
N F w m § < = Spiral E < = Spiral
- c —— Dig P —— Dig
0 0
g0 g0

()

35 10 20 30
Number of Unrolling Steps
During Training

(d)

35 10 20 30
Number of Unrolling Steps
During Training

()

Figure 8: Datasets and Results of Controling the Number of Unrolling Steps. (a) Images of the curves
of the Random Walk dataset used to train the recurrent networks with different image sizes. Each row
correspond to a different image size. Cross-dataset evaluation (per image accuracy) using the Polar,
Spiral and Digs testing sets for (b) 2-LSTM and (c) RNN networks. Evaluation of generalization
accuracy based on increasing numbers of unrolling steps for (d) 2-LSTM and (e) RNN network.

for the hidden and output layers, respectively, and we use 5 kernels. Observe that this network is
sufficiently complex to solve the insideness problem, because it is the network introduced in App. [E]
with an additional layer and connections.

Learning. We train both the 2-LSTM and the RNN on the Random Walk dataset on 7 different image
sizes (from 8 x 8 to 42 x 42 pixels) and test it with the original images of the 24-Polar, Spiral and
Digs datasets (42 x 42 pixels). To explore the effect of the number of unrolling steps, for each training
image size we train the networks using 5, 10, 20, 30 and 60 unrolling steps.

5.2 Results

In Fig.[Bp and ¢, we show the cross-dataset accuracy for the 2-LSTM and RNN, respectively, for
different training image sizes. The optimal number of unrolling steps is optimized for each training
image size. To evaluate the cross-dataset generalization accuracy we apply the trained models to
the full size images of the Polar, Spiral, and Digs datasets, using 60 unrolling steps (larger number
of unrolling steps does not improve the accuracy). Note that when the networks are trained with
small images (14 x 14 is best for RNN, 18 x 18 is best for 2-LSTM), at least 80% of the images in all
the datasets are correctly segmented. This is a massive improvement of the cross-dataset accuracy
compared with the networks trained with large image sizes, as shown in previous section (Fig. @)
and confirmed here again with the Random Walk dataset (less than 40% of the images are correctly
segmented in Spiral and Digs datasets).

In Fig.[Bd and e, we show the performance of 2-LSTM and RNN, trained with their optimal training
image size, when varying the number of unrolling steps. We can observe that both networks generalize
with a small number of unrolling steps and fail to generalize as the number of unrolling steps is
increased. Also, note that as expected, 2-LSTM is more robust than the RNN to large numbers of
unrolling steps during training. These positive results demonstrate that training with smaller images
and number of unrolling steps is extremely useful in enabling different types of recurrent networks to
learn a general solution of insideness across different families of curves not seen during training.

Furthermore, the feature maps of both 2-LSTM and RNN show that the solution implemented by the
network is the Coloring Routine, as the features maps are a non-binary version of the theoretical
solution in Fig. O rather than the learned solution with big images (Fig.[7), which does not generalize
because it expands the border of the curve. Note that the Coloring Routine emerges in the network
and we do not enforce it in any way besides training the network with small images and small number
of unrolling steps. Note that we could enforce the network to learn the Coloring Routine by providing
the ground-truth produced by the routine at each step rather than waiting until the last step. In App.
we show that this per-step strategy also leads to successful cross-dataset generalization accuracy. This

10

t=0 t=4 t=8 t=12 t=16 t=20 t=0

DEOE [LG50
Oooee (1)

Figure 9: Visualization of Convolutional LSTM with the Mathematically Derived Parameters. We
can see that only the border of the image (outside) is propagated, and not the curve, as in the learnt
solution.

t=8 t=12 t=16 t=20

1)

ow
of

HW
HO

cw

result is however less interesting as it requires the per-step ground-truth derived from the analytical
solution.

6 Conclusions and Future Work

We have shown that DNNs with dilated convolutions and convolutional LSTM networks with few
units are sufficiently complex to solve the insideness problem for any given curve. Yet, when using the
standard training strategies, the units in these networks become specialized to detect characteristics
of the curves in the training set and only generalize to curves of the same family as the training. We
introduced a strategy to alleviate this limitation by showing that recurrent networks learn the coloring
routine. The coloring routine breaks the evaluation of long-range relationships into local operations
and when trained with small images, it generalizes substantially better to new families of curves as it
alleviates the well-known difficulties of training recurrent networks with a large number of unrolling
steps.

We also hope that this research will help establish the reductionist approach to understand DNNS,
such that specific problem components are understood by minimizing the interference of other
factors. In future work, we plan to use the reductionist approach to tackle other important aspects of
segmentation beyond insideness (e.g. the discontinuity of segments and the hierarchical structure of
segments). Also, we hope that this research can lead to improvements of state-of-the-art in image
segmentation and in other applications that require understanding of complex spatial relationships.
Insideness can be especially helpful when there are few cues available besides the boundaries of the
objects, ie. when there is lack of texture and color, such as in cartoons or sketches, or when objects
have different textures and shapes from those seen during training.

Acknowledgements. We are grateful to Tomaso Poggio for his insightful advice and warm
encouragement. We also thank Shimon Ullman and Pawan Sinha for helpful feedback and discussions.
This work is supported by the Center for Brains, Minds and Machines (funded by NSF STC award
CCF-1231216), Fujitsu Laboratories Ltd. (Contract No.40008401) and the MIT-Sensetime Alliance
on Artificial Intelligence.

References
[1] A140517: Number of cycles in an n x n grid. In The On-Line Encyclopedia of Integer Sequences. [Online].
Available: https://oeis.org/A140517,

[2] M.Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari. Recurrent residual convolutional neural
network based on u-net (r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955, 2018.

[3] V.Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A deep convolutional encoder-decoder architecture
for image segmentation. TPAMI, 2017.

[4] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 1994.

[5] L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with atrous separable
convolution for semantic image segmentation. ECCV, 2018.

11

https://oeis.org/A140517

(6]

(7]

[8

—

(9]

[10]

(11]

(12]

[13]
[14]
[15]
(16]
(17]
(18]
[19]
(20]
[21]

[22]

(23]
(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

L.-C. Chen, A. Hermans, G. Papandreou, F. Schroff, P. Wang, and H. Adam. MaskLab: Instance
segmentation by refining object detection with semantic and direction features. In CVPR, 2018.

L.-C. Chen, G. Papandreou, 1. Kokkinos, K. Murphy, and A. L. Yuille. DeepLab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI, 2018.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303-314, 1989.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In
AISTATS, 2010.

A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. Memory-efficient backpropagation
through time. In NIPS, 2016.

E. Haines. Point in polygon strategies. In P. Heckbert, editor, Graphics Gems 1V, pages 24-46. Academic
Press, 1994.

F. Harary. Graph Theory. Addison-Wesley, 1969.

K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In ICCV, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997.
R. Hu, P. Dolldr, K. He, T. Darrell, and R. Girshick. Learning to segment every thing. In CVPR, 2018.

H. Iwashita, Y. Nakazawa, J. Kawahara, T. Uno, and S. Minato. Fast computation of the number of paths
in a grid graph. In The 16th Japan Conference on Discrete and Computational Geometry and Graphs
(JCDCG?2 2013), Tokyo, Sept. 2013.

A. M. Karavaev and H. a. Iwashita. Table of n, a(n) for n = 0..26. In The On-Line Encyclopedia of Integer
Sequences. [Online]. Available: https://oeis.org/A140517/b140517.txt.

J. Kim, D. Linsley, K. Thakkar, and T. Serre. Disentangling neural mechanisms for perceptual grouping.
In ICLR, 2020.

J. Kim, M. Ricci, and T. Serre. Not-so-clevr: learning same—different relations strains feedforward neural
networks. Interface focus, 2018.

T. Y. Kong. Digital topology. In L. S. Davis, editor, Foundations of Image Understanding, pages 73-93.
Springer, 2001.

F. Lateef and Y. Ruichek. Survey on semantic segmentation using deep learning techniques. Neurocomput-
ing, 2019.

K. Li, B. Hariharan, and J. Malik. Iterative instance segmentation. In CVPR, 2016.

R. Li, K. Li, Y.-C. Kuo, M. Shu, X. Qi, X. Shen, and J. Jia. Referring image segmentation via recurrent
refinement networks. In CVPR, 2018.

Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional instance-aware semantic segmentation. In
CVPR, 2017.

D. Linsley, J. Kim, V. Veerabadran, C. Windolf, and T. Serre. Learning long-range spatial dependencies
with horizontal gated recurrent units. In NeurIPS, 2018.

R. Liu, J. Lehman, P. Molino, F. P. Such, E. Frank, A. Sergeev, and J. Yosinski. An intriguing failing of
convolutional neural networks and the coordconv solution. In NeurIPS, 2018.

S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation network for instance segmentation. In CVPR,
2018.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR,
2015.

K.-K. Maninis, S. Caelles, J. Pont-Tuset, and L. Van Gool. Deep extreme cut: From extreme points to
object segmentation. In CVPR, 2018.

M. L. Minsky and S. A. Papert. Perceptrons: An Introduction to Computational Geometry. MIT Press, 1st
edition, 1969.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In
International conference on machine learning, 2013.

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015.

A. Rosenfeld. Connectivity in digital pictures. J. ACM.

12

https://oeis.org/A140517/b140517.txt

[35]

(36]
(37]

(38]

[39]
[40]
[41]

[42]
[43]

[44]
[45]
[40]

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 2015.

S. Shalev-Shwartz, O. Shamir, and S. Shammabh. Failures of gradient-based deep learning. In ICML, 2017.

G. Song, H. Myeong, and K. Mu Lee. SeedNet: Automatic seed generation with deep reinforcement
learning for robust interactive segmentation. In CVPR, 2018.

D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient descent on
separable data. JMLR, 2018.

S. Ullman. Visual routines. Cognition, 1984.
S. Ullman. High-Level Vision: Object Recognition and Visual Cognition. MIT Press, 1st edition, 1996.

F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci, and A. Courville. ReSeg:
A recurrent neural network-based model for semantic segmentation. In CVPR Workshops, 2016.

X. Wu, X. Zhang, and X. Shu. Cognitive deficit of deep learning in numerosity. In AAAI, 2018.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo. Convolutional LSTM network:
A machine learning approach for precipitation nowcasting. In NIPS, 2015.

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In /CLR, 2016.
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In CVPR, 2017.

13

(a) (b)

Figure A.1: Subgraph Representations of Figures. (a) A figure in an image of size 5 x 5 pixels (left)
and its subgraph representation in a grid graph of 5 x 5 vertices (right). (b) Cycles that are not digital
Jordan curves (top) and their correspondents (bottom).

Table 1: Lower bounds (LBs) of the number of digital Jordan curves in N X N images that do not
contain border pixels.

I N[s]7] 9]] 31 \ 33 \ 35] 55 |
(LB [1][13]213] - [1.203x10 [1.157x 10" | 3.395 x 105 | -~ | 6.71 x 10" |

A Number of Digital Jordan Curves

We now introduce a procedure to derive a lower bound of the number of Jordan curves in an image. We
represent an image of size N X N pixels by using a grid graph (square lattice) with N x N vertices. We
employ 4-adjacency for black pixels and corresponding grid points, and 8-adjacency for white pixels and their
counterpart. Then, a curve (the set of black pixels) corresponds to a subgraph of the base grid graph (Fig.[ATh).

In this representation, a digital Jordan curve is defined as a subgraph specified by a sequence of vertices
(vo,v1,...,vr) satisfying the following conditions [34} 21]:

1. L>4,
2. v, = v, if and only if » = s, and
3. v, is 4-adjacent to v, ifand only if r = s £ 1 (mod L + 1).

Note that conditions[I]and [2] defines a cycle [13] in a grid graph. Therefore, any digital Jordan curve is a cycle
but not vice versa. Figure[A.Tp shows examples of cycles that are not digital Jordan curves.

The numbers of all cycles in grid graphs of different sizes were computed up to 27 x 27 vertices [17,1]], and we
utilize this result to get lower bounds for the number of digital Jordan curves with the following considerations.

Although a cycle in a grid graph is not necessarily a digital Jordan curve as shown above, we can obtain a digital
Jordan curve in a larger image from any cycle by “upsampling” as shown in Fig.[A2h. Note that there are other
digital Jordan curves than the ones obtained in this manner (therefore we get a lower bound with this technique).
See Fig.[A2p for examples.

We also consider “padding” shown in Fig.[A.3]to assure that a digital Jordan curve does not contain the border of
a image (this is what we assume in the main body of the paper).

Taking everything into consideration, we can obtain a lower bound of the number of digital Jordan curves in
an N X N image that does not contain border pixels utilizing the above-mentioned result [[17} 1], upsampling
and padding. Table[T]shows lower bounds obtained in this way. For example, starting with the row 2 of [18]]
in [1]] (this represents the number of all cycles in the grid graph with 3 x 3 vertices), we get a lower bound 13
for the number of digital Jordan curves in 5 x 5 images by considering the upsampling and get the same number
as a lower bound for the number of digital Jordan curves that do not contain border pixels in 7 X 7 images by
considering the padding.

14

(a) (b)

Figure A.2: “Upsampling" Operation and Its Limitations. (a) Depiction of “upsampling” operation.
(b) Digital Jordan curves that cannot be obtained by the upsampling shown in (a). (Left) The issue
is the place of the digital Jordan curve. We can get the same curve on the upper-left, upper-right,
lower-left and lower-right corners but cannot get the one in the center. (Right) The issue is the length
of the side. We cannot get a side with 4 vertices (4 pixels) nor with even number vertices (pixels) in
general.

Figure A.3: Depiction of “Padding".

B Insideness with Dilated Convolutional Networks

We first introduce a feed-forward convolutional DNN for which there exist parameters that reproduce equation 3}
Then, we show that one of the layers in this network can be better expressed with multiple dilated convolutions.

B.1 Convolutional DNN to Implement the Ray-Intersection Method

The smallest CNN that we found that implements the ray-intersection method has 4-layers. As we show in the
following, the first two layers compute X (¢, 7) - X (¢ + 1, 7), and the last two layers compute the parity. We use

H™ ¢ RY*N and [-]+ to denote the activations of the units at the k-th layer, and the ReLU activation function,
respectively. Fig.[B.4h depicts the architecutre.

First and Second Layer: Inner product. For the sake of simplicity, we only use horizontal rays, but the
network that we introduce can be easily adapted to any ray direction. The first layer implements all products
needed for the inner products across all rays in the image, ie. X; j - Xiy1,5, V(¢, 7). Note that there is exactly

one product per pixel, and each product can be reused for multiple rays. For convenience, H. 1(1]) represents the

product in pixel (i,), ie. H, 1(1]) = X, ; - Xi41,5. Since the input consists of binary images, each product can be
reformulated as

@

o _J1 i X=X, =1
©d 0 otherwise ’

This equality can be implemented with a ReLU: Hi(,lj) =[1-Xi;+1 X;41,; —1]4+. Thus, H®Y isa
convolutional layer with a 2 x 1 kernel that detects the intersections shown in Fig. [Tk. This layer can also be
implemented with a standard convolutional layer with a 3 x 3 kernel, by setting the unnecessary elements of the
kernel to 0.

The second layer sums over the products of each ray. To do so, we use a kernel of dimension 1 x [NV with weights
equal to 1 and bias equal to 0, ie. HZ(? =11xN - Hz(lj) =)Z'(i,j) . X’(z + 1,7), in which 174 s denotes the

15

P ”/ G '/ Sy

1 3C/2 1
(@) (b)

Figure B.4: Dilated Convolutions from the Ray-Intersection Method. (a) The receptive field colored
in green has size 1 x N, and it can be substituted by an equivalent network composed of multiple
dilated convolutions. (b) The 1 x NN kernel of the ray-intersection network is equivalent to multiple
dilated convolutional layers. The figure shows an horizontal ray of activations from different layers,
starting from the first layer H(1). The green arrows indicate the locations in the ray that lead to the
desired sum of activations to implement the 1 x NN kernel, ie. the sum of the ray.

matrix of size I x J with all entries equal to 1. Zero-padding is used to keep the kernel size constant across the
image.

Note that the shape of the kernel, 1 x N, is not common in the DNN literature. Here, it is necessary to capture
the long-range dependencies of insideness. We show in the next subsection that it can be substituted by multiple
layers of dilated convolutions.

Third and Fourth Layers: Parity. To calculate the parity of each unit’s value in H®, we borrow the DNN
introduced by [36] (namely, Lemma 3 in the supplemental material of the paper). This network obtains the parity
of any integer bounded by a constant C. The network has 3C'/2 hidden ReLUs and one output unit, which is 1 if
the input is even, 0 otherwise (see App.[C|for details).

We apply this parity network to all units in H 2 via convolutions, reproducing the network for each unit. Since
aray through a closed curve in an N x NN image can not have more than N crossings, C'is upper bounded by N.
Thus, the third layer has 3N /2 kernels, and both the third and output layer are convolutions with a 1 x 1 kernel.
At this point we have shown that the DNN explained above is feasible in practice, as the number of kernels is
O(N), and it requires no more than 4 convolutional layers with ReLUs. The network has a layer with a kernel of
size 1 X N, and next we show that this layer is equivalent to several layers of dilated convolutions of kernel size
3 x 3.

B.2 Dilated Convolutions to Implement the 1 x NV kernel

‘We use *4 to denote a dilated convolution, in which d is the dilation factor. Let H € RN XN be the units of a
layer and let K € R*** be a kernel of size k x k. A dilated convolution is defined as follows: (H g4 K)m =
Z_Lk/szqu/% Hitav,j+dw - Kow, in which Hyy gy, jtdw is 0 if 2 + dv or j + dw are smaller than O or
larger than N, ie. we abuse notation for the zero-padding. Note that in the dilated convolution the kernel is
applied in a sparse manner, every d units, rather than in consecutive units. See [44}[7] for more details on dilated
convolutions.

Recall the kernel of size 1 X N issetto 11xn so as to perform the sum of the units corresponding to the ray in

the first layer, ie. Do, oy Hi(’lj-)ﬂ.

using the following 3 x 3 kernel:

We can obtain this long-range sum with a series of dilated convolutions

K= ©)

o OO
o= O
o= o

First, we apply this K to the H W through *; in order to accumulate the first two entries in the ray, which
yields: (H(Z)) (H(l) *1 K) = 2 o<v<t Hl(lj)ﬂ As shown in Fig. [B.4b, to accumulate the next
entries of the r;yi we can apply K w1th a dilated convolution of dilation factor d = 2, which leads to
(H) =2 0cwaa H f J> "~ To further accumulate more entries of the ray, we need larger dilation factors.
It can belseen in Fig.[B-4p that these dilation factors are powers of 2, which yield the following expression:

(H(”)M —(H Ve k) = > HD ©)

%,J
0<v<2l=2

16

Observe that when we reach layer | = log,(IN) + 2, the units accumulate the entire ray of length
N.ie. Y ocpen HZUJ)JFU Networks with dilation factors d = 2' are common in practice, e.g. [44] uses
these exact dilation factors.

In summary, DNNs with dilated convolutions can solve the insideness problem and are implementable in practice,
since the number of layers and the number of kernels grow logarithmically and linearly with the image size,
respectively.

C Parity Network by [36]

To calculate the parity of each unit’s value in H) we borrow the DNN introduced by Shalev-Shwartz et
al. (namely, Lemma 3 in the supplemental material of [36]). This network obtains the parity of any integer
bounded by a constant C. The network has % hidden units with ReLUs and one output unit, which is 1 if the
input is even, 0 otherwise. Since such a network requires an upper bound on the number whose parity is being
found, we define C' as the maximum number of times that a horizontal ray can cross Fx . This number can be
regarded as an index to express the complexity of the shape.

There is a subtle difference between the network introduced by [36]] and the network we use in the paper. In [36],
the input of the network is a string of bits, but in our case, the sum is done in the previous layer, through the
dilated convolutions. Thus, we use the network in [36] after the sum of bits is done, ie. after the first dot product
in the first layer in [36].

To calculate the parity, for each even number between 0 and C (0 included), {27 | 0 < ¢ < |C/2]}, the network
has three hidden units that threshold at (2i — 1), 2¢ and (2i + 1), ie. —0.5,0,0.5,1.5,2,2.5,3.5,4,4.5, ...
The output layer linearly combines all the hidden units and weights each triplet of units by 2, —4 and 2.
Observe that when the input is an odd number, the three units in the triplet are either all below or all above
the threshold. The triplets that are all below the threshold contribute O to the output because the units are
inactive, and the triplets that are all above the threshold also contribute 0 because the linear combination is
2(2i — %) — 4(2i) + 2(2i + 1) = 0. For even numbers, the triplet corresponding to that even number has
one unit below, equal and above the threshold. The unit that is above the threshold contributes 1 to the output,
yielding the parity function.

D Implementing the Coloring Routine with a Convolutional LSTM

Here we prove that a ConvLSTM can implement the coloring routine, namely, the iteration of the expansion and
the blocking operations. A ConvLSTM applied on an image X is defined as the following set of layers (see [43]
for a comprehensive introduction to the ConvLSTM):

I'—¢o (Wa:z X + Whi « B! + bi) 7 (7
Ft:a<W”f*X+th*Ht_1+bf), ®)
C' = tanh (W’ « X +Whe s HL 4 bc) , ©)
C'=F'oCc™'+I'0C", (10)
Ot:o(W“*X+W’“’*Ht_1+b"), (11)
H'=0'®tanh (C"), (12)

where I, F!, Ct, O and H' € RV*Y are the activation of the units of the input, forget, cell state, output
and hidden layers at ¢, respectively. Note that C* has been decomposed with the help of the auxiliary equation
defining C"*. Note also that each of these layers use a different set of weights that are applied to X and to
H* denoted as W e RV *Y with superindices that indicate the connections between layers, e.g. W*? are the
weights that connect X to I. Similarly, the biases are denoted as b € RV XY with the superindices indicating
the layers. The symbols * and © denote the (usual, not dilated) convolution and the element-wise product,
respectively. Finally, o and tanh are the sigmoid and the hyperbolic tangent, which are used as non-linearities.

We can see by analyzing equation |1 1|and equation [12]that the output layer, O, back-projects to the hidden
layer, H®. In the coloring algorithm, E* and B* are related in a similar manner. Thus, we define O° = E*
(expansion) and H'® = %Bt (blocking), as depicted in Fig. ‘ The % factor will become clear below, and it
does not affect the correctness. We initialize H® = %BO (recall B is 1 for all pixels in the border of the image
and O for the rest). We now show how to implement the iteration of the expansion and the blocking operations
with the ConvLSTM:

17

(i) Expansion, O": We set the output layer in equationin the following way:

of:a(2q13X3*Ht—l—g1NxN). (13)
Note that this layer does not use the input, and sets the convolutional layer W"° to use a 3 x 3 kernel that is
equal to 2q13xs, in which ¢ is a scalar constant, and the bias equal to —4 1 nx n. For very large values of
g, this layer expands the outside region. This can be seen by noticing that for a unit in H*~!, if at least one
neighbor has value 1/2, then O ; = limy— o 0(q) = 1. Also, when all neighbouring elements of the unit are
0, then no expansion occurs because Of ; = limg— 00 o(—2) = 0.

(ii) Blocking, H*: To stop the outside region from expanding to the inside of the curve, H* takes the expansion
output O and sets the pixels at the curve’s location to 0 (inside). This is the same as the element-wise product
between O" and the element-wise “Boolean not” of X, which is denoted as =X . Thus, the blocking operation
can be implemented as H' = %(Ot ® —=X). Observe that if C* = - X, this is equal to equation of the
LSTM, because tanh(0) = 0 and tanh(1) = 1/2, ie.

1
H'=0'©tanh (C') = ;0" © -X. (14)
We can obtain Cct = —X, by imposing I' = =X and C* = I‘, as shown in Fig. . To do so, let
W = —q11x1, WM = Onxn,and b = 21 nxnN,and equationbecomes the following expression:
I' = lim O'(*q11><1*X+g1N><N)~ (15)
q—ro0 2
Observe that when ¢ tends to infinity, we have I} ; = limg— oo o(4) = 1 when X;; = 0 and Il; =

limg—oo 0(—%) = 0 when X; ; = 1, which means I = —X. Next, to obtain C* = I", we set W*/ =

W = W = Whe = Oy, b7 = —q1 nxn and b° = g1 yx . This leads to the desired result:
F'= lim 0 (—qInxn) = Onxn, (16)

q— o0

C' = lim tanh (¢I1nxn) = 1InxnN,
q—o0
C'=0nunOC" ' +I'01nun =I'=-X. (17)

Thus, the coloring method can be implemented with a network as small as one ConvLSTM with one kernel. A
network with more than one kernel and multiple stacked ConvLSTM can also solve the insideness problem for
any given curve. The kernels that are not needed to implement the coloring method can be just set to 0 and the
ConvLSTM that are not needed should implement the identity operation, ie. the output layer is equal to the input.
To implement the identity operator, equation[IT]can be rewritten in the following way:

O' = lim U(qllxl*X—gleN) (18)
q— o0 2

where W"° = 01 is to remove the connections with the hidden units, and ¢ is the constant that tends to infinity.

Observe that if X; ; = 1, then O' = limy—00 0(g/2) = 1. If X; ; = 0, then O* = limy—, 0 0(—q/2) = 0.

Thus, the ConvLSTM implements the identity operation.

E Coloring Routine with a Sigmoidal Convolutional RNN

There are other recurrent networks simpler than a ConvLSTM that can also implement the coloring algorithm.
We introduce here a convolutional recurrent network that uses sigmoids as non-linearities. Since it is a
convolutional network, for the sake of simplicity we just describe the operations done to obtain an output pixel
in a step. The network has only one hidden layer, which also corresponds to the output of the network. Let
{ht ke ;. ; be the hidden state of the output pixel indexed by i, j and its 4-neighbourhood, at step ¢. Let
X;,; be the only relevant input image pixel. A necessary condition is that the outputs of the sigmoid should
asymptotically be close to 0 or 1, otherwise the coloring routine would fade after many steps. It is easy to check

that hf,";l =0 (q (Z keN;, hi, —5X;; —1/ 2)) implements the coloring routine, where q is the factor that
ensures saturation of the sigmoid.

F Dataset Generation

In Fig. [F5] we show more examples of curves in the datasets. In the following we provide a more detailed
description of the algorithms to generate the curves:

18

Examples of Jordan Curves of Each Dataset

b 1% ERNE
51

4-Polar
Spiral

B

RN
Qﬂjﬂ

B [
(¢ Y olpoon) PEE TR
oY dol Yol ¥ S LT
O n VY el o e T T G sl =
e Poe R I I I (I
(9 a3 9™ W] o () YLl

Figure F.5: Datasets. Images of the curves used to train and test the DNNs. Each row correspond to a
different dataset.

- Polar Dataset (32 x 32 pixels): We use polar coordinates to generate this dataset. We randomly select the center
of the figure and a random number of vertices that are connected with straight lines. These lines are constrained
to follow the definition of digital Jordan curve in Sec.[2]in the main paper (and App.[A]in this supplementary
material). The vertices are determined by their angles, which are randomly generated. The distance with respect
to the center of the figure are also randomly generated to be between 3 to 14 pixels away from the center.

We generate 5 datasets with different maximum amount of vertices, namely, 4, 9, 14, 19 and 24. We refer to
each of these datasets as Polar with a prefix with the amount of vertices.

- Spiral Dataset (42 x 42 pixels): The curves in these data set are generated from a random walk. First, a starting
position is chosen uniformly at random from [10, 20] x [10, 20]. Then, a segment of the spiral is built in the
following way: a random direction (up, down, left, right) and a random length 7 from 3 to 10 are chosen so that
the walk is extended by turning r pixels in the given direction. However, such extension can only happen if
adding a random thickness ¢ € {1, 2, 3,4} to both sides of this segment does not cause self intersections. These
segments are added repeatedly until there is no space to add a new segment without violating the definition of a
Jordan curve.

- Digs Dataset (42 x 42 pixels): We generate a rectangle of random size and then, we create “digs” of random
thicknesses in the rectangle. The number of “digs” is a random number between 1 to 10. The digs are created
sequentially and they are of random depth (between 1 pixel to the length of the rectangle minus 2 pixels). For
each new “dig”, we made sure to not cross previous digs by adjusting the depth of the “dig”.

G Hyperparameters

In this Section we report all the tried hyperparameters for all architectures. In all cases, the convolutional layers
use zero-padding.

- Dilated Convolution DNN (Dilated): This network was introduced in Sec.[3.1] We use the same hyperparameters
as in [44]]: 3 x 3 kernels, a number of kernels equal to 2! x {2,4, 8}, where [is the number of layers and ranges
between 8 to 11, with d = 2" (the first layer and the last two layers d = 1). The number of kernels in the layer
that calculates the parity can be {5, 10, 20, 40, 80}.

- Ray-intersection network (Ray-int.): This is the architecture introduced in Sec. @ which uses a receptive field
of 1 x N instead of the dilated convolutions. The rest of the hyperparameters are as in Dilated.

- Convolutional DNN (CNN): To analyze the usefulness of the dilated convolutions, we use the Dilated architec-
ture with all dilation factors d = 1. Also, we try adding more layers than in Dilated, up to 25.

- UNet: This is a popular architecture with skip connections and de-convolutions. We use similar hyperparameters
as in [33]]: starting with 64 kernels (3 x 3) at the first layer and doubling this number after each max-pooling;
atotal of 1 to 3 max-pooling layers in all the network, that are placed after sequences of 1 or 2 convolutional
layers.

19

- Convolutional LSTM (1-LSTM): This is the architecture with just one ConvLSTM, introduced in Sec. @ We
use backpropagation through time by unrolling 60, 30 or 10 time steps for training (we select the best performing
one). For testing, we unroll until there is no change in the output labeling. We initialize the hidden and cell states
to O (inside) everywhere except the border of the image which is initialized to 1 (outside).

- 2-layers Convolutional LSTM (2-LSTM): We stack one convolutional LSTM after another. The first LSTM has
64 kernels, and the hidden and cell states are initialized as in the 1-LSTM.

- 2-layers Convolutional LSTM without initialization (2-LSTM w/o init.): this is the same as the 2-LSTM
architecture the hidden and cell states are initialized to 0 (outside).

H Additional Experiments of Feed-Forward Networks

In Fig.[] we have observed that Dilated trained on both 24-Polar and Spiral datasets, obtains a test accuracy of
less than 95% on these datasets while the accuracy in the training set is very close to 100%. We added weight
decay in all the layers in order to regularize the network. We tried values between 10™° to 1, scaling by a factor

of 10. In all these experiments we have observed overfitting except for a weight decay of 1, in which the training
never converged.

Also, note that the CNN does not have this overfitting problem. Yet, the number of layers needed is 25, which is

more than the double than for Dilated, which is 9 layers. We added more layers to Dilated but the accuracy did
not improve.

I Additional Figures and Visualizations

UNet
- Train Acc. on Polar 3 Train Acc. on Polar . Generalization Acc. on Polar
X 100 = S 100 = ° 100
< ~x ~ //'*-\ _____ ~o S \
S \\ %] ’ \ ~ U Train Set
o . N ~ v}

8 98— pilated \ © —— Dilated © — 4
5 — = Ray-int. \\ g 50 = == Ray-int. N % 50 —9
X 96 UNet \ © = UNet \\ © — 14
1 — 25T \ £ — 215TM N € — 19
= - = 1-LSTM A\ - — = 1-LSTM \ = — 24
g 5 o0 v-—= &

4 9 14 19 24 4 9 14 19 24 4 9 14 19 24

Polar Dataset Polar Dataset Polar - Test Set
(@) (b) (c)

Figure 1.6: Training Accuracy in the Polar Dataset. Intra-dataset evaluation using (a) per pixel
accuracy and (b) per image accuracy on the training set, which are very similar to the test accuracy
reported in Fig. EF) and c. (c) Intra-dataset evaluation of Unet.

20

Layer 2

Unit 0 Unit 2 Unit 12 Unit 24 Unit 26 Unit 28
BRI NEHEREEREREE =
o 0% BN gy | &< P 8 9 BRI
oS8 PR O (B o 22T & 1 @
Unit 0 Unit 3 Unit 4 Layerd Unit 7 Unit 10 Unit 14
Ve S7ESe (T b (] v [B) et |
NEG YT o0 0l wla =
7w v 5 w A IR
Unit 2 Unit 4 Unit 8 Layer 6 Unit 16 Unit 17 _ Unit 21
w © b5 BRI S0 [T B a0 p Lo [@) <[9
= [T)] o P 2 &Pl ln © e
e [JT®™ o @y p [o] a2 w15

Figure 1.7: More examples of Visualization of the Units Learnt by Dilation.

21

hidden t-1
input
hidden t

hidden t-1
input
hidden t

hidden t-1
input

hidden t

hidden t-1 [| al | ufun Jiminfu il B [B B [Eeful fulnful uE
input
hidden t

Figure J.8: Learning the Coloring Routine. 64 possible inputs and outputs of the training set of the
per-step training of the RNN for the relevant inputs.

J Per-step Learning of the Coloring Routine

The Coloring Routine can be learned by enforcing to each step the ground-truth produced by the routine, rather
than waiting until the last step. The inputs of a step are the image and the hidden state of the previous step.
Recall that the Coloring Routine determines that a pixel is outside if there is at least one neighbor assigned to
outside that is not at the curve border. All input cases (64) are depicted in Fig. leaving the irrelevant inputs
for the Coloring Routine at 0. During learning, such irrelevant pixels are assigned randomly a value of 0 or 1.

We could not make any of the previously introduced LSTM networks fit a step of the coloring routine due
to optimization problems. Yet, we found that the RNN network was able to learn with the per-step training.
The RNN reached 0 training error about 40% of the times after randomly initializing the parameters. After
training the RNN in one step, we unroll it and apply it to images of Jordan curves. We can see that with less
than 1000 examples the RNN is able to generalize to any of the datasets for more than 99% of the images. This
demonstrates the great potential of decomposing the learning to facilitate the emergence of the routine.

K Networks Pre-trained on Natural Images

We chose two state-of-the-art networks on Instance Segmentation, DEXTR [30] and DeepLabv3+ [3], to
investigate their ability in solving the insideness problem.

DEXTR. Deep Exteme Cut (DEXTR) is a neural network used for interactive instance segmentation. We use
the pre-trained model on PASCAL VOC 2012 [9] and show some of the qualitative results in Fig.

DeepLabv3+. This architecture extends DeepLabv3 [7] by utilizing it as an encoder network and adding a
decoder network to refine segmentation boundaries. The encoder employs dilated convolution and Atrous Spatial
Pyramid Pooling module for feature extraction. we use DeepLabv3+ with Xception backbone pretrained on
PASCAL VOC 2012, and fine-tune its last layer with Polar and Spiral datasets for training. The ratio of input
image spatial resolution to encoder output image is referred to as output stride and varies according to dilation
rates. We use output strides of 8 and 16 as suggested in the paper; loss weight («) of 0.1, 0.2 and 0.4; and initial
learning rates from 0.1 to 10~° (dividing by 10). We train the network on Polar and Spiral datasets until there is
no improvement of the accuracy at the validations set, and we then reduce the learning rate by a ratio of 10 and
stop at the next plateau of the validation set accuracy.

22

Figure K.9: Qualitative Results with DEXTR on the Polar Dataset. We use the publicly available
pre-trained DEXTR model [30]. DEXTR uses 4 points marked by the user (indicated with crosses).
We report the best found points, two examples of them per image.

23

Figure K.10: Results of DeepLabv3+ on Polar, Spiral and Digs Datasets. The network is fine-tuned
on Polar and Spiral. The results show that the network predicts well most of the pixels except in the
borders. For the cross-dataset evaluations in the Digs dataset, the network is not able to generalize.

24

	Introduction
	The Reductionist Approach to Insideness
	Can DNNs for Segmentation Solve Insideness?
	Feed-Forward Architecture with Dilated Convolutions
	Recurrent Architecture: Convolutional LSTMs

	Can DNNs for Segmentation Learn Insideness?
	Experimental Setup
	Results

	Learning the Coloring Routine with Small Images
	Experimental Setup
	Results

	Conclusions and Future Work
	Number of Digital Jordan Curves
	Insideness with Dilated Convolutional Networks
	Convolutional DNN to Implement the Ray-Intersection Method
	Dilated Convolutions to Implement the 1N kernel

	Parity Network by SOS17
	Implementing the Coloring Routine with a Convolutional LSTM
	Coloring Routine with a Sigmoidal Convolutional RNN
	Dataset Generation
	Hyperparameters
	Additional Experiments of Feed-Forward Networks
	Additional Figures and Visualizations
	Per-step Learning of the Coloring Routine
	Networks Pre-trained on Natural Images

