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This material is based upon work supported by the Center for Brains,
Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.



Do Neural Networks for Segmentation Understand
Insideness?

Kimberly Villalobos∗,1, Vilim Štih∗,1,2, Amineh Ahmadinejad∗,1,
Shobhita Sundaram1, Jamell Dozier1, Andrew Francl1, Frederico Azevedo1,

Tomotake Sasaki†,3,1, Xavier Boix†,1,•
∗ and † indicate equal contribution

1 Center for Brains, Minds and Machines, MIT (USA)
2 Max Planck Institute of Neurobiology (Germany)

3 Fujitsu Laboratories Ltd. (Japan)
• Correspondence to xboix@mit.edu

Abstract

The insideness problem is an aspect of image segmentation that consists of de-
termining which pixels are inside and outside a region. Deep Neural Networks
(DNNs) excel in segmentation benchmarks, but it is unclear if they have the ability
to solve the insideness problem as it requires evaluating long-range spatial depen-
dencies. In this paper, the insideness problem is analysed in isolation, without
texture or semantic cues, such that other aspects of segmentation do not interfere
in the analysis. We demonstrate that DNNs for segmentation with few units have
sufficient complexity to solve insideness for any curve. Yet, such DNNs have
severe problems with learning general solutions. Only recurrent networks trained
with small images learn solutions that generalize well to almost any curve. Recur-
rent networks can decompose the evaluation of long-range dependencies into a
sequence of local operations, and learning with small images alleviates the common
difficulties of training recurrent networks with a large number of unrolling steps.

1 Introduction

A key component of image segmentation is to determine whether a pixel is inside or outside a
region, ie. the “insideness” problem [1, 2]. This problem involves evaluating long-range spatial
dependencies. Capturing such long-range dependencies may be challenging for artificial neural
networks as pointed out in Minsky & Papert’s historic book Perceptrons [3] and recent works on
capturing other spatial relationships such as containment [4] and connectedness [5].

Deep Neural Networks (DNNs) have been tremendously successful in image segmentation bench-
marks, but it is not well understood whether DNNs represent insideness or how. Insideness has
been overlooked in DNNs for segmentation since they have been mainly applied to the modality of
“semantic segmentation”, ie. labelling each pixel with its object category [6–12]. The same could be
said for DNNs for more advanced segmentation modalities and applications that have been recently
introduced, e.g. segmentation of individual object instances rather than object categories [13–20] and
generating realistic images [21]. In such cases, insideness has not been considered because solutions
rely on texture, shape and other visual cues. Yet, investigating whether DNNs understand insideness
could reveal new insights about their ability to capture long-range spatial relationships, which is key
for a full image understanding.

In this paper, we investigate analytically-derived and learned representations in DNNs for insideness.
We take the reductionist approach by isolating insideness such that other components of image
segmentation do not provide additional cues and ensure that our analysis focuses on the long-
range spatial dependencies involved in insideness. Thus, we analyze the segmentation of Jordan
curves, ie. closed curves synthetically generated without texture nor object category. We analytically
demonstrate that state-of-the-art network architectures, ie. DNNs with dilated convolutions [7,10] and
convolutional LSTMs (ConvLSTMs) [22], among other networks, can exactly solve the insideness



problem for any curve with network sizes that are easily implemented in practice. The proofs draw on
algorithmic ideas from classical work on visual routines [1, 2], namely, the ray-intersection method
and the coloring method, to derive equivalent neural networks that implement these algorithms.
However, our experiments show that in practice, most DNNs for segmentation do not learn general
solutions for insideness, even though the architectures are complex enough to capture the long-range
relationships. These DNNs learn to recognize specific features of the family of curves of the training
set that do not generalize to new families of curves lacking those features. Only recurrent networks
(such as the ConvLSTM) when trained on small images, generalize to almost any given curve of
any size. This is because training on small images alleviates the well-known difficulties of training
recurrent networks with a large number of unrolling steps [23–26]. It also facilitates learning a
strategy that deals with long-range dependencies by breaking them into local operations that are
reusable for any curve, even curves in larger images that were not seen during training.

These results add to the growing body of work that demonstrates that DNNs have problems in learning
to solve some elemental visual tasks [5, 27–29]. Shalev-Shwartz et al. [29] introduced several tasks
that DNNs can in theory learn, as demonstrated mathematically, but were unable to solve in practice,
even for the training dataset, due to difficulties in the optimization with gradient descent. In contrast,
the challenges we report for insideness are related to poor generalization rather than optimization,
as our experiments show the networks succeed in solving insideness for the family of curves seen
during training. Linsley et al. [5] and Kim et al. [30] introduced new architectures that better capture
the long-range dependencies in images. Here, we show that the training strategy has a significant
impact on capturing the long-range dependencies, as even DNNs with the capacity to capture such
dependencies do not learn a general solution with standard training strategies. Our results highlight
the need to decompose the long-range dependencies in a sequence of local operations, that can be
learned with recurrent networks by controlling the number of unrolling steps with the image size.

2 The Reductionist Approach to Insideness

We now introduce a paradigm for analyzing the ability of DNNs to solve insideness. Rather than
natural images, we use synthetic stimuli that consist only of one closed curve. In this way, we
do not mix the insideness problem with other components of image segmentation found in natural
images, e.g. discontinuity of segments, representation of the hierarchy of segments, etc. This
reductionist methodology has the advantage of minimizing the interference of these other factors in
analysing abilities of DNNs to capture long-range spatial dependencies. Note that the presence of
other factors would obfuscate the specific causes of the network’s behavior.

Let X ∈ {0, 1}N×N be an image or a matrix of size N × N pixels. We use Xi,j or (X)i,j ,
indistinguishably, to denote the value of the image in position (i, j). We use this notation for indexing
elements in any of the images and matrices that appear in the rest of the paper. Also, in the figures we
use white and black to represent 0 and 1, respectively.

The insideness problem refers to assigning pixels to the inside or the outside of a closed curve. We
assume without loss of generality that there is only one closed curve in the image and that it is a
digital version of a Jordan curve [31], ie. a closed curve without self-crosses nor self-touches and
containing only horizontal and vertical turns, as shown in Fig. 2a. We further assume that the curve
does not contain the border of the image. The curve is the set of pixels equal to 1 and is denoted by
FX = {(i, j)|Xi,j = 1}.
The pixels in X that are not in FX can be classified into two categories: the inside and the outside of
the curve [31]. We define the segmentation of X as S(X) ∈ {0, 1}N×N , where

(S(X))i,j =

{
0 if Xi,j is inside
1 if Xi,j is outside , (1)

and for the pixels in FX , the value of (S(X))i,j can be either 0 or 1. Note that the definition of
insideness is rigorously and uniquely determined by the input image itself.

The number of all digital Jordan curves is enormous even if the image size is relatively small, e.g. it
is more than 1047 for the size 32× 32 (App. A). In addition, insideness is a global problem; whether
a pixel is inside or outside depends on the entire image, and not just on a local area around the pixel.
Therefore, simple pattern matching, ie. memorization, is impossible in practice.
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Figure 1: The Coloring Method with ConvLSTM. (a) The coloring method consists of several iterations
of the coloring routine, ie. expanding the outside region and blocking it on the curve. (b) Diagram of
the ConvLSTM implementing the coloring method, we highlight the connections between layers that
are used for insideness. ¬X denotes the element-wise “Boolean not” of X .

3 Can DNNs for Segmentation Solve Insideness?

The universal approximation theorem [32] tells us that even a shallow neural network is able to solve
the insideness problem. Yet, it could be that the amount of units is too large to be implementable in
practice. We show that two commonly used DNN architectures for segmentation are able to perfectly
solve the insideness problem, and they are easily implementable in practice. One architecture is
feed-forward with dilated convolutions [7,10] and the other is recurrent, based on ConvLSTMs [8,22,
33, 34].

Dilated convolutions. Also called atrous convolutions, these are convolutions with upsampled
kernels, which enlarge the receptive fields of the units but preserve the number of parameters of the
kernel [7, 10]. They facilitate capturing long-range dependencies which are key for segmentation [7,
10]. To demonstrate that there are architectures with dilated convolutions that can solve the insideness
problem, we borrow insights from the ray-intersection method. The ray-intersection method [1, 2],
also known as the crossings test or the even-odd test [35], is built on the following fact: Any ray
that goes from a pixel to the border of the image alternates between inside and outside regions every
time it crosses the curve. Therefore, the parity of the total number of such crossings determines the
region to which the pixel belongs. If the parity is odd then the pixel is inside, otherwise it is outside.
In App. B, we introduce a DNN with dilated convolutions that can implement the ray-intersection
algorithm: a network with a number of dilated convolutional layers equal to log2(N) (recall N is
the image size) with one kernel of 3 × 3 size, and two convolutional layers with 3N/2 kernels of
1× 1 size. This is the smallest network we could find that solves the insideness problem with dilated
convolutions. Larger networks than the one we introduced can also solve the problem, as the network
size can be reduced by setting kernels to zero and layers to implement the identity operation.

Convolutional LSTM (ConvLSTM). We now show that a ConvLSTM with just one kernel of size
3× 3 is sufficient to solve the insideness problem. Note that applying the ConvLSTM just one step
is a local operation that does not tackle long-range dependencies. Thus, the ConvLSTM breaks the
long-range dependencies in a sequence of local operations.

Our demonstration is inspired by the coloring method [1, 2], another algorithm for the insideness
problem. The algorithm assigns neighbouring pixels to the same region until encountering a border,
which is also known as flood filling. We introduce a version of this method that can be implemented
as a convLSTM. The coloring method consists of multiple iterations of two steps: (i) expand the
outside region from the borders of the image (which by assumption are in the outside region) and
(ii) block the expansion when the curve is reached. The repeated application of these two steps solves
the insideness problem, as depicted in Fig. 1a. We call one iteration of expanding and blocking the
coloring routine.

We use Et ∈ {0, 1}N×N (expansion) and Bt ∈ {0, 1}N×N (blocking) to represent the result of the
two operations after iteration t. The coloring routine can then be written as (i) Et = Expand

(
Bt−1)

and (ii) Bt = Block (Et,FX). Let Bt−1 maintain a value of 1 for all pixels that are known to be
outside and 0 for all pixels whose region is not yet determined or belong to the curve. Thus, we
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initialize B0 to have value 1 (outside) for all border pixels of the image and 0 for the rest. In step (i),
the outside region of Bt−1 is expanded by setting also to 1 (outside) its neighboring pixels, and the
result is assigned to Et. Next, in step (ii), the pixels in Et that were labeled with 1 (outside) and
belong to the curve, FX , are reverted to 0 (inside), and the result is assigned to Bt. This algorithm
ends when the outside region can not expand anymore, which is always less than N2 iterations (the
number of pixels in the image). Therefore, we have EN2

= S(X).

In App. C we demonstrate that a ConvLSTM with one kernel applied on an image X can implement
the coloring algorithm. In the following we provide a summary of the proof. Let It, F t, Ot, Ct,
and Ht ∈ RN×N be the activations of the input, forget, and output gates, and cell and hidden states
of a ConvLSTM at step t, respectively. By analyzing the equations of the ConvLSTM (equation 11
and equation 12 in App. C) we can see that the output layer, Ot, back-projects to the hidden layer,
Ht. In the coloring algorithm, Et and Bt are related in a similar manner. Thus, we define Ot = Et

(expansion) and Ht = 1
2B

t (blocking). The 1
2 factor is a technicality due to non-linearities, which is

compensated in the output gate and has no relevance in this discussion.

We initialize H0 = 1
2B

0 (recall B0 is 1 for all pixels in the border of the image and 0 for the rest).
The output gate expands the hidden representations using one 3× 3 kernel. To stop the outside region
from expanding to the inside of the curve, Ht takes the expansion output Ot and sets the pixels
at the curve’s location to 0 (inside). This is the same as the element-wise product of Ot and the
“Boolean not” of X , which is denoted as ¬X . Thus, the blocking operation can be implemented
as Ht = 1

2 (O
t � ¬X), and can be achieved if Ct is equal to ¬X . In Fig. 1b we depict these

computations.

In App. C we show that the weights of a ConvLSTM with just one kernel of size 3 × 3 can be
configured to reproduce these computations. A key component is that many of the weights use a
value that tends to infinity. This value is denoted as q and it is used to saturate the non-linearities
of the ConvLSTM, which are hyperbolic tangents and sigmoids. Note that it is common in practice
to have weights that asymptotically tend to infinity, e.g. when using the cross-entropy loss to train
a network [36]. In practice, we found that saturating non-linear units using q = 100 is enough to
solve the insideness problem for all curves in our datasets. Note that only one kernel is sufficient
for ConvLSTM to solve the insideness problem, regardless of image size. Furthermore, networks
with multiple stacked ConvLSTM and more than one kernel can implement the coloring method by
setting unnecessary ConvLSTMs to implement the identity operation (App. C) and the unnecessary
kernels to 0.

Finally, we point out that there are networks with a much lower complexity than LSTMs that can
solve the insideness problem, although these networks rarely find applications in practice. In App. D,
we show that a convolutional recurrent network as small as having one sigmoidal hidden unit per
pixel, with a 3× 3 kernel, can also solve the insideness problem for any given curve.

4 Can DNNs for Segmentation Learn Insideness?

After having identified DNNs that with few units have sufficient complexity to solve the insideness
problem, we focus on analyzing whether these solutions can be learnt from examples. In the following,
we first describe the experimental setup and then analyze the generalization capabilities of the DNNs
trained in standard manner.

4.1 Experimental Setup

Recall that the goal of the network is to predict for each pixel in the image whether it is inside or
outside of the curve.

Datasets. Given that the number of Jordan curves explodes exponentially with the image size, a
procedure that could provide curves without introducing a well-defined bias for learning is unknown.
We introduce three algorithms to generate different types of Jordan curves. For each dataset, we
generate 95K images for training, 5K for validation and 10K for testing. All the datasets are
constructed to fulfill the constraints introduced in Sec. 2. We construct three different datasets of
42× 42 pixel image size, called Polar, Spiral and Digs. Fig. 2a, shows examples of curves for each
dataset, see App. E for the description on how the curves are generated. Note that the Polar dataset
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Examples of Jordan Curves of Each Dataset
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Figure 2: Datasets and Results in Polar. (a) Images of the curves used to train and test the DNNs.
Each row correspond to a different dataset. (b) and (c) Intra-dataset evaluation using per pixel
accuracy and per image accuracy, respectively. (d) and (e) Evaluation using the testing set of each
Polar datasets for Dilated and 2-LSTM networks, respectively.

has different complexities depending on the number of vertices of the shape. We refer to each of
these datasets as Polar with a prefix with the amount of vertices, e.g. 24-Polar.

Evaluation metrics. Insideness is evaluated for every pixel except the pixels in the curve FX .
We use the following metrics: per pixel accuracy (average of the accuracy for inside and outside,
evaluated separately, such that it weights the two categories equally as there is an imbalance of inside
and outside pixels) and per image accuracy (each image is considered correctly classified if all the
pixels in the image are correctly classified).

Architectures. We evaluate the networks that we analyzed theoretically and also other common
architectures:
- Feed-forward Architectures: We use the dilated convolutional DNN (Dilated) introduced in Sec. 3.
We also evaluate two variants of Dilated, which are the Ray-intersection network (Ray-int.), which
uses a receptive field of 1×N instead of the dilated convolutions (see App. B), and a convolutional
network (CNN), which has all the dilation factors set to 1. Finally, we also evaluate UNet, which is a
popular architecture with skip connections and de-convolutions [6].
- Recurrent Architectures: We test the ConvLSTM (1-LSTM) corresponding to the architecture
introduced in Sec. 3. We initialize the hidden and cell states to 0 (inside) everywhere except the
border of the image which is initialized to 1 (outside), such that the network can learn to color by
expanding the outside region. We also evaluate a 2-layers ConvLSTM (2-LSTM) by stacking one
1-LSTM after another, both with the initialization of the hidden and cell states of the 1-LSTM. Finally,
to evaluate the effect of such initialization, we test the 2-LSTM without it (2-LSTM w/o init.), ie. with
the hidden and cell states initialized all to 0. We use backpropagation through time by unrolling 60,
30 or 10 time steps for training (we select the best performing one). For testing, we unroll until there
is no change in the output labeling.

Learning. We test a large set of hyperparameters (we trained several thousands of networks per
dataset), which we report in detail in App. F. In the following we report the testing accuracy for the
hyperparameters that achieved the highest per image accuracy at the validation set.

4.2 Results

We evaluate the DNNs trained in the standard manner, ie. using backpropagation with the labeled
datasets as described previously, to predict insideness for every pixel.

Intra-dataset Evaluation. In Fig.2b and c we show per pixel and per image accuracy for the
networks trained on the same Polar dataset that are being tested. Dilated, 2-LSTM and UNet achieve
a testing accuracy very close to 100%, but Ray-int. and 1-LSTM perform much worse. Training
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Figure 3: Cross-dataset Results. Evaluation of the networks trained in 24-Polar, Spiral and both
24-Polar and Spiral datasets. The tesing sets are 24-Polar, Spiral and Digs datasets.

accuracy of Ray-int. and 1-LSTM is the same as their testing accuracy (Fig. H.7a and b). This
indicates an optimization problem similar to the cases reported by [29], as both Ray-int. and 1-LSTM
are complex enough to generalize. It is an open question to understand why backpropagation performs
so differently in each of these architectures that can all generalize in theory. Finally, note that the per
pixel accuracy is in most cases very high, and from now on, we only report the per image accuracy.

Cross-dataset Evaluation. We evaluate if the networks that have achieved very high accuracies
(Dilated, 2-LSTM and UNet), have learnt the general solution of insideness that we introduced in
Sec. 3. To do so, we train on one dataset and test on the different one. In Fig.2d and e, we observe
that Dilated and 2-LSTM do not generalize to Polar datasets with larger amount of vertices than the
Polar dataset on which they were trained. Only if the networks are trained in 24-Polar, the networks
generalize in all the Polar datasets. The same conclusions can be extracted for UNet (Fig. H.7c).

We further test generalization capabilities of these networks beyond the Polar dataset. In this more
broad analysis, we also include the CNN and 2-LSTM w/o init, by training them on 24-Polar, Spiral
and both 24-Polar and Spiral, and test them on 24-Polar, Spiral and Digs separately. We can see in
Fig. 3 that all tested networks generalize to new curves of the same family as the training set. Yet, the
networks do not generalize to curves of other families. In Fig. H.8, we show qualitative examples of
failed segmentations produced by networks trained on 24-Polar and Spiral and tested on the Digs
dataset.

Furthermore, note that using a more varied training set (“Both”) does not necessarily lead to better
cross-dataset accuracy. For example, for UNet and 2-LSTM w/o init., training on Polar achieves
better accuracy in Digs than when training on “Both”. Also, for Dilated, training on “Both” harms
its accuracy: the accuracy drops more than 6% in 24-Polar and Spiral. In this case, the training
accuracy is close to 100%, which indicates a problem of overfitting. We tried to address this problem
by regularizing using weight decay, but it did not improve the accuracy (App. G). Finally, we also
tried fine-tuning to our datasets the state-of-the-art pre-trained networks in segmentation benchmarks
(DEXTR [18] and DeepLabv3+ [37]), but they also failed to generalize (App. J).

Understanding the Lack of Generalization. We visualize the networks to understand why the
representations learnt do not generalize. In Fig. H.9 and H.10, we analyze different units of Dilated
trained on 24-Polar and Spiral. We display units of the same kernel from the second, four and sixth
layers, by showing the nine images in the testing set that produce the unit to be most active across all
images [38]. For each image, we indicate the unit location in the feature map by a green circle. The
visualizations suggest that units of the second layer are tuned to local features (e.g. Unit 19 is tuned
to close parallel lines), while in layer 6 they are tuned to more global ones (e.g. Unit 27 captures
the space left in the center of a spiral). Thus, the units are tuned to characteristics of the curves in
the training set rather than to features that could capture the the long-range dependencies to solve
insideness, such as the ones we derived theoretically.

In Fig. H.11, we display the feature maps of 2-LSTM trained on 24-Polar and Spiral. The figure
shows the feature maps of the layers at different time steps. We can see that the network expands
the borders of the image, which have been initialized to outside. Yet, some layers expand the curve
in both directions, indicating that the blocking operation has not been learned. Also, note that it is
impossible to know the direction of expansion from the curve with only local operations, as in one
step of the convLSTM. Our analytical solution only expands the borders of the image (see Fig. H.12
for a visualization of the analytical solution).
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Figure 4: Datasets and Results of Controling the Number of Unrolling Steps. (a) Images of the curves
of the Random Walk dataset used to train the recurrent networks with different image sizes. Each
row correspond to a different image size. (b) and (c) Cross-dataset evaluation (per image accuracy)
using the Polar, Spiral and Digs testing sets for 2-LSTM and RNN networks, respectively. (d) and (e)
Evaluation of generalization accuracy based on increasing numbers of unrolling steps for 2-LSTM
and RNN network, respectively.

5 Learning the Coloring Routine with Small Images

Recurrent networks trained by backpropagation through time can be thought of as feed-forward
networks with time steps being applied as subsequent layers, ie. backpropagation is applied to the
“unrolled” version of the recurrent network. Recall that for the insideness problem the prediction
error is evaluated after the last unrolling step. Thus, depending on the image size and the shape of
the curve a large number of unrolling steps may be required to train the network (e.g. the number
of unrolling steps for the networks shown in Sec. 3 is bounded by N2). It is well known that for a
large number of unrolling steps backpropagation through time has difficulties capturing long-range
relationships [23]. Moreover, the memory requirements are proportional to the number of unrolling
steps, making it difficult to scale in practice.

A plethora of attempts have been made to alleviate the problems of learning with a large number
of unrolling steps, e.g. [24–26]. Here we introduce a simple yet effective strategy for reducing
the number of unrolling steps required to learn insideness. Our strategy consists of training the
network with small images as they require a smaller number of unrolling steps. To test the network
with bigger image sizes, we just unroll it a larger number of steps. Since the recurrent network can
learn the coloring routine (Sec. 3), it is possible to generalize to larger images and more complex
curves. As we have shown before, this routine does not contain long-range operations because it
takes into account only 3× 3 neighbourhoods; the long-range relationships are captured by applying
the coloring routine multiple times.

Note that by using small images there is a risk that the dataset lacks enough variability and the
network does not generalize beyond the few cases seen during training. Thus, there is a trade-off
between the variability in the dataset and the number of unrolling steps required. In the following
section, we explore this trade-off and show that adjusting the image size and the number of unrolling
steps leads to large gains of generalization accuracy.

5.1 Experimental Setup

The Random Walk Dataset. Polar, Spiral and Digs datasets are hard to adapt to small images
without constraining the dataset variability. We introduce a new family of curves which we call the
Random Walk dataset. The algorithm to generate the curves is based on a random walk following
the connectivity conditions of the Jordan curve we previously introduced. It starts by selecting a
random location in the image and at every iteration, choosing with equal probability any of the valid
directions (not intersecting the curve constructed so far, or the border). If there are no available
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directions to expand in, the algorithm backtracks until there are, and continues until the starting point
is reached. In Fig. 4a, we show several examples of the curves in images of different sizes.

Architecture. In order to show the generality of our results, we test the 2-LSTM and another recurrent
neural network which we denote as RNN. We conducted an architecture search to find a recurrent
network that succeeded: a convolutional recurrent neural network with a sigmoidal hidden layer and
an output layer that is backwardly connected to the hidden layer. The kernel sizes are 3× 3 and 1× 1
for the hidden and output layers respectively, with 5 kernels. Observe that this network is sufficiently
complex to solve the insideness problem, because it is the network introduced in App. D with an
additional layer and connections.

Learning. We train both the 2-LSTM and the RNN on the Random Walk dataset on 7 different image
sizes (from 8× 8 to 42× 42 pixels) and test it with the original images of the 24-Polar, Spiral and
Digs datasets (42×42 pixels). To explore the effect of the number of unrolling steps, for each training
image size we train the networks using 5, 10, 20, 30 and 60 unrolling steps.

5.2 Results

In Fig. 4b and c, we show the cross-dataset accuracy for the 2-LSTM and RNN, respectively, for
different training image sizes. The optimal number of unrolling steps is selected for each training
image size. To evaluate the cross-dataset generalization accuracy we apply the trained models to
the full size images of the Polar, Spiral, and Digs datasets, using 60 unrolling steps (larger number
of unrolling steps does not improve the accuracy). Note that when the networks are trained with
small images (14× 14 is best for RNN, 18× 18 is best for 2-LSTM), at least 80% of the images in all
the datasets are correctly segmented. This is a massive improvement of the cross-dataset accuracy
compared with the networks trained with large image sizes, as shown in previous section (Fig. 3)
and confirmed here again with the Random Walk dataset (less than 40% of the images are correctly
segmented in Spiral and Digs datasets, Fig. 4 b).

In Fig. 4d and e, we show the performance of 2-LSTM and RNN, trained with their optimal training
image size, when varying the number of unrolling steps. We can observe that both networks generalize
with a small number of unrolling steps and fail to generalize as the number of unrolling steps is
increased during training. Also, note that as expected, 2-LSTM is more robust than the RNN to
large numbers of unrolling steps during training. These positive results demonstrate that training
with smaller images and number of unrolling steps is extremely useful in enabling different types of
recurrent networks to learn a general solution of insideness across different families of curves not
seen during training.

Furthermore, the feature maps of both 2-LSTM and RNN show that the solution implemented by
the network is the Coloring Routine (Fig. H.13), as the features maps are a non-binary version of
the theoretical solution rather than the learned solution with big images (Fig. H.11), which does not
generalize because it expands the border of the curve. Note that the Coloring Routine emerges in
the network and we do not enforce it in any way besides training the network with small images
and small number of unrolling steps. Note that we could enforce the network to learn the Coloring
Routine by providing the ground-truth produced by the routine at each step rather than waiting until
the last step. In App. I we show that this per-step strategy also leads to successful cross-dataset
generalization accuracy. This result is however less interesting as it requires the per-step ground-truth
derived from the analytical solution.

6 Conclusions
We have shown that DNNs with dilated convolutions and convolutional LSTM networks with few
units are sufficiently complex to solve the insideness problem for any given curve. Yet, when using the
standard training strategies, the units in these networks become specialized to detect characteristics
of the curves in the training set and only generalize to curves of the same family as the training. We
introduced a strategy to alleviate this limitation by showing that recurrent networks learn the coloring
routine. The coloring routine breaks the evaluation of long-range relationships into local operations
and when trained with small images, it generalizes substantially better to new families of curves as it
alleviates the well-known difficulties of training recurrent networks with a large number of unrolling
steps. We hope that these insights inspire new segmentation training procedures and help future
investigations of other important aspects of segmentation beyond insideness (e.g. the discontinuity of
segments and the hierarchical structure of segments).
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Statement of Broader Impact. This work provides insights about why DNNs do not generalize
well to segmenting families of curves that were not included in the training set, and investigates the
representations that lead to general solutions and how to learn them. We contribute to establishing the
reductionist approach to understanding DNNs, where specific problem components are investigated
by minimizing the interference of other factors. The reductionist approach allows to open the “black
box” of DNNs and analyze precisely how DNNs represent specific aspects of visual understanding.

Furthermore, we add to the body of work on DNN’s failure modes by demonstrating a potential
vulnerability with the insideness problem. This creates a risk of pointing out vulnerabilities that
can be exploited with negative societal consequences [39]; for instance, in the case of visual tasks,
demonstrating ways to fool surveillance or self-driving cars [40]. However, understanding specific
vulnerabilities is crucial towards building more robust, explainable networks.
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(a) (b)

Figure A.1: Subgraph Representations of Figures. (a) A figure in an image of size 5 × 5 pixels (left)
and its subgraph representation in a grid graph of 5 × 5 vertices (right). (b) Cycles that are not digital
Jordan curves (top) and their correspondents (bottom).

A Number of Digital Jordan Curves

We now introduce a procedure to derive a lower bound of the number of Jordan curves in an image.
We represent an image of size N × N pixels by using a grid graph (square lattice) with N × N
vertices. We employ 4-adjacency for black pixels and corresponding grid points, and 8-adjacency for
white pixels and their counterpart. Then, a curve (the set of black pixels) corresponds to a subgraph
of the base grid graph (Fig. A.1a).

In this representation, a digital Jordan curve is defined as a subgraph specified by a sequence of
vertices (v0, v1, . . . , vL) satisfying the following conditions [31, 41]:

1. vr is 4-adjacent to vs if and only if r ≡ s± 1 (mod L+ 1),

2. vr = vs if and only if r = s, and

3. L ≥ 4.

The “if” part of condition 1 means that the black pixels lie consecutively and the curve formed by the
black pixels is closed. The “only if” part of conditions 1 and 2 assures that the curve never crosses
or touches itself. The condition 3 excludes exceptional cases which satisfy conditions 2 and 3 but
cannot be considered as digital versions of the Jordan curve (see [41] for details). Note that any
digital Jordan curve is a cycle [42] in a grid graph but not vice versa. Figure A.1b shows examples of
cycles that are not digital Jordan curves.

The numbers of all cycles in grid graphs of different sizes were computed up to 27×27 vertices [43,44],
and we utilize this result to get lower bounds for the number of digital Jordan curves with the following
considerations.

Although a cycle in a grid graph is not necessarily a digital Jordan curve as shown above, we can
obtain a digital Jordan curve in a larger image from any cycle by “upsampling" as shown in Fig. A.2a.
Note that there are other digital Jordan curves than the ones obtained in this manner (therefore we get
a lower bound with this technique). See Fig. A.2b for examples.

We also consider “padding" shown in Fig. A.3 to assure that a digital Jordan curve does not contain
the border of a image (this is what we assume in the main body of the paper).

Taking everything into consideration, we can obtain a lower bound of the number of digital Jordan
curves in an N × N image that does not contain border pixels utilizing the above-mentioned
result [43, 44], upsampling and padding. Table 1 shows lower bounds obtained in this way. For
example, starting with the row 2 of [45] in [44] (this represents the number of all cycles in the grid
graph with 3× 3 vertices), we get a lower bound 13 for the number of digital Jordan curves in 5× 5
images by considering the upsampling and get the same number as a lower bound for the number of
digital Jordan curves that do not contain border pixels in 7× 7 images by considering the padding.
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(a) (b)

Figure A.2: “Upsampling" Operation and Its Limitations. (a) Depiction of “upsampling" operation.
(b) Digital Jordan curves that cannot be obtained by the upsampling shown in (a). (Left) The issue
is the place of the digital Jordan curve. We can get the same curve on the upper-left, upper-right,
lower-left and lower-right corners but cannot get the one in the center. (Right) The issue is the length
of the side. We cannot get a side with 4 vertices (4 pixels) nor with even number vertices (pixels) in
general.

7→

Figure A.3: Depiction of “Padding".

B Implementing the Ray-intersection algorithm with Dilated Convolutional
Networks

Dilated convolutions facilitate capturing long-range dependencies which are key for segmentation [7,
10]. To demonstrate that there are architectures with dilated convolutions that can solve the insideness
problem, we borrow insights from the ray-intersection method. The ray-intersection method [1, 2],
also known as the crossings test or the even-odd test [35], is built on the following fact: Any ray that
goes from a pixel to the border of the image alternates between inside and outside regions every time
it crosses the curve. Therefore, the parity of the total number of such crossings determines the region
to which the pixel belongs. If the parity is odd then the pixel is inside, otherwise it is outside (see
Fig. B.4a).

The definition of a crossing should take into account cases like the one depicted in Fig. B.4b, in
which the ray intersects the curve, but does not change region after the intersection. To address these
cases, we enumerate all possible intersections of a ray and a curve, and analyze which cases should
count as crossings and which ones should not. Without loss of generality, we consider only horizontal
rays. As we can see in Fig. B.4c, there are only five cases for how a horizontal ray can intersect the
curve. The three cases at the top of Fig. B.4c, are crosses because the ray goes from one region to the
opposite one, while the two cases at the bottom (like in Fig. B.4b) are not considered crosses because
the ray remains in the same region.

Let ~X(i, j) ∈ {0, 1}1×N be a horizontal ray starting from pixel (i, j), which we define as

~X(i, j) = [Xi,j , Xi,j+1, Xi,j+2, . . . , Xi,N , 0, . . . , 0], (2)

where zeros are padded to the vector if the ray goes outside the image, such that ~X(i, j) is always of
dimension N . Let ~X(i, j) · ~X(i+ 1, j) be the inner product of the ray starting from (i, j) and the
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Table 1: Lower bounds (LBs) of the number of digital Jordan curves in N ×N images that do not
contain border pixels.

N 5 7 9 · · · 31 33 35 · · · 55

LB 1 13 213 · · · 1.203× 1047 1.157× 1054 3.395× 1061 · · · 6.71× 10162

… …

… …

(a) (b) (c)

Figure B.4: Intersections of the Ray and the Curve. (a) Example of ray going from one region to the
opposite one when crossing the curve. (b) Example of ray staying in the same region after intersecting
the curve. (c) All cases in which a ray could intersect a curve. In the three cases above the ray travels
from one region to the opposite one, while in the two cases below the ray does not change regions.

ray starting from the pixel below, (i+ 1, j). Note that the contribution to this inner product from the
three cases at the top of Fig. B.4c (the crossings) is odd, whereas the contribution from the other two
intersections is even. Thus, the parity of ~X(i, j) · ~X(i+ 1, j) is the same as the parity of the total
number of crosses and determines the insideness of the pixel (i, j), ie.

(S(X))i,j = parity
(
~X(i, j) · ~X(i+ 1, j)

)
. (3)

In the following we prove that equation 3 can be implemented with a neural network with dilated
convolutions. The demonstration is based on implementing the dot product in equation 3 with multiple
layers of dilated convolutions, as they enable capturing the information across the ray, and then,
calculating the parity with another neural network. We first introduce a feed-forward convolutional
DNN for which there exist parameters that reproduce equation 3. Then, we show that one of the layers
in this network can be better expressed with multiple dilated convolutions. Finally, we introduce the
network to calculate the parity.

B.1 Overview of the Network to Implement the Ray-Intersection Method

The smallest CNN that we found that implements the ray-intersection method has 4-layers. Fig. B.5a
depicts the architecutre. As we show in the following, the first two layers compute ~X(i, j)· ~X(i+1, j),
and the last two layers compute the parity. We use H(k) ∈ RN×N to denote the activations of the
units at the k-th layer. These are obtained after applying the ReLU activation function, which is
denoted as [ ]+.

First and Second Layer: Inner product. For the sake of simplicity, we only use horizontal rays, but
the network that we introduce can be easily adapted to any ray direction. The first layer implements
all products needed for the inner products across all rays in the image, ie. Xi,j ·Xi+1,j ,∀(i, j). Note
that there is exactly one product per pixel, and each product can be reused for multiple rays. For
convenience, H(1)

i,j represents the product in pixel (i, j), ie. H(1)
i,j = Xi,j ·Xi+1,j . Since the input

consists of binary images, each product can be reformulated as

H
(1)
i,j =

{
1 if Xi,j = Xi+1,j = 1

0 otherwise
. (4)

This equality can be implemented with a ReLU: H(1)
i,j = [1 ·Xi,j + 1 ·Xi+1,j − 1]+. Thus, H(1)

is a convolutional layer with a 2× 1 kernel that detects the intersections shown in Fig. B.4c. This
layer can also be implemented with a standard convolutional layer with a 3× 3 kernel, by setting the
unnecessary elements of the kernel to 0.

The second layer sums over the products of each ray. To do so, we use a kernel of dimension 1×N
with weights equal to 1 and bias equal to 0, ie. H(2)

i,j = 1 1×N · H(1)
i,j = ~X(i, j) · ~X(i + 1, j), in
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Figure B.5: Dilated Convolutions from the Ray-Intersection Method. (a) The receptive field colored
in green has size 1×N , and it can be substituted by an equivalent network composed of multiple
dilated convolutions. (b) The 1×N kernel of the ray-intersection network is equivalent to multiple
dilated convolutional layers. The figure shows an horizontal ray of activations from different layers,
starting from the first layer H(1). The green arrows indicate the locations in the ray that lead to the
desired sum of activations to implement the 1×N kernel, ie. the sum of the ray.

which 1 I×J denotes the matrix of size I × J with all entries equal to 1. Zero-padding is used to keep
the kernel size constant across the image.

Note that the shape of the kernel, 1×N , is not common in the DNN literature. Here, it is necessary
to capture the long-range dependencies of insideness. In App.B.2, we show that the 1×N kernel can
be substituted by multiple layers of dilated convolutions.

Third and Fourth Layers: Parity. To calculate the parity of each unit’s value in H(2), we borrow
the DNN introduced by [29] (namely, Lemma 3 in the supplemental material of the paper). This
network obtains the parity of any integer bounded by a constant C. The network has 3C/2 hidden
ReLUs and one output unit, which is 1 if the input is even, 0 otherwise (see App. B.3 for details).

We apply this parity network to all units in H(2) via convolutions, reproducing the network for each
unit. Since a ray through a closed curve in an N ×N image can not have more than N crossings, C
is upper bounded by N . Thus, the third layer has 3N/2 kernels, and both the third and output layer
are convolutions with a 1× 1 kernel. At this point we have shown that the DNN explained above is
feasible in practice, as the number of kernels is O(N), and it requires no more than 4 convolutional
layers with ReLUs. The network has a layer with a kernel of size 1×N , and next we show that this
layer is equivalent to several layers of dilated convolutions of kernel size 3× 3.

B.2 Dilated Convolutions to Implement the 1×N kernel

We use ∗d to denote a dilated convolution, in which d is the dilation factor. Let H ∈ RN×N be
the units of a layer and let K ∈ Rk×k be a kernel of size k × k. A dilated convolution is defined
as follows: (H ∗d K)i,j =

∑
−bk/2c≤v,w≤bk/2cHi+dv,j+dw · Kv,w, in which Hi+dv,j+dw is 0 if

i + dv or j + dw are smaller than 0 or larger than N , ie. we abuse notation for the zero-padding.
Note that in the dilated convolution the kernel is applied in a sparse manner, every d units, rather than
in consecutive units. See [7, 10] for more details on dilated convolutions.

Recall the kernel of size 1×N is set to 1 1×N so as to perform the sum of the units corresponding
to the ray in the first layer, ie.

∑
0≤v<N H

(1)
i,j+v. We can obtain this long-range sum with a series of

dilated convolutions using the following 3× 3 kernel:

K =

[
0 0 0
0 1 1
0 0 0

]
. (5)

First, we apply this K to the H(1) through ∗1 in order to accumulate the first two entries in the
ray, which yields:

(
H(2)

)
i,j

=
(
H(1) ∗1 K

)
i,j

=
∑

0≤v≤1H
(1)
i,j+v. As shown in Fig. B.5b, to

accumulate the next entries of the ray, we can apply K with a dilated convolution of dilation factor
d = 2, which leads to

(
H(3)

)
i,j

=
∑

0≤v<4H
(1)
i,j+v. To further accumulate more entries of the ray,

we need larger dilation factors. It can be seen in Fig. B.5b that these dilation factors are powers of 2,
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which yield the following expression:
(
H(l)

)
i,j

=
(
H(l−1) ∗2l−2 K

)
i,j

=
∑

0≤v<2l−2

H
(1)
i,j+v. (6)

Observe that when we reach layer l = log2(N) + 2, the units accumulate the entire ray of length
N , ie.

∑
0≤v<N H

(1)
i,j+v . Networks with dilation factors d = 2l are common in practice, e.g. [7] uses

these exact dilation factors.

In summary, DNNs with dilated convolutions can solve the insideness problem and are implementable
in practice, since the number of layers and the number of kernels grow logarithmically and linearly
with the image size, respectively.

B.3 Parity Network by [29]

To calculate the parity of each unit’s value in H(2), we borrow the DNN introduced by Shalev-
Shwartz et al. (namely, Lemma 3 in the supplemental material of [29]). This network obtains the
parity of any integer bounded by a constant C. The network has 3C

2 hidden units with ReLUs and
one output unit, which is 1 if the input is even, 0 otherwise. Since such a network requires an upper
bound on the number whose parity is being found, we define C as the maximum number of times that
a horizontal ray can cross FX . This number can be regarded as an index to express the complexity of
the shape.

There is a subtle difference between the network introduced by [29] and the network we use in the
paper. In [29], the input of the network is a string of bits, but in our case, the sum is done in the
previous layer, through the dilated convolutions. Thus, we use the network in [29] after the sum of
bits is done, ie. after the first dot product in the first layer in [29].

To calculate the parity, for each even number between 0 and C (0 included), {2i | 0 ≤
i ≤ bC/2c}, the network has three hidden units that threshold at (2i − 1

2 ), 2i and (2i +
1
2 ), ie. −0.5, 0, 0.5, 1.5, 2, 2.5, 3.5, 4, 4.5, . . . The output layer linearly combines all the hidden units
and weights each triplet of units by 2, −4 and 2. Observe that when the input is an odd number, the
three units in the triplet are either all below or all above the threshold. The triplets that are all below
the threshold contribute 0 to the output because the units are inactive, and the triplets that are all above
the threshold also contribute 0 because the linear combination is 2(2i− 1

2 )− 4(2i) + 2(2i+ 1
2 ) = 0.

For even numbers, the triplet corresponding to that even number has one unit below, equal and above
the threshold. The unit that is above the threshold contributes 1 to the output, yielding the parity
function.

C Implementing the Coloring Routine with a Convolutional LSTM

Here we prove that a ConvLSTM can implement the coloring routine, namely, the iteration of the
expansion and the blocking operations. A ConvLSTM applied on an image X is defined as the
following set of layers (see [22] for a comprehensive introduction to the ConvLSTM):

It = σ
(
W xi ∗X +W hi ∗Ht−1 + bi

)
, (7)

F t = σ
(
W xf ∗X +W hf ∗Ht−1 + bf

)
, (8)

C̃t = tanh
(
W xc ∗X +W hc ∗Ht−1 + bc

)
, (9)

Ct = F t �Ct−1 + It � C̃t, (10)

Ot = σ
(
W xo ∗X +W ho ∗Ht−1 + bo

)
, (11)

Ht = Ot � tanh
(
Ct
)
, (12)

where It, F t, Ct, Ot and Ht ∈ RN×N are the activation of the units of the input, forget, cell state,
output and hidden layers at t, respectively. Note that Ct has been decomposed with the help of the
auxiliary equation defining C̃t. Note also that each of these layers use a different set of weights that
are applied to X and to Ht denoted as W ∈ RN×N with superindices that indicate the connections
between layers, e.g. W xi are the weights that connect X to I . Similarly, the biases are denoted as
b ∈ RN×N with the superindices indicating the layers. The symbols ∗ and � denote the (usual, not
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dilated) convolution and the element-wise product, respectively. Finally, σ and tanh are the sigmoid
and the hyperbolic tangent, which are used as non-linearities.

We can see by analyzing equation 11 and equation 12 that the output layer, Ot, back-projects to the
hidden layer, Ht. In the coloring algorithm, Et and Bt are related in a similar manner. Thus, we
define Ot = Et (expansion) and Ht = 1

2B
t (blocking), as depicted in Fig. 1b. The 1

2 factor will
become clear below, and it does not affect the correctness. We initialize H0 = 1

2B
0 (recall B0 is

1 for all pixels in the border of the image and 0 for the rest). We now show how to implement the
iteration of the expansion and the blocking operations with the ConvLSTM:

(i) Expansion, Ot: We set the output layer in equation 11 in the following way:

Ot = σ
(
2q1 3×3 ∗Ht−1 − q

2
1N×N

)
. (13)

Note that this layer does not use the input, and sets the convolutional layer W ho to use a 3× 3 kernel
that is equal to 2q1 3×3, in which q is a scalar constant, and the bias equal to− q

21N×N . For very large
values of q, this layer expands the outside region. This can be seen by noticing that for a unit in Ht−1,
if at least one neighbor has value 1/2, then Ot

i,j = limq→∞ σ(q) = 1. Also, when all neighbouring
elements of the unit are 0, then no expansion occurs because Ot

i,j = limq→∞ σ(− q
2 ) = 0.

(ii) Blocking, Ht: To stop the outside region from expanding to the inside of the curve, Ht takes
the expansion output Ot and sets the pixels at the curve’s location to 0 (inside). This is the same as
the element-wise product between Ot and the element-wise “Boolean not” of X , which is denoted
as ¬X . Thus, the blocking operation can be implemented as Ht = 1

2 (O
t � ¬X). Observe that if

Ct = ¬X , this is equal to equation 12 of the LSTM, because tanh(0) = 0 and tanh(1) = 1/2, ie.

Ht = Ot � tanh
(
Ct
)
=

1

2
Ot � ¬X. (14)

We can obtain Ct = ¬X , by imposing It = ¬X and Ct = It, as shown in Fig. 1b. To do so,
let W xi = −q1 1×1, W hi = 0N×N , and bi = q

21N×N , and equation 8 becomes the following
expression:

It = lim
q→∞

σ
(
−q1 1×1 ∗X +

q

2
1N×N

)
. (15)

Observe that when q tends to infinity, we have Iti,j = limq→∞ σ( q2 ) = 1 when Xi,j = 0 and
Iti,j = limq→∞ σ(− q

2 ) = 0 when Xi,j = 1, which means It = ¬X . Next, to obtain Ct = It, we
set W xf = W hf = W xc = W hc = 0N×N , bf = −q1N×N and bc = q1N×N . This leads to the
desired result:

F t = lim
q→∞

σ (−q1N×N ) = 0N×N , (16)

C̃t = lim
q→∞

tanh (q1N×N ) = 1N×N ,

Ct = 0N×N �Ct−1 + It � 1N×N = It = ¬X. (17)

Thus, the coloring method can be implemented with a network as small as one ConvLSTM with one
kernel. A network with more than one kernel and multiple stacked ConvLSTM can also solve the
insideness problem for any given curve. The kernels that are not needed to implement the coloring
method can be just set to 0 and the ConvLSTM that are not needed should implement the identity
operation, ie. the output layer is equal to the input. To implement the identity operator, equation 11
can be rewritten in the following way:

Ot = lim
q→∞

σ
(
q1 1×1 ∗X −

q

2
1N×N

)
(18)

where W ho = 0 1×1 is to remove the connections with the hidden units, and q is the constant that
tends to infinity. Observe that if Xi,j = 1, then Ot = limq→∞ σ(q/2) = 1. If Xi,j = 0, then
Ot = limq→∞ σ(−q/2) = 0. Thus, the ConvLSTM implements the identity operation.
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Examples of Jordan Curves of Each Dataset
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Figure E.6: Datasets. Images of the curves used to train and test the DNNs. Each row correspond to
a different dataset.

D Coloring Routine with a Sigmoidal Convolutional RNN

There are other recurrent networks simpler than a ConvLSTM that can also implement the coloring
algorithm. We introduce here a convolutional recurrent network that uses sigmoids as non-linearities.
Since it is a convolutional network, for the sake of simplicity we just describe the operations done to
obtain an output pixel in a step. The network has only one hidden layer, which also corresponds to the
output of the network. Let {htk}k∈Ni,j

be the hidden state of the output pixel indexed by i, j and its
4-neighbourhood, at step t. Let Xi,j be the only relevant input image pixel. A necessary condition is
that the outputs of the sigmoid should asymptotically be close to 0 or 1, otherwise the coloring routine
would fade after many steps. It is easy to check that ht+1

i,j = σ
(
q
(∑

k∈Nij
htk − 5Xi,j − 1/2

))

implements the coloring routine, where q is the factor that ensures saturation of the sigmoid.

E Dataset Generation

In Fig. E.6, we show more examples of curves in the datasets. For testing and validation sets, we
only use images that are dissimilar to all images from the training set. Two images are considered
dissimilar if at least 25% of the pixels of the curve are in different locations. In the following we
provide a description of the algorithms to generate the curves:

- Polar Dataset (32 × 32 pixels): We use polar coordinates to generate this dataset. We randomly
select the center of the figure and a random number of vertices that are connected with straight lines.
These lines are constrained to follow the definition of digital Jordan curve in Sec. 2 in the main paper
(and App. A in this supplementary material). The vertices are determined by their angles, which are
randomly generated. The distance with respect to the center of the figure are also randomly generated
to be between 3 to 14 pixels away from the center.

We generate 5 datasets with different maximum amount of vertices, namely, 4, 9, 14, 19 and 24. We
refer to each of these datasets as Polar with a prefix with the amount of vertices.

- Spiral Dataset (42 × 42 pixels): The curves in these data set are generated from a random walk.
First, a starting position is chosen uniformly at random from [10, 20] × [10, 20]. Then, a segment
of the spiral is built in the following way: a random direction (up, down, left, right) and a random
length r from 3 to 10 are chosen so that the walk is extended by turning r pixels in the given direction.
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However, such extension can only happen if adding a random thickness t ∈ {1, 2, 3, 4} to both sides
of this segment does not cause self intersections. These segments are added repeatedly until there is
no space to add a new segment without violating the definition of a Jordan curve.

- Digs Dataset (42× 42 pixels): We generate a rectangle of random size and then, we create “digs”
of random thicknesses in the rectangle. The number of “digs” is a random number between 1 to 10.
The digs are created sequentially and they are of random depth (between 1 pixel to the length of the
rectangle minus 2 pixels). For each new “dig”, we made sure to not cross previous digs by adjusting
the depth of the “dig”.

F Hyperparameters

The parameters are initialized using Xavier initialization [46]. The derived parameters we obtained
in the theoretical demonstrations obtain 100% accuracy but we do not use them in this analysis as
they are not learned from examples. The ground-truth consists on the insideness for each pixel in
the image, as in equation 1. For all experiments, we use the cross-entropy with softmax as the loss
function averaged accross pixels. Thus, the networks have two outputs per pixel (note that this does
not affect the result that the networks are sufficiently complex to solve insideness, as the second
output can be set to a constant threshold of 0.5). We found that the cross-entropy loss leads to better
accuracy than other losses. Moreover, we found that using a weighted loss improves the accuracy of
the networks. The weight, which we denote as α, multiplies the loss relative to inside, and (1− α)
multiplies the loss relative to outside. This α is a hyperparamter that we tune and can be equal
to 0.1, 0.2 and 0.4. We try batch sizes of 32, 256 and 2048 when they fit in the GPUs’ memory
(12GB), and we try learning rates from 1 to 10−5 (dividing by 10). We train the networks for all the
hyperparameters for at least 50 epochs, and until there is no more improvement of the validation set
loss.

In the following we report all the tried hyperparameters for all architectures. In all cases, the
convolutional layers use zero-padding.

- Dilated Convolution DNN (Dilated): This network was introduced in Sec. B. We use the same
hyperparameters as in [7]: 3× 3 kernels, a number of kernels equal to 2l × {2, 4, 8}, where l is the
number of layers and ranges between 8 to 11, with d = 2l (the first layer and the last two layers
d = 1). The number of kernels in the layer that calculates the parity can be {5, 10, 20, 40, 80}.
- Ray-intersection network (Ray-int.): This is the architecture introduced in Sec. B, which uses a
receptive field of 1×N instead of the dilated convolutions. The rest of the hyperparameters are as in
Dilated.

- Convolutional DNN (CNN): To analyze the usefulness of the dilated convolutions, we use the Dilated
architecture with all dilation factors d = 1. Also, we try adding more layers than in Dilated, up to 25.

- UNet: This is a popular architecture with skip connections and de-convolutions. We use similar
hyperparameters as in [6]: starting with 64 kernels (3× 3) at the first layer and doubling this number
after each max-pooling; a total of 1 to 3 max-pooling layers in all the network, that are placed after
sequences of 1 or 2 convolutional layers.

- Convolutional LSTM (1-LSTM): This is the architecture with just one ConvLSTM, introduced in
Sec. 3. We use backpropagation through time by unrolling 60, 30 or 10 time steps for training (we
select the best performing one). For testing, we unroll until there is no change in the output labeling.
We initialize the hidden and cell states to 0 (inside) everywhere except the border of the image which
is initialized to 1 (outside).

- 2-layers Convolutional LSTM (2-LSTM): We stack one convolutional LSTM after another. The first
LSTM has 64 kernels, and the hidden and cell states are initialized as in the 1-LSTM.

- 2-layers Convolutional LSTM without initialization (2-LSTM w/o init.): this is the same as the
2-LSTM architecture the hidden and cell states are initialized to 0 (outside).
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G Regularizing Feed-Forward Networks

In Fig. 3, we have observed that Dilated trained on both 24-Polar and Spiral datasets, obtains a test
accuracy of less than 95% on these datasets while the accuracy in the training set is very close to
100%. We added weight decay in all the layers in order to regularize the network. We tried values
between 10−5 to 1, scaling by a factor of 10. In all these experiments we have observed overfitting
except for a weight decay of 1, in which the training never converged.

Also, note that the CNN does not have this overfitting problem. Yet, the number of layers needed
is 25, which is more than the double than for Dilated, which is 9 layers. We added more layers to
Dilated but the accuracy did not improve.
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H Additional Figures and Visualizations
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Figure H.7: Training Accuracy in the Polar Dataset. Intra-dataset evaluation using (a) per pixel
accuracy and (b) per image accuracy on the training set, which are very similar to the test accuracy
reported in Fig. 2b and c. (c) Intra-dataset evaluation of Unet.

Dilated CNN UNet 2-LSTM Dilated CNN UNet 2-LSTM

Figure H.8: Qualitative Examples. Networks trained in 24-Polar and Spiral dataset fail to segment in
the Digs dataset.
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Layer 2 Layer 6
Unit 3 Unit 19 Unit 15 Unit 27

Figure H.9: Visualization of the Units Learnt by Dilation. Each block are the 9 images that produce
the maximum activation of a units in a convolutional layer across the test set. The green dot indicates
the location of the unit in the feature map. Fig. H.10 shows more examples.

Layer 2
Unit 0 Unit 2 Unit 12 Unit 24 Unit 26 Unit 28

Layer 4
Unit 0 Unit 3 Unit 4 Unit 7 Unit 10 Unit 14

Layer 6
Unit 2 Unit 4 Unit 8 Unit 16 Unit 17 Unit 21

Figure H.10: More examples of Visualization of the Units Learnt by Dilation. The green dot indicates
the location of the unit in the feature map.
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Figure H.11: Activation Maps of the Learnt Representations by 2-LSTM. Each row corresponds to a
different layer and each colum to a different time step. For the first stacked LSTM, we show two
different features maps (ex.1 and ex.0).
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Figure H.12: Visualization of Convolutional LSTM with the Mathematically Derived Parameters. We
can see that only the border of the image (outside) is propagated, and not the curve, as in the learnt
solution.
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Figure H.13: Activation Maps of the Learnt Representations by 2-LSTM, Trained on Small Images
(18× 18 pixels). Each row corresponds to a different layer and each column to a different time step.
Note that the network implements the coloring routine because it expands the “outside” region and
blocks the expansion at the border of the curve. Interestingly, the implementation of the coloring
routine is different from the one derived in the paper, which was depicted in Fig. H.12. Observe that
for the solution displayed in this figure, the cell state has the same trend as the hidden state but in
the derived solution the cell state is equal to ¬X . This demonstrates that there are different ways
of implementing the coloring routine. Also, the feature maps of the hidden state of the RNN (not
displayed here) are very similar to the ones displayed in this figure for the second LSTM.
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Figure I.14: Learning the Coloring Routine. 64 possible inputs and outputs of the training set of the
per-step training of the RNN for the relevant inputs.

I Per-step Learning of the Coloring Routine

The Coloring Routine can be learned by enforcing to each step the ground-truth produced by the
routine, rather than waiting until the last step. The inputs of a step are the image and the hidden
state of the previous step. Recall that the Coloring Routine determines that a pixel is outside if there
is at least one neighbor assigned to outside that is not at the curve border. All input cases (64) are
depicted in Fig. I.14, leaving the irrelevant inputs for the Coloring Routine at 0. During learning,
such irrelevant pixels are assigned randomly a value of 0 or 1.

We could not make any of the previously introduced LSTM networks fit a step of the coloring routine
due to optimization problems. Yet, we found that the RNN network was able to learn with the per-step
training. The RNN reached 0 training error about 40% of the times after randomly initializing the
parameters. After training the RNN in one step, we unroll it and apply it to images of Jordan curves.
We can see that with less than 1000 examples the RNN is able to generalize to any of the datasets for
more than 99% of the images. This demonstrates the great potential of decomposing the learning to
facilitate the emergence of the routine.

J Networks Pre-trained on Natural Images

We evaluate if training with the large-scale datasets in natural images solves the generalization issues
that we reported before.

We chose two state-of-the-art networks on Instance Segmentation, DEXTR [18] and DeepLabv3+ [37],
to investigate their ability in solving the insideness problem. In the following, we show that these
methods fail to determine the insideness for a vast majority of curves, even after fine-tuning in the Both
dataset (Deeplabv3+ achieved 36.58% per image accuracy in Both dataset and 2.18% in Digs.

DEXTR. Deep Exteme Cut (DEXTR) is a neural network used for interactive instance segmentation.
We use the pre-trained model on PASCAL VOC 2012 [47] and show some of the qualitative results
in Fig. J.15.

DeepLabv3+. This architecture extends DeepLabv3 [10] by utilizing it as an encoder network
and adding a decoder network to refine segmentation boundaries. The encoder employs dilated
convolution and Atrous Spatial Pyramid Pooling module for feature extraction. we use DeepLabv3+
with Xception backbone pretrained on PASCAL VOC 2012, and fine-tune its last layer with Polar
and Spiral datasets for training. The ratio of input image spatial resolution to encoder output image is
referred to as output stride and varies according to dilation rates. We use output strides of 8 and 16 as
suggested in the paper; loss weight (α) of 0.1, 0.2 and 0.4; and initial learning rates from 0.1 to 10−5

(dividing by 10). We train the network on Polar and Spiral datasets until there is no improvement of
the accuracy at the validations set, and we then reduce the learning rate by a ratio of 10 and stop at
the next plateau of the validation set accuracy.
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Figure J.15: Qualitative Results with DEXTR on the Polar Dataset. We use the publicly available
pre-trained DEXTR model [18]. DEXTR uses 4 points marked by the user (indicated with crosses).
We report the best found points, two examples of them per image.
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Polar Spiral Digs

Figure J.16: Results of DeepLabv3+ on Polar, Spiral and Digs Datasets. The network is fine-tuned
on Polar and Spiral. The results show that the network predicts well most of the pixels except in the
borders. For the cross-dataset evaluations in the Digs dataset, the network is not able to generalize.
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