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Abstract

The main success stories of deep learning, starting with ImageNet, depend on convolutional net-
works, which on certain tasks perform significantly better than traditional shallow classifiers, such as
support vector machines. Is there something special about deep convolutional networks that other
learning machines do not possess? Recent results in approximation theory have shown that there is
an exponential advantage of deep convolutional-like networks in approximating functions with hierar-
chical locality in their compositional structure. These mathematical results, however, do not say which
tasks are expected to have input-output functions with hierarchical locality. Among all the possible hi-
erarchically local tasks in vision, text and speech we explore a few of them experimentally by studying
how they are affected by disrupting locality in the input images. We also discuss a taxonomy of tasks
ranging from local, to hierarchically local, to global and make predictions about the type of networks
required to perform efficiently on these different types of tasks.
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Abstract

The main success stories of deep learning, starting with ImageNet, depend on con-
volutional networks, which on certain tasks perform significantly better than tra-
ditional shallow classifiers, such as support vector machines. Is there something
special about deep convolutional networks that other learning machines do not
possess? Recent results in approximation theory have shown that there is an expo-
nential advantage of deep convolutional-like networks in approximating functions
with hierarchical locality in their compositional structure. These mathematical
results, however, do not say which tasks are expected to have input-output func-
tions with hierarchical locality. Among all the possible hierarchically local tasks
in vision, text and speech we explore a few of them experimentally by studying
how they are affected by disrupting locality in the input images. We also discuss a
taxonomy of tasks ranging from local, to hierarchically local, to global and make
predictions about the type of networks required to perform efficiently on these
different types of tasks.

1 Introduction

In 1967 the book Perceptrons attempted to characterize local and global computations [23]. The
attempt failed despite the lovely theorems (recognition of a geometric pattern invariant to trans-
lation is order 3 – thus very local; recognition of connectedness is order infinity – thus global,...)
because local and global was defined in terms of computational machines that were too simple –
roughly similar to one-hidden layer networks. With the advent of deep networks, it is now interest-
ing to consider again the approach of Minsky & Papert [23] – a characterization of how local are
various computational tasks and which network architectures are needed to solve them – and aim
at a considerable upgrade of such definitions. The plan of the paper is as follows. We will first
recall and extend recent results on approximation of a certain class of compositional functions with
local constituent functions. For this class of functions, shallow networks suffer from the curse of
dimensionality whereas deep networks of the convolutional type (possibly without weight sharing)
avoid this curse. Second we will provide examples of computational tasks that correspond to such
compositional functions. We will empirically show that the property of hierachical local composi-
tionality depends on the inputs and the task. We will conclude by showing experiments that test
whether stochastic gradient descent (SGD) can learn the convolutional architecture required by the
task when the network is initially a superset of a convolutional network.
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2 There are functions that can be approximated well by deep networks but
not by shallow networks

The main question in this section is about the difference between deep networks and shallow ones,
such as kernel machines: are deep networks more powerful in terms of approximating functions?

Several papers in the ‘80s focused on the approximation power and learning properties of one-
hidden layer networks (called shallow networks here). It was clear then that one-layer networks can
approximate arbitrarily well any continuous function on a compact domain. As a consequence, little
appeared on multilayer networks, (but see [16, 21, 3, 4, 27]). By now, however, there are several
papers which have studied the approximation properties of multilayer RELU networks. Even for
univariate functions it seems that RELU networks have some advantages with respect to classical
approximation scheme say by polynomials [5]. Much interest has focused on separation results,
similar to classical results on Boolean circuits, that is on the fact that specific functions that can
be represented well by deep networks cannot be represented efficiently by shallow networks. The
best known results of this type is due to Telgarsky [37] (see also [33, 30, 24, 15, 26]) for univariate
functions (the first separation results were older and apparently little known [4]). Telgarsky proves
an exponential gap between certain functions produced by deep networks and their approximation
by shallow networks. The theorem [37] can be summarized as saying that a certain family of clas-
sification problems with real-valued inputs cannot be approximated well by shallow networks with
fewer than exponentially many nodes whereas a deep network achieves zero error.

The intuition behind these results is that high frequency functions can be represented much more
easily by deep networks – that is with fewer units – than by shallow networks. High frequencies
correspond to higher degree polynomials. This also is the case for Boolean functions where the
low order coefficients of the Fourier representation of a Boolean function correspond to a polyno-
mial of low degree. Hastad [10] proved that highly-variable functions (in the sense of having high
frequencies in their Fourier spectrum), in particular the parity function, cannot even be decently
approximated by small constant depth Boolean circuits (see also [14]).

2.1 When can deep networks avoid the curse of dimensionality?

The separation results described above are of course important but they do not say more than there
exist functions that can be better approximated by deep networks. A result in the same spirit but
with more intriguing implications focuses on multivariate approximation. Recall that the greatest
success of deep (convolutional) networks have been in dealing with high-dimensional objects such
as images (in ImageNet [32] each image is in the order of 105 pixels). We begin with the observation
[1, 29, 28] that, though both shallow and deep networks are universal approximators, and both suffer
from the curse of dimensionality: the number of parameters they need to approximate a generic
continuous function in d dimensions with an error ε may require a number of parameters in the
order of ε−d . Starting from this fact, we asked whether there exist specific classes of functions
for which deep networks may be able to avoid the exponential curse and have a non-exponential
upper bound. The answer is positive [17]. Deep networks can avoid the curse of dimensionality for
functions that are compositions of functions with a small dimensionality: we will call this class of
functions hierarchically compositional. An example is shown in Figure 1.

2.2 Shallow and deep networks: theorems

The general paradigm is as follows. We are interested in determining how complex a network,
denoted as a function f (x) ought to be to theoretically guarantee approximation of an unknown
target function g up to a given accuracy ε > 0. In particular, this section characterizes conditions
under which deep networks are “better” than shallow network in approximating functions. Both
types of networks use the same small set of operations – dot products, linear combinations, a fixed
nonlinear function of one variable, possibly convolution and pooling. Each node in the networks
corresponds to a node in the graph of the function to be approximated, as shown in Figure 1.

We define a deep network with K layers with the usual coordinate-wise scalar activation functions
σ(z) : R→ R as the set of functions f (W ;x) = σ(W Kσ(W K−1 · · ·σ(W 1x))), where the input is
x ∈ Rd , the weights are given by the matrices W k, one per layer, with matching dimensions. We
sometime use the symbol W as a shorthand for the set of W k matrices k = 1, · · · ,K. There are no
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Figure 1: The top graphs are associated to functions; each of the bottom diagrams depicts the ideal
network approximating the function above. In A. a shallow universal network (bottom) in 8 variables
and N units approximates a generic function (top) of 8 variables g(x1, · · · ,x8). Inset B. shows a
hierarchical network at the bottom in n = 8 variables, which approximates well functions of the
form g(x1, · · · ,x8) = h3(h21(h11(x1,x2),h12(x3,x4)),h22(h13(x5,x6),h14(x7,x8))) as represented by
the binary graph above. In the approximating network each of the n− 1 nodes in the graph of the
function corresponds to a set of Q = N

n−1 ReLU units computing the ridge function ∑Q
i=1 ai(〈vi,x〉+

ti)+, with vi,x ∈ R2, ai, ti ∈ R. Each term in the ridge function corresponds to a unit in the node
(this is somewhat different from today’s deep networks, but equivalent to them [30]). Similar to
the shallow network, a hierarchical network is universal, that is, it can approximate any continuous
function; the text proves that it can approximate a compositional functions exponentially better than
a shallow network. Redrawn from Mhaskar & Poggio [18].

bias terms: the bias is instantiated in the input layer by one of the input dimensions being a constant.
A shallow network is a deep network with K = 1.

We approximate functions with networks in which the activation nonlinearity is a ReLU, given by
σ(x) = x+ = max(0,x) . The architecture of the deep networks reflects the function graph, with each
node hi being a ridge function, comprising one or more neurons.

Notice that in the main example (see Figure 1) of a network corresponding to a function with a
binary tree graph, the resulting architecture is an idealized version of deep convolutional neural
networks described in the literature. In particular, it has only one output at the top unlike most
of the deep architectures with many channels and many top-level outputs. Correspondingly, each
node computes a single value instead of multiple channels, using the combination of several units.
However the result holds also for these more complex networks (see Corollary 4 [30]).

The sequence of results is as follows.

• Both shallow (A.) and deep (B.) networks are universal, that is they can approximate ar-
bitrarily well any continuous function of n variables on a compact domain. The result for
shallow networks is classical.
• We consider a special class of functions of n variables on a compact do-

main that are hierarchical compositions of local functions, such as g(x1, · · · ,x8) =
h3(h21(h11(x1,x2),h12(x3,x4)),h22(h13(x5,x6),h14(x7,x8))).
The structure of the function in Figure 1 (B.) is represented by a graph of the binary tree
type, reflecting dimensionality d = 2 for the constituent functions h. In general, d is arbi-
trary but fixed and independent of the dimensionality n of the function g. Poggio et al. [30]
formalizes the more general compositional case using directed acyclic graphs.
• The approximation of functions with such a specific compositional structure can be

achieved with the same degree of accuracy by deep and shallow networks but the num-
ber of parameters is in general much lower for the deep networks than for the shallow
network for the same approximation accuracy.

The two main theorems (see [31]) are one about shallow networks (originally due to [22]) and the
second one about deep networks with smooth activation function (see also [28, 29, 19]). They can be
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condensed in the following informal statement, where complexity is measured in terms of number
N of units:

Theorem 1 For a continuous target function g(x) with x ∈ Rn the complexity of a shallow network
that provide accuracy at least ε is O(ε−n). If g(x) has a graph representation in terms of a binary
tree, consider a deep network with the same compositional architecture and with an activation func-
tion σ : R→ R which is infinitely differentiable, and not a polynomial. Then the complexity of the
network to provide approximation with accuracy at least ε is O((n−1)ε−2).

The exponential dependence of the number of parameters required for an accuracy O(ε) on the
dimension n is known as the curse of dimensionality. The precise statement of the result in [31]
shows that the curse of dimensionality can be reduced by smoothness of the target functions. Of
course, the binary tree case of the theorem is the simplest case: the extension to more complex trees
is obvious.

The result of theorem 1 can be extended to non-smooth ReLU for the case of deep networks in a
number of ways, one of which, suggested by Mhaskar [20], is as follows. The first step is to recall
Theorem 3.2 in [20] that applies to smooth activation functions such as the “square” of the ReLU,
that is the function x2

+ defined as = x2 if x ≥ 0 and otherwise = 0. Loosely speaking, theorem 3.2
implies that for such activation functions deep networks with a sufficient number of neurons and
layers can approximate continuous functions as well as free knots splines. The second step is to use
Theorem 1 from Yarotsky [41] on approximating (x+)2 with ReLU networks.

The intuition of why hierarchical compositional functions can be approximated by deep networks
without incurring in the curse of dimensionality can be best explained in the following way.

Consider the space of polynomials, which are of course a smaller space than spaces of Sobolev
functions, but which can approximate arbitrarily well continuous functions. Let us call Pn

k the linear
space of polynomials of degree at most k in n variables and T n

k the subset of the space Pn
k which

consists of compositional polynomials with a binary tree graph and constituent polynomial functions
of degree k (in 2 variables). Then the following theorems hold (see Poggio et al. [31]):

Theorem 2 Let σ : R→ R be infinitely differentiable, and not a polynomial. Every g ∈ Pn
k can be

realized with an arbitrary accuracy by shallow network with r units, r =
(n+k

k

)
≈ kn.

and

Theorem 3 Let σ : R→ R be infinitely differentiable, and not a polynomial. Let n = 2`. Then
f ∈ T n

k can be realized by a deep network with a binary tree graph and a total of r units with
r = (n−1)

(2+k
2

)
≈ (n−1)k2.

The theorems make clear that a hierarchical compositional polynomial corresponding to a binary
graph is a very sparse polynomial – among the polynomials of the same degree in the same number
of variables. It is possible to show from [31]) that this intuition extends from polynomials to Sobolev
functions. Of course the target function graph at the top right of Figure 1 is just one of the many
Directed Acyclic Graphs (DAGs, see [18]) that can describe different forms of compositionality.
Prior knowledge of the DAG underlying a learning problem can be exploited to a great advantage
by an appropriate deep learning architecture.

The theorems above are upper bounds but it is obvious that shallow networks cannot exploit the
prior information about the compositionality of a function in their architecture. In any case, we
claim here that a formal lower bound can be given by using Telgarsky result on a function such as
the polynomial

Q(x1,x2,x3,x4) = (Q1(Q2(x1,x2),Q3(x3,x4)))
1024.

The claim is that this function cannot be approximated by shallow networks with the same number
of parameters as deep networks. The proof relies on the observation that Q1024

1 is a function of one
variable to which Telgarski theorem can be applied.

2.3 The puzzle of the unreasonable effectiveness of CNNs

We think that the results discussed above are especially interesting because they represent a potential
explanation for one of the greatest puzzles that has emerged from the empirical field of deep learn-
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Figure 2: Network schemes for trivially local tasks, for hierachically local and for global tasks. Tasks
such as color estimation are trivially local as they do not require structure, while other tasks like ob-
ject classification and scene gist are hierarchically local due to the composite nature of their images.
Global tasks have no hierarchical structure and can not be solved by classical feed-forward networks
and require more complex operations such as feedback and recursion (van Bergen & Kriegeskorte
[39]) – an example of such task would be image insideness as suggested in Villalobos et al. [40].

ing, that is the unreasonable effectiveness of convolutional deep networks in a number of sensory
problems. Convolutional networks are a special case of the hierarchical networks of the theorem
once weight sharing is added to the locality of the constituent functions.

In summary, deep convolutional architectures have the theoretical guarantee that they can be much
better than one hidden layer architectures such as kernel machines for certain classes of problems.
These problems correspond to input-output mappings that are compositional with local constituent
functions. Quite interestingly, and not well known, is that the key aspect of convolutional networks
that can give them an exponential advantage is not weight sharing but locality of the constituent
functions.

Weight sharing decreases the complexity of the network but not exponentially so. It is the locality
of the constituent functions that avoids the curse of dimensionality. This means that problems which
do not admit a translation invariant prior, that corresponds to weight sharing, can benefit greatly by
the use of hierarchically local networks (HLNs) which are convolutional networks without weight
sharing.

2.4 Hierarchically compositional functions and computational tasks

Thus the important question is: which kind of tasks correspond to hierarchically local functions?
An answer to this question suggested by Tegmark [13], is that they are tasks that involve inputs
that can be decomposed in parts and wholes, hierarchically. Images, speech and text are obvious
examples. We believe that the correct answer is a bit more complex: the property of hierarchical
compositionality depends on both x (the data) and f (the task). We will show evidence for this claim
by showing a dissociation between two different tasks on the same type of inputs (images).

2.5 Tasks beyond hierarchically local functions

There are tasks such as recognition of inside-out or connectedness that are beyond feedforward net-
works and require a Turing machine or equivalently a recurrent network which is not local. Evidence
for this is in Villalobos et al. [40] where they discuss tasks [36] that require Turing machines. The
inside-out problem is mathematically closely related to the problem of checking the parity of a bit
string [23]. Rather surprisingly, neural networks perform very poorly on tasks such as bit addition,
multiplication or even learning the identity function, if not biased specifically to the task [12, 42, 38].
They also consistently fail to generalize to larger inputs [34]. Solving these types of tasks seems to
crucially depend on using differentiable memory to store non-local correlations [9].

3 Experiments

To test the conjecture that both the function and the input are important for hierarchical composi-
tionality we test: a) changing the function by changing the task from very local to hierarchically
local (Figure 2); b) destroying the locality properties of the inputs by scrambling the images.

We will show that estimating color in an image can be done by one-hidden-layer classifiers as well
as by deep convolutional networks; performance in both cases is not affected by scrambling. We will
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Figure 3: A. We show that performance is independent of scrambling for color estimation for both
shallow fully connected networks and deep convolutional ones (left), while deep convolutional net-
works suffer greatly from the loss of hierarchical locality for scrambled scenes and objects (middle
& right). B. Randomly sampled images (unscrambled and scrambled) from both the CIFAR-10 and
MiniPlaces dataset [6] used in our experiments. The dotted line represents chance (10%).

also show that other tasks such as CIFAR-10 classification can be done with much better accuracy by
a convolutional network than by a shallow network of the same size; here scrambling does not affect
performance of the shallow networks but greatly reduces performance of the convolutional network.
Thus the first type of tasks is trivially local (see Figure 2) since they can be computed by a linear
combination of pixel values. This type of networks are not affected by scrambling. Classification
of CIFAR is better when done by a convolution network; the underlying function is hierarchically
local; scrambling destroys this hierarchical locality, because it destroys the neighborhoods of the
image supporting the constituent functions. Interestingly, gist [25] (scene classification) though not
completely local is somewhat hierarchically local: convolutional networks are better performing
than linear ones and are affected by scrambling. Figure 3 summarizes these results.

3.1 Methods

Image Manipulation: We will define the order of scrambling with the following operator: (S ),
where Si is the i-th scrambled image. Here, S0 is the unscrambled image, and for i≥ 1 the scram-
bling procedure computes a random permutation of sub-dividing the [M×M] px image into 4 sub-
blocks of size [M/2×M/2] px– this procedure is done recurrently i times. We will also define S∞
as the non-hierarchical scrambling operator i.e. a complete random permutation of pixels that have
been remapped with no structure or hierarchical prior (Figure 3 B.). Here, we will show results of
S0 vs S∞ that strengthen our claim, and the Supp. Mat. will show intermediate results for Si.

Training: Five shallow fully connected networks with a single 10‘000 neuron hidden layer were
trained for 5 epochs with a MSE loss (color estimation) or 80 epochs with a cross-entropy loss
(object classification and scene gist) with a batch size of 64 for object classification and scene gist,
and an SGD optimizer set at [η = 0.001,β = 0.2], with the learning rate: η halved (×0.5) from
its original value after the 20-th epoch, and decimated (×0.1) from its original value after the 40th
epoch. Five deep convolutional networks (DenseNet121 [11]) were trained with a batch size of 64
for 20 epochs with SGD at [η = 0.001,β = 0.2] & MSE loss (Color Estimation) or batch size 512,
300 epochs & cross-entropy loss (object classification and scene gist) with an SGD optimizer set at
η = 0.1, nesterov momentum β = 0.9, dampening set to 1e-4, with the learning rate: η decimated
(×0.1) at the 150-th epoch and decimated again at the 225-th epoch.
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Testing: To compute each systems accuracy for the scrambling condition, the scrambling noise
seed was randomly picked and also saved and matched both at training and testing. In essence, the
random scrambling procedure at training was matched at testing, such that although locality was
altered, it was remapped homogeneously across all images at training and testing.

Data augmentation in the form of random horizontal mirroring with a chance of 0.5, and random
cropping followed by re-scaling with an area ratio interval of [0.7,1.0]. Data augmentation was
performed before the scrambling operation, and was only used at training, and not testing.

3.2 Color Estimation

The luminance of each of the three RGB channels was estimated by modifying the number of output
neurons to 3 in the last linear operation of each network. We found that after just 5 epochs of training
with a MSE (mean square error) loss, that shallow networks achieved a lower mean square error of
0.552±0.016 compared to deep convolutional networks 4.233±0.689 (Figure 3 A. left). Naturally
performance does not significantly change after scrambling (shallow networks: 0.552± 0.016→
0.546±0.013 (n.s.), and deep convolutional networks: 4.233±0.689→ 3.803±0.871 (n.s.)) given
the trivially local type of task (Figure 2 (left)).

In a way this result suggests the importance of appropriate matching between network architecture
(g) and task ( f ). Both networks are successful and can learn to estimate the average color of an
image for both un-scrambled and scrambled images, yet shallow networks achieve smaller error due
to a better match to the nature of the task. Interestingly, the deep convolutional network does not
achieve the same lower error bound as shallow networks (pre (S0) and post (S∞) scrambling), sug-
gesting that hierarchical compositionality may be a non-optimal inductive bias for color estimation
– which in turn may induce high perceptual variance across networks (see Emery & Webster [8]).

3.3 Scene Gist

To evaluate effects of scene gist on our two candidate networks, we decided to use a subset of
the MiniPlaces dataset as introduced in Deza & Konkle [6]. The MiniPlaces dataset consists of a
collection of 5000 high resolution 512×512 sub-selection of 20 scene categories from the original
Places dataset [43]. However to make comparisons fair between both experiments the images from
the MiniPlaces dataset were rescaled the stimuli to [32× 32× 3] and only picked a subset of 10
visual categories. These scene categories spanned a variety of visual attributes ranging from indoors
to outdoors and open and closed. The final categories that we sub-selected were: [ocean, industrial
area, badlands, bedroom, bridge, forest path, kitchen, office, corridor, mountain]. Finally, our newly
re-scaled “TinyPlaces” dataset consisted of 4500 images which were used for training per class, 250
for validation per class (not-evaluated), and 250 for testing per class.

We found that deep CNNs achieved 61.904± 1.015% for un-scrambled scene gist recognition and
shallow networks achieved 44.848± 0.311%. Meanwhile for scrambled scene gist deep CNNs
achieved 40.136± 0.497% taking a total accuracy difference of ∆ = 21.768% (un-paired), while
shallow fully connected networks naturally stayed at the same performance of 45.416± 0.261%
(Figure 3 A. middle). Interestingly, shallow networks marginally overperformed deep convolutional
networks for this task although this may be due to our implementation difference where shallow
networks had an order of magnitude greater of number of parameters.

3.4 Object Classification

We then carried out an experiment in which we destroyed locality in CIFAR-10 images by scram-
bling pixels in the same pseudorandom way for all data in the training and testing set (Figure 3 A.
right). The performance of a shallow network stayed constant once again from 60.472± 3.049%
to 62.902± 0.232%; while the better performance of deep convolutional networks was greatly im-
pacted,. Un-scrambled performance dropped from 86.248± 0.457% to 57.446± 0.686% yielding
a difference of performance of ∆ = 28.802% (un-paired). These results imply that locality is cru-
cial for the performance advantage of deep convolutional networks in such tasks. Further, notice
that both the initial unscrambled accuracy and the perceptual drop is greater for object classification
than scene-gist for an approximately similar amount of training data (4500 scenes/class; 5000 ob-
jects/class), testing data (250 scenes/class; 1000 objects/class), training regime (SGD), loss function
(cross-entropy), class labels (10) and chance level (10%).
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Our model forecast suggests that the hierarchically local compositional nature of objects (from con-
trast, to edges, to texture, to shape), will yield high performance for the CNN models that can exploit
this structure in the data, while shallow fully connected networks will perform above chance, but
not perform as highly as CNNs as they do not exploit locality in the image structure. However, as
we increase the degrees of scrambling of the image stimuli (S0→S∞), the locality prior is lost –
in addition to the global shape of the object – thus degrading the performance of the CNN’s, while
shallow networks remain indifferent to this type of image manipulation.

4 Discussion

So far we have compared deep convolutional networks with shallow networks. The same results,
however, suggest that convolutional deep networks are, for certain tasks, exponentially more effi-
cient in terms of required parameters than densely connected deep networks. The obvious question
is then: since deep networks contain convolutional ones, may gradient descent converge to the con-
volutional ones? The question is intriguing, especially in light of the well-recognized benefits of
overparametrization. For now, let us articulate this question:

Show experimentally that, for learning tasks that are performed better by CNNs, dense deep net-
works networks cannot be trained with SGD to reach the same level of performance without an
exponential sample complexity problem.

...
...

...
...

...
...

...
...

Figure 4: SGD preserves non-locality.

We performed a preliminary experiment (Figure 4)
in which the architecture of a fully connected net-
work was initialized to be a “noisy” convolutional
one with additional nonconvolutional connections
(i.e. a Toeplitz matrix with some additional non-
zero entries). In Figure 4 we added non-zero en-
tries to the Toeplitz matrix with probability 0.05%
and plotted the Frobenius norm of these additional
weights during training. We find that SGD preserves
these additional weights and hence dense layers do
not converge to convolutions naturally, even if ini-
tialized close to them.

Since most of the success stories of DL involve con-
volutional networks applied to recognition and classification of images, speech, and text, it is tempt-
ing to conclude that the underlying reason is hierarchical compositionality of the function associated
with those tasks. The reason, of course, is that the theorem from Mhaskar & Poggio [17] discussed
in this paper shows that deep networks but not shallow ones can avoid the curse of dimensionality
in approximating hierarchical functions (the theorem, is not, strictly speaking, a separation result
but we have shown in this paper that there exist compositional tasks which require exponential com-
plexity by shallow networks). The question left open by the mathematics is which tasks correspond
to hierarchically local functions. What we have shown here is that the domain and the task itself are
important. Images have a local structure at several scales that is a prerequisite for compositional-
ity (see also Brendel & Bethge [2]). However, a simple task such as estimating the color of an object
does not require this hierarchical compositionality as does scene gist or object classification itself.

Further one can see how playing with different function mappings (g) and tasks ( f ) can tell us
about the structure of images. For example, suppose we did not know that scenes ‘have a shape’
as suggested in Oliva & Torralba [25]; we could perform an experiment like the one from Figure 3
to test if the compositional structure of scenes is similar to the compositional structure of objects.
If hierarchical locality is not a prior of scenes (unlike of objects) we would expect little to no drop
in performance for the scrambled condition. However this is not the case, as we have shown in
our experiments and recently in Tadros et al. [35] – thus giving insight on the compositionality and
structure of scenes.

Finally, the mathematics provides two important lessons for future applications: weight sharing
helps reducing the complexity of approximation for appropriate problems, but it is locality that
matters for eliminating the curse of dimensionality. Thus non-convolutional, hierarchically local
networks may be appropriate for certain tasks. Recent work by Elsayed et al. [7] supports this
prediction in showing that a controlled departure from convolutions can lead to better performance.
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Broader Impact

In terms of ethical aspects and future societal consequences the impact of this paper is quite indirect,
as far as we can see. The main contribution is towards a characterization of the convolutional priors
used in current deep networks and their relation with the mathematical theory of function approx-
imation. Other broader implications were mentioned in the discussion with regards to explainable
models and a way to test compositionality theories potentially in vision science and cognition. Indi-
rectly, of course, a better theory of learning machines may well have huge society impacts in some
good ways – helping developing machines that can better solve problems for us – and in bad way –
reducing jobs available to humans.
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5 Supplementary Material

Deep Convolutional
Shallow Fully Connected

Figure 5: Main (top) and extended (bottom) results from our paper. See section 5.1 for a full
description. The dotted line represents chance (10%).

5.1 Hierarchical Scrambling

The full and extended set of results with errorbars (mean ± standard deviation) from 5 randomly
initialized networks (single hidden layer – fully connected and DenseNet121) across the multiple
levels of hierarchical scrambling S0→S5 and asynchronous scrambling S∞ is shown in Figure 5.
These extended pattern of results agree with out notion of hierarchical locality. Color Estimation:
Shallow fully connected networks converge to similar low Mean Square Error (MSE) estimation
shown via the little to no variation of the variance per data point; deep convolutional networks
perform the same independent of order of scrambling to approximate color (albeit greater error
and variance) – though still being able to compute the task. Approximate chance for this task (not
shown) is 128 pixels of MSE for a randomly initialized network with no training. There is no
obvious decrease in performance for both the tasks: stable and constant for shallow fully connected
networks, unstable and constant for deep convolutional networks. Interestingly, even across different
initializations, deep convolutional networks never achieve lower MSE than shallow fully connected
networks. Further experiments should explore how stability and training regimes (i.e. optimizer)
affect the convergence of these results (mainly targeted at trivially local tasks) for deep convolutional
networks. Scene Gist: As hierarchical scrambling is increased, scene gist performance for deep
convolutional networks decreases gradually – an expected consequence of the piece-wise disruption
of hierarchical locality. Performance for shallow fully connected network stays constant. Object
Classification: The same effect of reduction in performance (as in scene gist) is shown for object
classification as a function of hierarchical scrambling, though this disruption is stronger than scene
gist.

A full list of sample objects and scenes across varying levels of scrambling can be seen in Figure 6.
It is worth noticing that in our experiments each randomly initialized network was also paired with
a separate form of random scrambling depending on the order. For example, consider two networks
A and B: network A may be exposed to one candidate mapping for S1 while network B may be
exposed to another candidate mapping for S4 under a different recursive noise seed. Even under
such levels of randomness in our experiments, the standard deviation is only highly variable for deep
convolutional networks performing color estimation.
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Figure 6: A full collection of randomly picked images from objects and scenes user in our experi-
ments ranging from hierarchical scrambling: S0→S5, to asynchronous scrambling: S∞.

5.2 Details of experiment on Toeplitz matrices with nonlocal connections

We implemented the addition of nonlocal connection to a convolutional network by constructing two
networks – one CNN and one fully connected with compatible architecture. The CNN had 4 convo-
lutional layers with kernel size 3, stride of 1 and number of output channels 3, 6, 12, 12 respectively,
followed by two fully connected layers (with 1024 hidden units) and no batch normalization layers.
The models were trained with SGD with learning rate η = 0.01, momentum of 0.9 and batch size of
64.

After initialization of the CNN, we transformed the convolution layers into Toeplitz matrices and
used these as initialization for the fully connected network. We then randomly added additional
nonzero weights to the sparse Toeplitz matrices to implement the nonlocal connections. During
training, we masked the zero entries to keep them from being updated by backpropagation steps.
We added connections with probability of 0.05%, which resulted in increase of nonzero weights to
77005 up from 72900 for the first layer (note that in a typically initialized dense layer this would be
∼ 8.3M parameters). In Figure 4 in the main text we plotted the Frobenius norm of only the addi-
tional nonlocal connections in the first layer. We observed that this norm kept increasing throughout
training, signalling that the nonlocal connections were not pruned out by SGD, agreeing with the
hypothesis that fully connected layers do not converge to convolutions with standard SGD.
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