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1 Introduction

In previous papers [1, 3] we have claimed that for each function which is efficiently Turing com-
putable there exists a deep and sparse network which approximates it arbitrarily well. We also
claimed a key role for compositional sparsity in this result. Though the general claims are correct
some of of our statements may have been imprecise and thus potentially misleading. In this short
paper we wish to formally restate our claims and provide definitions and proofs.

2 Main theorem

Definition 1 (Efficient Turing computability). There exists a deterministic Turing machine M
such that, given:

• A point x ∈ [0, 1]d specified to n bits of precision (i.e., a binary encoding of each coordinate
of x to n bits),

• A precision parameter ε > 0 given by ⌈log2(1/ε)⌉ bits,

the machine M runs in time polynomial in n + log(1/ε) and produces a binary output (of length
poly(n, log(1/ε))) that is an ε-approximation to f(x) (e.g., in supremum norm or Euclidean norm
on Rm).

Theorem 2 (Polynomial-Time Computability Implies Neural Network Approximation Without
Curse of Dimensionality). Let f : [0, 1]d → Rm be a function that is efficiently computable. Then,
for every ε > 0, there is a feedforward neural network Φε (with size and depth at most polynomial in
n+log(1/ε))—using any standard “universal” activation function (e.g. ReLU, sigmoid, etc.)—such
that

max
x∈[0,1]d

x has an n-bit encoding

∥∥∥Φε(x) − f(x)
∥∥∥ ≤ ε.

In other words, Φε approximates f uniformly to within ε on the discretely sampled inputs of precision
n. By letting n grow with the input precision (and letting ε → 0), one obtains a family of deep neural
networks that approximate f arbitrarily closely, with overall size and depth scaling polynomially in
the input-precision plus the approximation precision.
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Proof.

• Polynomial-time computability implies there is a Turing machine running in time poly(n, log(1/ε))
for inputs (x, ε) encoded with n+ log(1/ε) bits.

• By standard results in circuit complexity, this yields a polynomial-size (bounded-fan-in)
Boolean circuit family {Cn,ε} that simulates the Turing machine on all inputs of length n.

• Each gate in the circuit can be replaced by a small neural “sub-network” that exactly or
approximately realizes the corresponding Boolean function (e.g. via threshold or sigmoid
units).

• Wiring these sub-networks together produces a deep neural network Φε whose size (total
number of neurons) and depth (number of layers) are polynomial in n+ log(1/ε).

• On all n-bit encodings of x, this network’s output matches (or approximates) the original
function f(x) to within ε.

3 Corollary

Definition 3 (Compositional Sparsity). A function f : X d → X is compositionally sparse if it can
be represented as the composition of at most O(d) constituent functions each of which is sparse,
i.e., depends on at most a constant (small) number of variables c.

A compositionally sparse function can be represented in terms of a DAG (Directed Acyclic
Graph), in which the leaves represent the inputs, the root denotes the output function, and the
internal nodes represent the constituent functions. The maximum in-degree of the DAG is equiv-
alent to c. It is always possible to show the DAG as a graph with multiple layers where there are
nodes at each layer and connections only between one layer and the next one by using ”dummy”
nodes representing an identity transformation.

Corollary 1 (Compositionally Sparse Approximation). Let f : [0, 1]d → Rm be polynomial-time
computable in the sense of Theorem 2. Then, for every ε > 0, there exists a compositionally sparse
function

gε : [0, 1]d → Rm

such that:
max

x∈[0,1]d
x has an n-bit encoding

∥ gε(x) − f(x)∥ ≤ ε,

where each constituent function in the composition of gε is itself realizable by a shallow (bounded-
depth) neural network whose size (number of neurons) depends only polynomially on n+ log(1/ε).

Proof of Corollary 1. The statement follows directly from Theorem 2 and the standard correspon-
dence between polynomial-size Boolean circuits and networks of shallow subnetworks. The steps
in the proof are:
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1. Construct a Polynomial-Size Boolean Circuit. By Theorem 2, f is computed (to within ε)
by a Turing machine running in time poly(n, log(1/ε)). From classical circuit-complexity
arguments, we can unfold this machine into a family of Boolean circuits {Cn,ε}, each of which
has size (number of gates) bounded by a polynomial in n + log(1/ε). A similar statement
is that the constituent functions of a Boolean function are sparse if the Boolean function
corresponds to a program which is efficiently computable (i.e., in P). This is basically the
definition of having a polynomial-size, bounded-fan-in circuit computing the function.

2. Replace Each Gate or Set of Gates by a Shallow Neural Sub-Network. Each gate in the circuit
Cn,ε is a small Boolean function (e.g. fan-in 2, such as AND, OR, NOT, or threshold). We
convert an appropriately small set of such gates into a small (often depth-1 or depth-2) neural
network:

• Threshold Gate Example: A single neuron with a linear threshold activation can exactly
replicate an AND/OR/NOT on {0, 1} inputs.

• Sigmoid/ReLU Approximation: If using continuous activations, we approximate these
Boolean gates on {0, 1} to arbitrary precision by adjusting the slope or bias parameters.

Hence, each gate gj is replaced by a shallow sub-network Nj with O(1) or O(log n) neurons
(depending on gate type).

3. Layered Composition Yields a Compositionally Sparse Function. The circuit Cn,ε is a directed
acyclic graph of gates, which can be topologically ordered in layers. Substituting each gate
by its corresponding shallow network Nj gives us a layered composition:

gε(x) = NL

(
· · ·N2(N1(x)) · · ·

)
,

where each Nj has small depth (e.g. 1 or 2) and accepts only a bounded number of inputs from
the previous stage (since each gate in the Boolean circuit had bounded fan-in). Consequently,
gε is compositionally sparse in the stated sense.

4. Approximation Guarantee. On the set of all n-bit encodings of x ∈ [0, 1]d, the above compo-
sition gε exactly replicates (or arbitrarily closely approximates) the circuit Cn,ε, and hence
by Theorem 2, it lies within ε of f(x). Thus

max
x∈[0,1]d

x has an n-bit encoding

∥gε(x)− f(x)∥ ≤ ε.

5. Size and Depth Bounds. Because Cn,ε has polynomial size in n+log(1/ε), the total number of
shallow sub-networks (and total neurons across all layers) is also polynomial in n+ log(1/ε).
The final composition gε is typically deep overall, but each individual subfunction in the
composition is shallow, maintaining the compositionally sparse structure.

Hence, we conclude that for every ε > 0, there is a compositionally sparse function gε (built
from the functions corresponding to shallow neural sub-networks) that approximates f to within ε.
This completes the proof.
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The assumption in Theorem 2 (and in the corollary) that f (or rather, its approximation) is in
P can be relaxed. In fact, f only needs to be P/poly, that is, in the class of languages/functions
such that there exists polynomial p(n) such that for every input size n, there exists a circuit Cn

of size at most p(n) that computes f restricted to inputs of length n. P is also called ”uniform
computation” and P/poly ”non-uniform computation”. Uniform computation has the very powerful
property that the same constant sized program can generate the circuit computing the function for
any input length.

4 Connection with Compositional Sparsity

Suppose we consider a Turing computable function f : [0, 1]d → R. Suppose the Boolean function
corresponding to the Turing program that computes the function up to accuracy ϵ is compositionally
sparse. This does not automatically imply that the original continuous and real-valued function is
compositionally sparse. However, the following is true:

Proposition 1 (Sparse Boolean Function Approximation by Sobolev Functions). Given a sparse
Boolean function

F : {0, 1}n → {0, 1}m,

there exists a set (or family) of Sobolev functions{
fε
}

on a continuous domain (say Ω ⊂ Rd) such that, for inputs encoded in {0, 1}n and up to a desired
approximation ε, each fε yields outputs close to F (interpreted in {0, 1}m).

In other words, for each finite bit-precision of input and output, one can pick (or construct) a
Sobolev function fε so that fε closely matches the discrete outputs of F on those discretized inputs.

However, one must keep in mind that this “identification” does not imply a deep, structural
equivalence between the continuous function and the Boolean function. It simply shows that, for
each desired ϵ, a suitable fϵ can be constructed so that it is in an appropriate Sobolev space and it is
close to the Boolean function in a relevant norm. In particular, a different ϵ may lead to a different
Sobolev function or even space. Corollary 1 is a more direct route to the statement that efficiently
Turing computable functions correspond to compositionally sparse functions, where the statement
has to mean that each efficiently Turing computable function can be approximated arbitrarily well
by a compositionally sparse function.

Remark: The logic implicit in [1, 3] was that a) efficiently computable functions are composition-
ally sparse because their Boolean representation is compositionally sparse and that b) we can then
use the main theorem in [2] to claim they can be approximated by deep sparse networks. The weak
step in this argument is that a compositionally sparse Boolean representation of a continuous real-
valued function on the reals, does not directly imply that the original function is compositionally
sparse.
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5 Appendices

Appendix 1: Can Any Boolean Function Be Written as the Composition of
Boolean Functions?

Any Boolean function
F : {0, 1}n → {0, 1}m

can be expressed as a finite composition of sparse Boolean functions (often called gates), each depending on
only a limited subset of bits or intermediate outputs.

1. The General Idea

• A Boolean circuit (or combinational logic) representation accomplishes precisely this: it expresses a
target Boolean function F as a layered composition of sparser subfunctions gj , each of which might be
a standard gate like AND, OR, NOT, NAND, or a small Boolean block {0, 1}k → {0, 1}.

• Concretely, one builds a directed acyclic graph of gates. The input bits x1, . . . , xn feed into these
gates, and each gate’s output might feed into other gates. Eventually, the final layer of gates produces
the m-bit output {0, 1}m.

• Symbolically, you can write
F (x) = fL

(
. . . f2

(
f1(x)

)
. . .

)
,

where each fℓ is a sparse Boolean function combining some of the inputs or partial outputs from earlier
layers.

2. Efficiency and Circuit Complexity

• While every Boolean function can be represented in this way, the size of the circuit (the total number
of gates) can become very large in the worst case. For a completely generic Boolean function, one
might need exponentially many gates.

• However, for “structured” Boolean functions—e.g. those in the classP (polynomial-time computable)—
there exist polynomial-size circuit families. This is a main theme of circuit complexity theory: under-
standing how large a circuit must be to compute (or approximate) a given function.

3. Related Constructions

• Normal Forms. Every Boolean function can be written in disjunctive normal form (DNF) or con-
junctive normal form (CNF). These forms are themselves compositions of smaller logical components
(e.g. ANDs of literals, ORs of clauses).

• Threshold Circuits. Another style is to build circuits from threshold gates (gates that output 1
if a weighted sum of inputs exceeds a threshold). Again, these threshold gates are smaller Boolean
subfunctions.

• Multi-output Functions. If F has m output bits, we can view each bit of F (x) as a separate
single-output function, all of which can be implemented by separate or partially shared subcircuits.

Conclusion

Every Boolean function from n-bit inputs to m-bit outputs can indeed be written as a composition of sparser
Boolean functions. We typically call this a Boolean circuit. Thus, the answer is yes: there is always some
finite composition of subfunctions (gates) that realizes any desired overall mapping

{0, 1}n → {0, 1}m.
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