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Our desire and fascination with intelligent machines dates back to the antiquity’s mythical au-
tomaton Talos, Aristotle’s mode of mechanical thought (syllogism) and Heron of Alexandria’s me-
chanical machines and automata. However, the quest for Artificial General Intelligence (AGI) is
troubled with repeated failures of strategies and approaches throughout the history. This decade has
seen a shift in interest towards bio-inspired software and hardware, with the assumption that such
mimicry entails intelligence. Though these steps are fruitful in certain directions and have advanced
automation, their singular design focus renders them highly inefficient in achieving AGI. Which set
of requirements have to be met in the design of AGI? What are the limits in the design of the
artificial? Here, a careful examination of computation in biological systems hints that evolutionary
tinkering of contextual processing of information enabled by a hierarchical architecture is the key

to build AGI.

Thomas Hobbes’ account of mechanical combinatorial
theory of cognition in Leviathan, Blaise Pascal’s mechan-
ical calculator and Gottfried Leibniz’s alphabet of human
thought were among the contributions of late Renais-
sance and early 17th century visionaries to the dream of
building intelligent machines. Late 18th, 19th and 20th
centuries witnessed more rigorous attempts to both for-
malize theories of intelligence and create intelligent ma-
chines. The unfinished programmable mechanical calcu-
lating machines of Charles Babbage in late 19th was fol-
lowed by the development of formal logic, Turing’s view
of computation and intelligence. In 20th century, we have
witnessed the emergence of the field of Artificial Intelli-
gence, its promises, winters and its re-emergence in the
recent decade. IBM’s deep blue victory over Gary Kas-
parov was among the success stories, though it relied on
strategies completely different from human intelligence.
The legacy of the triumph of machines was sustained
when Google DeepMind AlphaGo beat Lee Sedol in the
game of GO. Additionally, recent advances in experimen-
tal neuroscience and computing power has led to much
excitation about the further extension in applications of
neuro-inspired computer vision [7]. Despite the success
of brute force algorithms of IBM Watson, and Reinforce-
ment Learning of Google DeepMind AlphaGo, our ma-
chines and algorithms are still bereft of Artificial General
Intelligence (AGI). The most advanced Al algorithms are
far behind the dramatic portrayal of AGI, Hal9000, in
2001 Space Odyssey.

Why has no approach, so far, come even close to
AGI? Why did symbolic computation, despite its early
promises [25] not succeed in achieving AGI? Was it sim-
ply because no one knew how to build a general database
of commonsense knowledge? [23]. Neural networks, de-
spite early criticism, have shown wide applicability in a
variety of tasks after the rapid expansion of computing
power. The magic seems to have been residing in com-
puting power and the scale of the network. Yet still, these
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networks have no trace of AGI. If the intelligence is not
simply equivalent to building a synthetic brain [3], what
is the essence of intelligence? Here, I try to provide a new
viewpoint that characterizes intelligence as a mechanism
deeply intertwined with the core essence of biology, i.e. a
specially designed hierarchical architecture that provide
the capacity for contextual information processing.

In recent years, the bold and ambitious aspiration to
develop intelligent machines is mixed with a recogniz-
able shift towards bio-inspired designs. In mimicking the
flight of insect in design of the RoboBee [20] or in mix-
ing biological and electronic elements in RoboRay [26],
the key to success has been in understanding the physical
limits of the materials used in making flexible lightweight
systems. The efficacy of these systems are mostly de-
pendent on the communication capacity among the elec-
tronics (or bio-electric interface) and processing power of
their elements. In more direct attempts to mimic intelli-
gence, the design of novel neuromorphic computing archi-
tectures has been mostly focused on achieving brain-like
energy efficiency in spiking neural networks embedded
designs [9, 24]. On the algorithmic front, the successful
deep learning [I8] and recurrent network [I3] mimicry of
brain networks are mainly focused on intrinsic organiza-
tion of the biological network.

The assumption is that such mimicry entails intelli-
gence despite missing many other elements in physical
imitation of biological systems. What is missing from
the Von-Neumann architecture and the bio-inspired non-
Von-Neumann approach is an understanding of the com-
putational limits that arise due to the organization of bi-
ological templates as complex systems embedded in their
environment. This oversight is not very surprising since
the designers of (both software and hardware) machines
emphasize the functional aspects of a living system in
their attempt to duplicate its performance. In the be-
havioral and functional dichotomy of intelligence, as pro-
posed by [33], the functional approach is concerned with
the intrinsic organization while the relation between the
object and the outside world is relatively secondary to the
structure and internal properties. The emphasis on func-
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tional aspects and reliance on high speed components has
high energetic costs. Most efficient neural networks, espe-
cially the more bio-inspired ones like Deep Learning, need
many computational cycles to reach a desired outcome.
This too has added to the energetic cost of computation
and part of the new efforts in the bio-inspired frontier
(neuromorphic architecture) are geared to resolving this
issue.

Proposition of controlling behavior through negative
feedback as the mechanism behind teleological behav-
ior [33] led to the notion that artificial intelligence and
building a synthetic brain are not equivalent. Feedback
as a control mechanism for achieving adaptation in a
changing environment untangled the mysterious aspect
of teleology [37]. Interestingly, early attempts at design-
ing intelligent machines based on teleological behavior
showed some delivered promises [I1]. Walter Grey’s tor-
toises, Machina speculatriz and Machina docilis mani-
fested complex sets of behaviors (phototaxis, search for
energy source and conditioned reflex behavior) and could
maneuver around the room autonomously. The teleo-
logical approach, though properly recognizing the lim-
its of functional approach, eventually rendered cybernet-
ics immovable from a qualitative level [3]. The reason
that neither functional nor behavioral teleology have suc-
ceeded in advancing artificial intelligence above and be-
yond task-specific advancements is likely rooted in the hi-
erarchical organization of the nervous systems and their
modification and optimization through interactions with
the environment. It is possible that what sets biol-
ogy apart from other systems is the contextual (func-
tional) algorithmic features in biological computation.
The context-dependency of biological systems can be de-
fined as a top-down causal information exchange that is
unique to their multi-scale organization [42]. While the
thermodynamics of information tells us that information
is physical [I7] and within the bounds of Landauer limit
[4, [16] could be converted to energy [27, 41], the informa-
tion at the macroscopic scale can affect microscopic scale
in biological systems [42].

It has been suggested that the supervenience of aggre-
gates over microscopic elements may potentially point
to macro-scale causally superseding micro-scale [12]. If
macroscopic dynamics can change causality direction
then there is the possibility of a strong causal emergence
at multiple scales of an information processing system
such as the brain. Top-down causality provides a possi-
ble platform for offloading the computational complex-
ity onto cells [29]. One can conclude that through “in-
formation to energy conversion” and “top-down super-
venience” goal-directed macroscopic contextual informa-
tion processing can recapitulate microscopic dynamics.
Of course, in such an information-theoretic landscape, a
successful model should tell us how to convert macro-
scopic goals into computational rules embedded at the
scale of networks (neural assemblies) and individual neu-
rons (with potential extension to intracellular computa-
tion). The evolved structure that provides the additional

top-down causal path (and thus a bidirectional causal-
ity), renders information not as mere metaphor of the
degree of randomness (as framed by Shannon [35]) but
gives it a semantic flavor [22]. This notion of information
processing in biological systems is not just a symbolic
analogy of modern-day technology (such as Descartes’
hydraulic pump analogy, Freud’s steam engine analogy
and the popular “brain is a computer” analogy), but
rather it truly embodies the physical nature of informa-
tion [22] [34].

If the nature of intelligence is rooted in a contextual,
non-local information control and feedback, then it fol-
lows that there is no blueprint for the solution and the
correspondence between the causality of information and
microscopic dynamics of the nervous system. It is essen-
tial to note that this claim does not negate the role of the
physical substrate (molecules, neurons and networks) of
information flow, but rather portrays the non-optimality
and non-uniqueness of the multiscale contextual causal-
ity of information processing. In such a setting, the need
for heuristics in exposure to new environments/problems
becomes evident. “Trial and error” as the fundamental
heuristic strategy derived from experience with similar
problems [28] and a method of problem solving and er-
ror elimination under various forms of selective pressure
[32] stands as the likely candidate. Unsurprisingly, it has
been suggested that chess masters do not rely on flash
of insight or superior memory or faster processing, but
rather implement a heuristic selective and non-exhaustive
trial and error in the tree of possible moves [38]. Since the
non-optimality and non-uniqueness of trial-error seem to
be the essence of AGI as well as byproducts of contextual
information processing, one may ask where and how they
could be superior to the alternatives?

Ashby provides an interesting example of the superi-
ority of a trial and error approach [I]. In his example of
finding a particular combination of 1000 on/off switches,
a simultaneous (parallel) individual testing of all switches
(average of 1 second) outperforms serial and all-or-none
test of switches (respectively, average of 5210% and 10301
seconds). As the number of the possible states of the
problem grows, the time needed for any intelligent de-
sign to find the optimal solution grows non-linearly. In
contrast, trial and error which relies on little knowledge
and is problem-specific seems to be the optimal path to
reach a solution even though that solution may not be
optimal. This contextual, non-local feedback causal as-
pect of intelligence is very similar to the DNA serving
as the backbone but not blueprint of the cellular compu-
tation. In the case of DNA, it is the interaction of the
genes in response to the cell’s environment that leads to
the expression or suppression of other genes [3 [42]. It
is the interactions of the genes and not their products,
i.e. enzymes, that carry the information that materialize
one possibility among many possibilities based on the ge-
netic composition [22]. The reason for such isomorphism
between genetics, immune system and intelligence is the
nature of information itself. The allure of the biology is



not in its search for the optimal solution but rather is
beholden to its fundamental roots in trial and error as
a tinkering mechanism in response to the environment
[15]. As a result, simply by adapting the evolutionary
principles, robots can show forms of intelligent behav-
ior [30] that are systematically different from the main-
stream ones. Although for a system to be fully capable
of AGI, one has to go above and beyond evolutionary
robotics and implement the principles mentioned here.

Brains are (physical) computational systems with a dy-
namical broken symmetry of information that finds rel-
atively stable states [I4]. But how does a system which
harbors context-dependent behavior remain stable? The
answer lies in Ashby’s law of requisite variety, which
states that “If a system is to be stable, the number of
states of its control mechanism must be greater than or
equal to the number of states in the system being con-
trolled” [2]. As a result, systems with higher internal
variety are more capable of responding to predictable
scenarios and are better suited to face unpredictable sit-
uations. To achieve a higher number of behaviors, the
system needs to increase its intrinsic variety. To do so,
the system must rely on a higher number of computing
components and a higher number of connections between
these computing elements. However, there is a cost of
increased connectedness among the components. Up to
some level of increased connectedness, the dynamics of
the system is stable. However, at some critical thresh-
old, it suddenly becomes unstable [10]. If the big sys-
tem is organized in a modular fashion, it is more likely
that individual modules/blocks preserve their stability
in the face of perturbations [2I], though there is a limit
to the number of random interactions and they should
be fixed in time [6]. This desired stable collective in-
formation processing can be harnessed through compet-
itive dynamics [§] where modular composition provides
the possibility of asynchronous or synchronous recruit-
ment of sub-assemblies. It follows that as the system’s
variety grows, so does the need for the organization of
information and the capacity to reshape the structure as
information grows. Evolution has found a solution for
this and that solution resides in multiscale organization
of biological systems.

Simple life forms are capable of rudimentary compu-
tation equipping them with simple behaviors such as
chemotaxis and movement. In more complex life forms,
specially multicellular animals, behaviors are controlled
by the nervous system. Rudimentary nervous systems
(such as jellyfish) are in the form of a diffuse nerve net.
As the organism’s behaviors get more complicated, the
nervous system becomes organized in ways to adapt to
the greater repertoire of the needed behaviors. Compar-
ative structures of the nervous system in C. elegans, fruit
fly, mouse, Macaca Mulatta and humans show increasing
levels of internal variety, organized in a hierarchical fash-
ion. Ashby’s law of requisite variety demands a higher
internal variety to match the more complicated sets of
behaviors. Yet, the needed bigger nervous system is not

just composed of a very large neuronal net with shallow
depth. Instead, the more advanced nervous system is
structured as a hierarchical system. These advanced sys-
tems are still composed of microscopic elements involved
in the similar types of rudimentary intracellular compu-
tation (as in single cell organisms) as well as computa-
tions that are built upon a network of cells organized as
tissue. As we discussed above, this form of architecture
helps to provide dynamic stability of the system while
enabling a much larger repertoire of computations.

An unsurprising outcome of a hierarchic structure is
that increasing network depth may provide an efficient
way for achieving abstraction of information through
renormalization [19]. This aspect may represent why and
how deep learning has been more successful than its pre-
decessors in certain domains. Though, it is important to
recognize that the more complex the nervous systems is,
the more hierarchical organization is present. Such non-
decomposable hierarchy is a hallmark of complex systems
[37]. Tt is essential to recognize that this hierarchical ar-
chitecture of complexity provides the chance for repair,
modification and improvement of different parts of the
system without the need to halt the operation of the sys-
tem. Simon’s parable of the two watchmakers Tempus
and Hora [36] B7], and their distinctive systems of shallow
and serial vs modular and hierarchical approach to watch
assembly, reflects how the compositionality of hierarchi-
cal complex system can give them a significant edge. Sim-
ilarly, not only does the hierarchical nature of advanced
nervous systems provide a better chance for the repair,
modification and improvement of different parts, but also
these different subassemblies can be recruited to parallel
computational tasks and thus the space of compositional
computations greatly expand. Note that evolutionary
tinkering also benefits from such hierarchical modular-
ity. These modules can be reused in the re-design of the
species’ next generation or can be borrowed and imple-
mented in the construct of other species [I5]. Whether
we study the nature of computation in the nervous sys-
tem or we wish to design robust AGI, these principles
will be crucial.

Note that this notion of intelligence directly opposes all
attempts trying to formalize intelligence as an inductive
process. Bayesian inference advocating for strong gener-
alization from few examples relies on inference from in-
ference over hierarchical generative models [40]. Because
of the reasons mentioned above, bayesian formalism is
simply incapable of reaching the desired (non-optimal)
generality of intelligence. Note that the trial and error is
probably the most fundamental element of all knowledge
gathering systems. In fact from an epistemological point
of view, even the core of scientific discovery is not based
on induction [3I]. In contrast to bayesian approach, the
complex intelligent behavior has roots in non-symbolic
information transfer and arises as a result of interaction
of the system with the environment.

In the design of AGI, the emphasis should be on
behavior-oriented Artificial intelligence emerging adap-



tive intelligence in a continually changing environment
[39]. Only in such case the relation between scales
and the bidirectional causality in biological computation
finds a proper meaning. It follows that the context-
dependency entails a specific intrinsic multiscale organi-
zation of information and provides the ability to interact
with the changes in the environment. Thus the limit of
an intelligent system is shaped by a core element of com-
plex systems, i.e. multiscale organization, the requisite
variety and trial and error. Surprisingly, in formalizing a

theory of intelligent systems, these were not considered
together before. In an influential essay (“As We May
Think”), Vannevar Bush envisioned a future where com-
puters support humans in many different activities [5]. If
we truly intend to reach such stage, bio-inspired design
will be our solution but only if we take into account the
contextual aspects of cognition and intelligence. Evolu-
tion has been very successful in creating AGI through
trial and error. That blueprint is in front of our nose and
ours to mimic.
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