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Abstract

In this paper we extend the counterfactual simulation model
(CSM) - originally developed to capture causal judgments
about dynamic events (Gerstenberg, Goodman, Lagnado, &
Tenenbaum, 2014) — to explain judgments of physical support.
The CSM predicts that people judge physical support by men-
tally simulating what would happen if the object of interest
were removed. Two experiments test the model by asking par-
ticipants to evaluate the extent to which one brick in a tower
is responsible for the rest of the bricks staying on the table.
The results of both experiments show a very close correspon-
dence between counterfactual simulations and responsibility
judgments. We compare three versions of the CSM which dif-
fer in how they model people’s uncertainty about what would
have happened. Participants’ selections of which bricks would
fall are best explained by assuming that counterfactual inter-
ventions only affect some aspects while leaving the rest of the
scene unchanged.

Keywords: causality; counterfactual; mental simulation; intu-
itive physics; support.

Introduction

When we look at a physical scene, such as the towers
shown in Figure 1, we don’t just see a pile of bricks. We
also have a sense for how stable the towers are, what would
happen if the table got bumped in one direction or another,
and what the relative masses of different bricks must be given
that the tower is stable (Battaglia, Hamrick, & Tenenbaum,
2013; Hamrick, Battaglia, Griffiths, & Tenenbaum, 2016).
Moreover, we can also point to why the tower is stable. We
can judge the extent to which different bricks carry the re-
sponsibility for the tower’s stability. In this paper, we pro-
pose how people do so: when judging responsibility, people
imagine what would happen to the tower if the brick were re-
moved. The greater the proportion of bricks that would fall
off the table in their mental simulation, the more responsible
is the brick of interest. We develop a counterfactual simu-
lation model (CSM) of physical support which determines a
brick’s causal responsibility for the tower’s stability by sim-
ulating scenarios that determine what would happen if the
brick were removed. Supporting doesn’t simply mean “be-
ing underneath”, it means “preventing from falling”.

In previous work, we showed how the CSM explains peo-
ple’s causal judgments about dynamic collision events (Ger-
stenberg, Goodman, Lagnado, & Tenenbaum, 2012; Gersten-
berg et al., 2014; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2015; Gerstenberg & Tenenbaum, 2016). In these ex-
periments, participants saw collisions between billiard balls,
and they were asked to evaluate to what extent one ball had
caused another ball to go through a gate in a wall (or pre-
vented the ball from going through). The CSM assumes that
people reach this judgment by comparing what actually hap-
pened with what would have happened in a counterfactual sit-
uation in which the candidate cause had been removed from
the scene (or perturbed). In line with the CSM, the results
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Figure 1: Experiment 1. Example stimuli. Note: Red bricks that
would fall off the table if the black brick were removed (according
to ground truth) are marked with a white dot at their center. The dots
were not displayed in the actual experiment.

of the experiments showed that there was a very close cor-
respondence between the counterfactual judgments of one
group of participants and the causal judgments of another
group. As predicted by the model, participants’ cause and
prevention judgments increased the more certain they were
that the outcome would have been different if the candidate
cause had been removed from the scene. The CSM not only
predicts participants’ causal judgments to a high degree of
quantitative accuracy, it also captures the cognitive processes
by which participants reach their judgments: participants’ eye
movements reveal how they spontaneously anticipate what
would have happened in the relevant counterfactual situation
(Gerstenberg, Peterson, Goodman, Lagnado, & Tenenbaum,
submitted). The CSM makes the strong prediction that coun-
terfactual simulation forms a necessary part of how people
make causal judgments, and that no adequate account of peo-
ple’s causal judgments about particular events can be devel-
oped that does not rely on counterfactuals (cf. Wolff, 2007).
Thus far, however, the CSM has only been applied to model-
ing causal judgments about dynamic collision events. Here,
we demonstrate the generality of the account by showing how
the model naturally handles judgments about physical support
as well.

Judging support is different from judging causation in sev-
eral ways. For example, most philosophical approaches to
causation take the causal relata (i.e. the things that do the
causing) to be events (Halpern, 2016; Paul & Hall, 2013).
For instance, it is a player’s kick that causes a ball to go into
a goal, or a collision event between two balls that causes one
of them to go through a gate. However, when we consider the
extent to which a particular brick is causally responsible for
the tower’s stability, nothing actually happens. The tower is
just sitting there — there are no events (cf. Freyd, Pantzer, &



Cheng, 1988; Holmes & Wolff, 2010). So, rather than defin-
ing a counterfactual operation on events, the CSM considers
counterfactual operations on objects in the scene. The more
certain we are that the tower would collapse if the brick were
removed, the more responsible it is for the tower’s stability.

Another important point is the role that uncertainty plays in
people’s counterfactual simulations. When simulating coun-
terfactuals, we want to stay as close as possible to what actu-
ally happened, and only modify the world as little as possible
to make the counterfactual true (Gerstenberg, Bechlivanidis,
& Lagnado, 2013; Lewis, 1973; Pearl, 2000). But what do we
keep constant in the causal model of the situation and what
do we change when simulating counterfactuals? When judg-
ing whether a ball would have gone into the goal, we need to
simulate what the trajectory of the ball would have been if the
collision hadn’t taken place. To model people’s uncertainty,
we would add noise to the ball’s trajectory (cf. Smith & Vul,
2013) but keep everything else that we know about the scene
as it was (e.g. we wouldn’t change the size of the goal in the
counterfactual simulation). However, when judging respon-
sibility for a tower’s stability, it is less clear what aspects of
the scene we should hold constant. We will compare several
implementations of the CSM that differ in how they capture
people’s uncertainty about what would have happened.

The road map for the rest of the paper is as follows: We first
present in detail how the CSM predicts judgments of physi-
cal support. We will test the model in two experiments in
which we ask one group of participants to make counterfac-
tual judgments, and another to evaluate causal responsibility.
As predicted by the CSM, there is a very close correspon-
dence between counterfactual and responsibility judgments.
Heuristic strategies that focus on features of the scene (such
as a tower’s height, or the number of bricks on top of the
brick of interest) cannot explain people’s judgments as well.
We end by discussing limitations of the current approach and
by offering directions for future research.

Counterfactual simulation of physical support

In our experiments, we ask participants how responsible
the black brick is for the red bricks staying on the table. To
derive predictions from the CSM we need to determine (1)
what counterfactual situation to consider, and (2) how to sim-
ulate what would happen in that situation. We assume that
when judging responsibility, participants consider a counter-
factual situation in which the black brick were removed. Par-
ticipants then use their intuitive understanding of physics to
mentally simulate what would happen in that situation.!

Recent work has argued that some aspects of people’s in-
tuitive understanding of physics are well-described by as-
suming we have an approximate simulation engine in our
mind that is akin to a physics engine (Battaglia et al., 2013;

IWe use the term counterfactual broadly here to refer to simu-
lations of possible worlds. Judging causation for dynamic collision
events requires the observer to remember what happened, and go
back in time to construe the counterfactual. When judging physical
support, there is no need to go back in time. A hypothetical simula-
tion of what would happen in the future suffices.
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Figure 2: Schematic illustration of how different versions of the
counterfactual simulation model apply noise when considering what
would happen if the black brick were removed.

Lake, Ullman, Tenenbaum, & Gershman, 2016). Part of what
makes these simulation engines “approximate” is that they
assume that people’s representation of a physical situation is
uncertain. This uncertainty can come in many forms, such
as perceptual uncertainty about the exact location of objects
(Battaglia et al., 2013), dynamic uncertainty about how ex-
actly an object will move (Smith & Vul, 2013), and uncer-
tainty about latent physical parameters such as friction and
mass (Sanborn, Mansinghka, & Griffiths, 2013).

To investigate whether people’s mental simulations incor-
porate the assumption that only some aspects of the phys-
ical scene would directly be affected by the counterfactual
intervention, we contrast three implementations of the CSM.
These implementations differ in how they capture people’s
uncertainty about what would have happened if the black
brick had been removed. All models apply noise in the same
way: as a small impulse to some of the red bricks immediately
after the removal of the black brick. The impulse is applied
in a random direction, with the amplitude determined by sam-
pling from a Gaussian parametrized by a “noise level”. The
models differ, however, in which bricks they apply noise to.
Figure 2 illustrates how the three different models work. The
global noise model applies a small impulse to all the bricks.
The local noise model applies the impulse only to the red
bricks that are directly in contact with the black brick. The
above noise model applies noise only to bricks that are above
the black brick and “connected” with it. Any brick that di-
rectly contacts and is has center of mass above that of the
black brick counts as connected. This definition is then ap-
plied recursively. For example, brick 2 in Figure 2c is con-
nected since brick 1 is in contact with and above the black
brick, and brick 2 is in contact and above brick 1.

Experiment 1

In the experiment, participants saw towers of bricks like
the ones shown in Figure 1. Depending on the experimen-
tal condition, participants were asked to consider what would
happen if the black brick wasn’t there, or evaluate the extent
to which the black brick is responsible that the red bricks stay
on the table. In line with the CSM, we predicted that there
would be a close relationship between counterfactual and re-
sponsibility judgments.



Methods

Design & Procedure The experiment had three conditions
that differed only in terms of the dependent measure.” In the
selection condition, participants were asked to “Please click
on the red bricks that would fall off either side of the table
if the black brick wasn’t there.” In the prediction condition,
participants were asked to answer the question: ‘“How many
of the red bricks would fall off the table, if the black brick
wasn’t there?” Participants provided their answer on a slid-
ing scale ranging from 0 to the number of red bricks present in
the scene in steps of 1. In the responsibility condition, partic-
ipants were asked to answer the question: “How responsible
is the black brick for the red bricks staying on the table?”” Re-
sponses were provided on a sliding scale ranging from “not
at all” (0) to “very much” (100).

The procedure for all three conditions was identical. Par-
ticipants first received instructions about the task. They then
saw a number of warm-up animations that showed 20 bricks
being dropped on the table. These animations were shown
to familiarize participants with the relevant properties of the
physical scene such as the gravity, the friction between the
bricks, as well as the table friction. Participants were allowed
to proceed to the next stage once they had watched at least
five animations.

After the warm-up, participants saw 42 images of different
towers of bricks in randomized order (see Figure 1 for exam-
ples). The stimuli varied the number of bricks on the table
(range = 7 to 20, M = 13.7, SD = 3.3), as well as the num-
ber of red bricks that would fall off the table if the black brick
were removed (range =0to 6, M =2, SD = 1.9). Participants’
tasks differed depending on the condition as described above.
Finally, participants were asked to give open-ended feedback
about the task, and provided demographic information.

On average, the experiment took 15.71 (SD = 6.49), 9.86
(SD = 6.49), and 8.88 minutes (SD = 8.90) in the selection,
prediction, and responsibility condition, respectively.
Participants 121 participants (Mage = 34, SDyge = 12, 47
female) were recruited via Amazon Mechanical Turk with
N = 38 in the selection condition, N = 42 in the prediction
condition, and N = 41 in the responsibility condition. We
excluded participants from further analysis based on their re-
sponses to the catch trial shown in Figure la. 11 participants
in the prediction condition were excluded because they pre-
dicted that at least one red brick would fall. 6 participants in
the responsibility condition were excluded because they gave
a responsibility rating greater than 15. No participants were
excluded from the selection condition because no participant
selected any of the bricks on the catch trial.

Results

We will discuss the results from the selection, prediction,
and responsibility conditions in turn.

ZData, materials, figures, and code are available here: https://
github.com/tobiasgerstenberg/tower_counterfactual
An interface to view the stimuli and play around with the different
noise models may be accessed here: http://web.mit.edu/tger/
www/demos/towers/physics_interface.html
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Figure 3: Experiment 1. Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and the (a) ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

Selection condition We tested how well the three noise mod-
els described above captured participants’ selections of which
bricks would fall off the table if the black brick wasn’t there
(see Figure 2). For each model, we used maximum likelihood
fitting to find the noise parameter which predicts participants’
selections best. For each setting of the noise parameter, we
ran 100 simulations per stimulus and used the proportion of
samples that each brick fell off the table in the noisy sim-
ulations to predict the probability that a given brick will be
selected to fall by participants. (Figure 8 gives an example
for what these predictions look like for stimuli used in Exper-
iment 2.) Overall, the above noise model accounts best for
the data (cf. Table 1).

Prediction condition Figure 4 shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. Overall, the two ways of probing partici-
pants’ counterfactual simulations lead to very similar results.
However, participants in the prediction condition predicted
that more bricks would fall than participants in the selec-
tion condition selected (most of the data points are below
the diagonal). The noise model which best accounted for
participants’ selections, also accurately predicts participants’
average judgments about how many bricks would fall with
r = .88, RMSE = 0.84.

Table 1: Summary of model results for Experiments 1 and 2 as ap-
plied to the data in the selection condition.

Experiment 1 Experiment 2

model | r RMSE L 6 | r RMSE L c
truth | 0.5 3474 -21374 0 | 064 3165 -22279 0
global | 075 2092 -9274 69 | 0.61 29.03 -14034 2.5
local | 070 2226 -9727 112|066 2535 -12617 72
above | 0.87 1534  -8435 143|073 2208 -11824 125

Note: r = Pearson correlation, RMSE = root mean squared error, L =
log-likelihood of the data, ¢ = SD of the Gaussian from which the noise
impulse is drawn.
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Figure 4: Relationship between the predicted number of red bricks
that would fall if the black brick wasn’t there (prediction condition)
and number of selected bricks that would fall (selection condition).
Note: The letters refer to the examples shown in Figure 1 for Ex-
periment 1, and Figure 6 for Experiment 2. Error bars in all figures
denote bootstrapped 95% confidence intervals.

Responsibility condition Figure 5a shows the relationship
between the proportion of bricks that participants in the pre-
diction condition believed would fall off the table if the black
brick wasn’t present in the scene, and participants’ respon-
sibility judgments. As predicted by the CSM, there was a
very close relationship between prediction and responsibility
judgments r = .84, RMSE = 6.55. This strongly suggests that
participants evaluated a brick’s responsibility by considering
what proportion of bricks would have fallen off the table if
the brick hadn’t been there. When we use the proportion of
bricks selected in the selection condition to predict partici-
pants responsibility judgments, we get a similarly good fit
with r = .78, RMSE = 7.65.

As an alternative to the CSM, we compared a heuristic
model which predicts participants’ responsibility judgments
based on features of the physical scene. Table 2 shows how
well the different features individually correlated with par-
ticipants’ judgments. We included features about the whole
scene such as the number of bricks, the tower height, the av-
erage distance of each brick to the nearest edge of the table,
as well as the average height and angle of each brick. We
also included features specific to the black brick such as its
distance to the nearest edge, its height and angle, as well as
the number of bricks above it. To define the number of bricks
above, we used the same criterion as the above noise model
(cf. Figure 2¢). As Table 2 shows, the best individual predic-
tor for participants’ responsibility judgments is the average
height of each brick in the scene, followed by the number
of bricks above the black one. Neither feature describes par-
ticipants’ responsibility judgments as well as the predictions
(and selections) participants made in the other two conditions
of the experiment.

Table 2: Correlation coefficients between different features and par-
ticipants’ responsibility judgments in Experiments 1 and 2.

scene features black brick features

. tower avgedge avg avg | edge . n bricks
n bricks height distance height angle | distance height angle above

Experiment1 .16 .55 .39 730021 .02 -19  -.05 .61
Experiment2  -.05 21 -.10 07 .01 12 -74  -.04 .69

Note: n = number, avg = average.
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Figure 5: Relationship between the predicted proportion of bricks
that would fall if the black brick wasn’t there and responsibility judg-
ments.

Discussion

The results of Experiment 1 support the predictions of the
CSM. Most importantly, there was a very close relationship
between the responsibility judgments of one group of partic-
ipants, and the number of bricks that another group of partic-
ipants predicted would fall if the black brick wasn’t there. A
heuristic model that does not rely on physical simulations but
uses features that can be directly extracted from the scene did
not find a single predictor that accounted as well for partic-
ipants’ responsibility judgments as participants’ predictions
did. We contrasted three implementations of the CSM which
differ in the way in which they capture people’s uncertainty
about what would happen if the brick were removed. The
results show that the above model correlates best with partici-
pants’ selections. It is thus not surprising that the the number
of bricks above the black brick (used as a feature) correlates
well with participants’ responsibility judgments.

Overall, participants’ responsibility judgments were
slightly better explained by participants’ judgments in the
prediction condition than the selections in the selection condi-
tion. While predictions and selections were highly correlated,
participants tended to predict that more bricks would fall on
average than they selected. The time it took participants to
complete the experiment in the different conditions suggests
that participants in the selection condition may have engaged
more deeply with the stimuli than participants in the other
two conditions did.

Experiment 2

Experiment 1 elicited participants’ judgments for a wide
array of different situations. In Experiment 2, we wanted
to test the different implementations of the CSM in a more
controlled setup. Figure 6 shows a selection of the stimuli.
Some of the configurations featured disjointed sets of bricks,
such as Tower III and Tower IV, for which the predictions of
the global and local noise models differ more strongly. For
example, consider the configuration of bricks shown in Fig-
ure 6¢c. While a global noise model predicts that some of the
red bricks on the right would fall off the table, the local ver-
sions of the model predict that only the bricks on the left side
will fall. We generated six different tower configurations. For
each configuration, we chose seven positions for the black
brick such that removing the brick would result in O to 6 red
bricks falling off the table. Figure 6c, d, and g show three
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Figure 6: Experiment 2. Example stimuli. Note: The white dots in-
dicate which bricks would fall if the black brick wasn’t there. There
were 6 different configurations of towers (I through VI), and 7 dif-
ferent positions for the black brick in each tower, see c), d), and h).

examples for the position of the black brick for this configu-
ration. This means that global features of the scene will not

be diagnostic for how many bricks would fall off the table if
the black brick were removed (cf. Table 2).

Methods

Design & Procedure The design, procedure, and questions
were identical to those of Experiment 1. Participants saw 43
trials in randomized order whereby one trial served as a catch
trial. On average, the experiment took 13.04 (SD = 6.87),
11.57 (SD = 5.24) and 7.86 minutes (SD = 3.48) in the selec-
tion, prediction, and responsibility condition, respectively.
Participants 129 participants (Mage = 36, SDyee = 11.3, 59
female) were recruited via Amazon Mechanical Turk with
N = 42 in the prediction condition, N = 44 in the selection
condition, and N = 43 in the responsibility condition. We
used the same exclusion criteria as in Experiment 1 based
on the same tower shown in Figure la. 1 participants were
removed in the selection condition, 3 participants in the pre-
diction condition, and 3 in the responsibility condition.

Results & Discussion

Selection condition Figure 7 shows the correspondence be-
tween participants’ brick selections and the predictions ac-
cording to the ground truth as well as our three noise models
as illustrated in Figure 2. Across all the stimuli, there were
564 bricks in total. Overall, the above noise model accounts
for participants’ selections best, as in Experiment 1 (cf. Ta-
ble 1).

Let us look at the two situations shown in Figure 8 in some
more detail. For the example shown in the top row, partici-
pants are confident that only the two bricks above the black
one would fall (only very few participants selected any of the
other bricks). As Figure 6¢c shows, participants’ selections
correspond closely to the ground truth in this case. Since
the global noise model applies an impulse to all the bricks,
it incorrectly predicts that bricks on the right would fall. In
contrast, the local noise model correctly predicts that none of
the bricks on the right will fall. However, since the model
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Figure 7: Experiment 2: Scatter plots showing the relationship be-
tween the empirical probability with which each brick was selected
and the (a) ground truth as well as the predictions of the best-fitting
(b) global noise model, (c) local noise model, and (d) above noise
model.

applies an impulse to all the bricks that are in contact with
the black brick, it overpredicts that the bricks underneath the
black brick would fall. The above noise model predicts par-
ticipants’ selection best in this case. It only assigns a small
probability that any of the bricks on the right would fall (be-
cause sometimes the bricks on top of the black brick will fall
towards the right), and a small probability that any of the
bricks underneath the black brick would fall.

The example in the bottom row shows a situation where
participants’ selections didn’t correspond to the ground truth.
Here, the majority of participants believed that none of the
bricks would fall if the black brick wasn’t there. However,
as Figure 6g shows, there are in fact six bricks that would
fall according to the ground truth. When the black brick is
removed, the two bricks directly underneath it fall to the left
and right, and the one falling to the right pushes the stack of
bricks on the right off the table. None of our noise models is
able to capture participants’ selections in this case. The above
noise model does a particularly poor job for the simple reason
that it doesn’t apply any noise in this case. Since the black
brick is on top, its predictions correspond to the ground truth.
What this clearly shows is that our noise models don’t yet
completely capture participants’ counterfactual simulations.
We will discuss some ideas about how the improve the models
in the General Discussion below.

Prediction condition Figure 4b shows the relationship be-
tween the number of bricks predicted to fall and the aver-
age number of bricks that participants selected in the selec-
tion condition. As in Experiment 1, there was a very close
relationship between predictions and selections, and, again,
participants predicted that more bricks would fall on average
than they selected. The above noise model again best ex-
plained participants’ predictions with » = .76, RMSE = 1.41.
Responsibility condition Figure 5b shows the relationship
between participants’ predictions and responsibility judg-
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Figure 8: Empirical selection percentages for two different stimuli
together with the predicted selection probabilities according to the
different noise models.

ments. Like in Experiment 1, participants’ responsibility
judgments were well-accounted for by the proportion of
bricks that would fall off the table if the black brick were
removed r = .91, RMSE = 8.66. Again, we can also account
for participants’ responsibility judgments based on the pro-
portion of bricks that were selected in the selection condition
r=.91,RMSE = 8.67.

Table 2 shows how well different features of the physical
scene correlate with participants’ responsibility judgments in
Experiment 2. This time, a good predictor of participants’
responsibility judgments was the height of the black brick.
The lower the black brick was located, the more responsible
it was. Unlike in Experiment 1, the average height of the
bricks in the tower did not correlate with responsibility judg-
ments. Unsurprisingly, the number of bricks above the black
brick was again a good predictor. However, again, there was
no single predictor that accounted as well for participants’ re-
sponsibility judgments as the predictions or selections did.

General Discussion

How do people judge physical support? In this paper, we
develop and test a counterfactual simulation model (CSM) of
physical support. The CSM predicts that we judge physical
support by imagining what would happen if the object were
removed. An individual brick is responsible for other brick’s
staying on a table to the extent that these bricks would fall off
the table if that brick were removed. The results of two ex-
periments show that the greater the proportion of bricks that
participants predict would fall of the table, the more responsi-
ble that brick is seen for the other bricks staying on the table.
Simple features of the physical scene such as the height of the
tower, or the position of the brick of interest, cannot explain
participants’ judgments as well.

While the CSM was originally developed to explain causal
judgments about collision events (Gerstenberg et al., 2012,
2014, 2015; Gerstenberg & Tenenbaum, 2016), we show here
that it naturally extends to judgments of physical support. In-
deed, the results here highlight the importance of having a
model that is flexible in how counterfactual interventions are
defined, and their consequences simulated. For explaining

causal judgments, we need to consider counterfactuals over
events (such as collisions). For explaining support judgments,
we need to consider counterfactuals over objects, and simu-
late what would happen if they were removed. We contrasted
three different implementations of the CSM which differ in
how they modeled participants’ uncertainty about what would
happen. Similar to how people spontaneously consider coun-
terfactuals when judging causation (Gerstenberg et al., sub-
mitted), people naturally play “mental Jenga” when judging
responsibility for physical support. Participants’ selections
of which bricks would fall were best explained by a model
that adds noise to the bricks located above the removed brick.
While this model does a good job overall, there remain situa-
tions that it cannot capture adequately, and we will explore
more fully in future work how people simulate the conse-
quences of counterfactual interventions.
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