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Abstract

In this paper, we conduct an empirical study of the feature learning process in deep classifiers. Recent
research has identified a training phenomenon called Neural Collapse (NC), in which the top-layer feature
embeddings of samples from the same class tend to concentrate around their means, and the top layer’s
weights align with those features. Our study aims to investigate if these properties extend to intermediate
layers. We empirically study the evolution of the covariance and mean of representations across different
layers and show that as we move deeper into a trained neural network, the within-class covariance decreases
relative to the between-class covariance. Additionally, we find that in the top layers, where the between-class
covariance is dominant, the subspace spanned by the class means aligns with the subspace spanned by the
most significant singular vector components of the weight matrix in the corresponding layer. Finally, we
discuss the relationship between NC and Associative Memories (Willshaw et al., 1969).

1 Introduction
Deep learning has emerged as a powerful technique for solving various problems in diverse domains such as
computer vision He et al. (2016); Simonyan & Zisserman (2014), natural language processing Vaswani et al.
(2017); Brown et al. (2020), and decision making in novel environments Silver et al. (2016). Despite its suc-
cesses, there remains a significant gap between its empirical performance and our theoretical understanding,
even for simple supervised learning problems in classification or regression.
A major line of work (e.g., Jacot et al. (2018); Du et al. (2019, 2018); Arora et al. (2019); Yang (2020); Yang &
Littwin (2021); Littwin et al. (2020)) aims to understand neural networks at their infinite-width limit. In this
framework, it is shown that infinitely wide neural networks converge to a solution of a kernel least squares
problem with a kernel associated with the network’s architecture, known as the Neural Tangent Kernel
(NTK). While this approach provides valuable insights into the solutions of optimization problems in the
“kernel regime”, it has limitations when it comes to understanding the representations learned by finite neural
networks. For instance, Chen et al. (2020); Allen-Zhu & Li (2019); Malach et al. (2021) identified classes
of functions that can be learned efficiently by deep architectures, but not with kernel methods. In Allen-
Zhu & Li (2020), they characterized a “backward feature correction” process in which features are learned
hierarchically by SGD. Additionally, Woodworth et al. (2020) studied how the scale of initialization controls
the transition between the “kernel” and “feature learning” regimes.
In a recent study, Papyan et al. (2020) empirically observed that when training overparameterized deep neural
networks for Cross-Entropy loss minimization on a given classification task, several structural properties tend
to emerge in the last layer. These properties, known as Neural Collapse (NC) list four conditions: (NC1) the
features of examples within the same class collapse to their mean, (NC2) class means of the features spread
out to form an equiangular tight frame, (NC3) the weights of the classifier converge to the class means of the
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features, and (NC4) the deep network becomes a nearest class center classifier. These observations raise the
question of whether similar phenomena also occur in the intermediate layers of the neural network.
Contributions. In this paper, we investigate whether similar phenomena to Neural Collapse (NC) occur
in intermediate layers of deep classifiers. We study the process of feature learning in terms of the first and
second-order statistics of representations at different layers. Our results show that when deep networks
exhibit NC at the last layer, they also display signs of collapse in intermediate layers. We identify layers where
the within-class covariance of representations is dominated by the between-class covariance (NC1) and
observe that in these layers, class means to form a simplex ETF (NC2), the subspaces spanned by class means
are aligned with the input subspace of linear transformations (NC3), and nearest class center classification
using the layer’s representations align with the decision of the deep network (NC4). This is the first study to
provide a comprehensive description of NC in intermediate layers, and we also measure the rank of weight
matrices and covariances of representations to understand how features are transformed in the NC regime.

2 Related Work
Neural collapse. The phenomenon of Neural Collapse (NC) was first described in full in Papyan et al.
(2020), although the observation of a certain geometric clustering of features within the same class had
been made in earlier papers, such as Goldfeld et al. (2019). Since the initial NC paper, which showed the
phenomenon occurring with the cross-entropy loss, there has been a surge of research into theoretical and
empirical descriptions of NC. Han et al. (2022)demonstrated NC using the Mean Squared Error (MSE)
loss, while papers such as Xu et al. (2023); Ergen & Pilanci (2020) have shown that different optimization
algorithms can lead to NC solutions when trained to zero MSE loss. The emergence of NC solutions using
cross-entropy was also shown in other papers (Wojtowytsch et al., 2020; Fang et al., 2021; Lu & Steinerberger,
2020). Several papers such as Zhu et al. (2021); Zhou et al. (2022); Mixon et al. (2020); Tirer & Bruna (2022);
Ji et al. (2021) have also explored the Unconstrained Features Model (UFM), which analyzes the last layer
features and classifier as optimization variables. The abstraction of the UFM has provided a simplified model
for deriving the emergence of NC theoretically.
Feature learning in deep networks. Since deep networks are organized as hierarchical layers, the structure
of the representations learned at intermediate layers has also been an object of study in order to understand
how deep networks work. In Recanatesi et al. (2019) and Ansuini et al. (2019), the authors study how
different measures of the dimension of intermediate representations progresses through the network. Both
papers show that the dimension of the representations first blows up and later reduces as one goes through
deeper layers of the classifier. We later show that networks that exhibit neural collapse also show this behavior.
Attempts to understand the evolution of deep network representations through the lens of information theory
were made by Shwartz-Ziv & Tishby (2017). They described the representations learned by intermediate
layers through the mechanism of the information bottleneck. Their observations on the dynamics of the
representations and their connections to generalization were later shown to be highly dependent on the
architectures and non-linearities used Saxe et al. (2019), as well as the type of binning Goldfeld et al. (2019)
used in the estimation of mutual information.
Clustering properties of intermediate layers of deep networks. In the literature on feature learning, a
particular focus is placed on clustering properties that emerge in intermediate layers of the network, as they
indicate that samples can be easily classified at early stages of the network. For instance, in Alain & Bengio
(2017), it was demonstrated that linear probing of intermediate layers in a trained network becomes more
accurate as we move deeper into the network. This finding was also supported in Cohen et al. (2018), where
the authors demonstrated that a k-nearest neighbors classifier using intermediate representations performed
well, particularly using the final layer of the deep network.
Following the work of Papyan et al. (2020), several papers Ben-Shaul & Dekel (2022); Galanti et al. (2022a);
He & Su (2022) investigated the applicability of the nearest class center (NCC) classification rule (NC4)
to intermediate layers in neural networks. While these papers demonstrate that the accuracy of the NCC
classifier improves across the layers, they do not explore the entire set of NC properties. While Tirer & Bruna
(2022) explores a two-layer unconstrained features model, they only present experimental evidence for NC1
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and NC2 in the layer prior to the last hidden layer. Their theoretical results show the emergence of NC in the
classifier and the features at the penultimate layer in the case of ReLU non-linearities, but do not describe the
emergence of NC in intermediate layers.
Deep networks as associative memories. Associative memories have been a popular topic in neural
networks for over half a century, starting with the work of Kohonen (1989) who proposed a mathematical
model for a non-hierarchical pattern storage system. This work inspired many subsequent studies, including
the Self-Organizing Map algorithm by Kohonen (1989) and the Simple Recurrent Network by Anderson
(1972). Hopfield (1982) later proposed the Hopfield network, a recurrent neural network that can store
and recall multiple patterns. Kanerva (1992) proposed the sparse distributed memory, which uses high-
dimensional binary vectors for efficient pattern storage. Associative memories have also been used in signal
processing applications such as holography prior to their being studied as neural networks Willshaw et al.
(1969).
The notion of associative memories can be used to interpret and understand the layers of a deep neural
network, and in some cases, describe the entire network. This approach, known as the dual form of neural
networks Irie et al. (2022); Aizerman et al. (1964), allows for interesting practical applications such as editing
generative models Bau et al. (2020) and classifier rules Santurkar et al. (2021). Recent research Dai et al.
(2021); Geva et al. (2020); Meng et al. (2022) has also focused on exploring the connection between associative
memories and transformer architectures.

3 Problem Setup
We consider the problem of training deep neural networks to solvemulti-class classification problems between
an input space X ⊂ Rd and a label space YC with cardinality C. We use a one-hot encoding for the label
space. The deep neural network classifiers fW : X → RC that we study consist of compositions of parametric
transformations and can be defined as:

fW (x) = TL ◦ . . . ◦ T1(x),

where Tl : Rpl → Rpl+1 is a parametric transformation with parameters Wℓ. For instance, Tℓ could be a
fully-connected layer with a nonlinearity, Tℓ(z) = σ(Wℓz), or a residual block Tℓ(z) = σ(z +W 2

ℓ σ(W
1
ℓ z))

or a convolutional layer. Here, σ : R → R is a non-linear function that is applied coordinate-wise, such as the
ReLU activation function σ(x) = max(0, x). We use W = {WL,WL−1, . . . ,W1} to denote the parameters of
each one of the layers. In this paper, we will be interested in the characteristics of the features computed by
the deep network at each layer. We define features at layer ℓ for the input xi,c as hℓ(xi,c) = Tℓ ◦ . . . ◦ T1(xi,c)).
In this setting, we aim to learn the classifier from a balanced training dataset S := {(xi,c, yi,c)}N,C

i=1,c=1 of CN
samples consisting of N independent and identically distributed (i.i.d.) samples drawn from each of the C
classes. To train the classifier, we typically minimize the regularized empirical loss function

Lλ
S(fW ) :=

1

CN

C∑
c=1

N∑
i=1

L(fW (xi,c), yi,c) + λR(W )

where L : RC × YC → [0,∞) is a non-negative loss function (e.g., squared error or cross-entropy losses)
and regularizer R(W ) (such as L2 regularization) controls the complexity of the function fW and typically
improves generalization.

4 Intermediate Neural Collapse
In a recent paper, Papyan et al. (2020) described four properties of the terminal phase of training (TPT) in
deep networks using the cross-entropy loss function. TPT starts at the point where the training error becomes
zero and continues until training is stopped. During TPT, the training error remains effectively zero while the
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training loss continues to decrease. Direct empirical measurements expose an inductive bias they call Neural
Collapse (NC), involving four interconnected properties. In this paper, we extend the characterization of
Neural Compression (NC) by examining its presence in intermediate layers, in addition to its previously
studied presence at the last layer features and weights.
Beforemathematically describing the conditions of Intermediate Neural Collapse, we first define the following
first and second-order statistics of features in deep networks. The mean class features and the global mean
features for layer ℓ are computed as follows:

µℓ
c :=

1

N

N∑
i=1

hℓ
i,c µℓ

G :=
1

C

C∑
c=1

µℓ
c

The within-class, between-class, and total covariance matrices for layer ℓ are computed as:

Σℓ
W =

1

NC

C∑
c=1

N∑
i=1

(hℓ
i,c − µℓ

c)(h
ℓ
i,c − µℓ

c)
⊤

Σℓ
B =

1

C

C∑
c=1

(µℓ
c − µℓ

G)(µ
ℓ
c − µℓ

G)
⊤

Σℓ
T =

1

NC

C∑
c=1

N∑
i=1

(hℓ
i,c − µℓ

G)(h
ℓ
i,c − µℓ

G)
⊤

We note that the total covariance can be decomposed into the within and between class covariances Σℓ
T =

Σℓ
W +Σℓ

B . We now characterize Intermediate Neural Collapse through the following conditions:
(NC1) Feature variability suppression. Most of the total covariance of the features in a layer is contained
in the between-class covariance. We compare the normalized within-class variance Tr(Σℓ

W )/Tr(Σℓ
T ) and

the normalized between-class variance Tr(Σℓ
B)/Tr(Σ

ℓ
T ). An intermediate layer shows feature variability

suppression if the normalized within-class variance is smaller than a threshold, Tr(Σℓ
W )/Tr(Σℓ

T ) < ϵ. From
our experiments, we observe that ϵ ≈ 0.2 is a reasonable choice. Since Σℓ

W + Σℓ
B = Σℓ

T , this means that
most of the variability in the features comes from the distance between the between-class covariance and the
within-class variability is suppressed. This is a weaker requirement than the original definition of NC1 in the
last layer, which claims that Tr(ΣL

W · (ΣL
B)

†) → 0.
(NC2) Simplex ETF structure. The class means at layer ℓ show a simplex ETF structure if the following
two conditions are satisfied: 1)

∣∣∥µℓ
c − µℓ

G∥2 − ∥µℓ
c′ − µℓ

G∥2
∣∣ → 0, or the centered class means of the layer

features become equinorm; and 2) if we define µ̃ℓ
c =

µℓ
c−µℓ

G

∥µℓ
c−µℓ

G∥2
, then we have ⟨µ̃ℓ

c, µ̃
ℓ
c′⟩ = − 1

C−1 for c ̸= c′,
or the centered class means are also equiangular. This condition is the same as the original simplex ETF
definition for the last layer class means.
(NC3) Alignment between features and weights: Let us consider the matrix of centered class means at
layer ℓ given byMℓ = [µℓ

c − µℓ
G]

C
c=1 ∈ Rpℓ×C and its alignment withWℓ ∈ Rpℓ+1×pℓ . At the last layer, these

matrices have the same dimension and hence we say the last layer features and classifier are aligned when∣∣∣∣∣∣ W⊤
L

∥WL∥F
− ML

∥ML∥F

∣∣∣∣∣∣ → 0, since each row of the weight matrix corresponds to the relevant class mean column
inMℓ.
At intermediate layers we find the Principal Angles Between Subspaces (PABS) Jordan; Björck & Golub
(1973) θ1, . . . , θC between the range space of Mℓ and the top C rank input space of Wℓ. An intermediate
layer shows feature-weight alignment if 1

C

∑C
k=1 cos(θk) → 1, and the top C singular values of Wℓ are equal

to each other. At the last layer, the alignment and distance-based definitions of NC3 are equivalent.
(NC4) Behavioral equivalence to nearest center classification. For a given layer, NC4 is satisfied if the
decision of the deep classifier and that of the nearest-class-center (NCC) decision rule using the features at
layer ℓ converge to each other: argmaxc⟨W c

L,h
L(x)⟩ → argminc ∥hℓ(x)− µℓ

c∥2.
In the next section we will see that for deep networks which show NC in the last layer, there exists a hidden
layer in the network beyond which all subsequent layers show the above four conditions of intermediate NC.
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5 Results
In this section, we will present and analyze the results of our experiments that demonstrate the existence of
intermediate Neural Collapse (NC). The experimental details can be found in Appendix A. For the results,
we used four datasets - MNIST, FashionMNIST, CIFAR10, and SVHN - and three architectures - Multilayer
Perceptrons (MLPs), Convolutional Neural Networks, and Residual Networks.

5.1 Intermediate Neural Collapse
We present a list of figures that support our claim that intermediate Neural Collapse (NC) occurs in deep
networks. These figures demonstrate results from the MNIST and CIFAR10 datasets on three different
networks. Results from additional datasets can be found in appendix C. Each figure is divided into two rows,
with the top row showing results from the MNIST dataset and the bottom row showing results from the
CIFAR10 dataset. The two figures in each column display results from the same type of network. A vertical
green line is used to indicate the layer at which intermediate collapse begins in all figures.
In Fig. 1, we investigate the suppression of feature variability through the layers of the network. In the top
half of each subfigure, we plot the within-class covariance Tr(Σℓ

W ) (dotted), between-class covariance Tr(Σℓ
B)

(dashed), and total covariance Tr(Σℓ
T ) (solid). In the bottom half, we plot the normalized within-class

covariance Tr(Σℓ
W )/Tr(Σℓ

T ) (dotted) and normalized between-class covariance Tr(Σℓ
B)/Tr(Σ

ℓ
T ). From the

normalized plots, we can observe that at a certain layer in the deep classifier, the between-class covariance
becomes much more significant than the within-class covariance. In all subsequent layers, the within-class
covariance remains a small fraction of the total covariance. These layers can be referred to as the “collapsed”
layers. In Fig. 4, we see that the accuracy of the nearest class center classifier (NCC) matches the accuracy of
the classifier in the collapsed layer.
In Fig. 2, we present results showing the convergence of class means to a simplex equiangular tight frame
(ETF) in collapsed layers. Specifically, we plot the average value of cos(∠(µℓ

c − µℓ
G, µ

ℓ
c′ − µℓ

G)) +
1

C−1 , its
normalized (by the mean) standard deviation, and the normalized (by the mean) standard deviation of
∥µℓ

c − µℓ
G∥2 in the top, middle, and bottom panels of each subfigure. We can observe that the class means

approach a simplex ETF in the deepest layers, while in earlier collapsed layers, there may still be some
variability, especially in the case of convolutional neural networks.
In Fig. 3, we investigate the alignment between features and weights across layers. We plot the average of
the cosines of the principal angles between the subspaces spanned by the centered class meansMℓ and the
input subspace of the weight matrixWℓ. We can observe that the alignment between class means and weight
matrices is strongest in the collapsed layers, and that this alignment is much higher than at initialization,
where the features and weights are essentially random. Moreover, in Fig. 5 we see that in the collapsed layers,
the top C singular values of the weights are nearly equal. These two observations establish NC3. In the case
of residual neural networks, it is interesting to note that the alignment is strongest at layers just before a
residual connection, and that the features within a residual block are not as well aligned with their weights.

5.2 Stable Rank of intermediate features and weights
Having established the conditions of intermediate NC, we further investigate the structure of the weights
and features that are learned in deep networks.
Low rank and near orthogonal weights. In the top row of Fig. 5, we present the singular value spectrum
of the weight matrices/kernels through the layers. We observe that in the collapsed layers of MLPs and
resnets, the top C singular values are significantly larger than the remaining singular values, indicating that
the weights have a low-rank structure. Additionally, these top C singular values are highly concentrated,
indicating that the weights are nearly orthogonal. This structure is less pronounced in the convnet, but
we can still see a concentration of the top singular values. These observations align with the conclusions
in Papyan (2020), which found that the feature class means at different layers are also near orthogonal.
Stable rank of intermediate features. In the bottom row of Fig. 5, we present the results of the stable rank
analysis of the matrix of within-class features centered around their class meansHℓ

c = [hℓ
i,c − µℓ

c]
C
c=1. The
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Figure 1: (NC1) Feature variability suppression: There is a layer in a deep classifier (vertical green line)
where Tr(Σℓ

W ) (dotted) contributes a smaller fraction to Tr(Σℓ
T ) (solid) than Tr(Σℓ

B) (dashed). In all
subsequent layers this fraction remains below this threshold, showing feature variability suppression

stable rank, which is a lower bound of the actual rank and can be computed without storing the entire matrix,
is defined as ∥Hℓ

c∥2F /∥Hℓ
c∥22. We can see that the rank of the class features decreases in the collapsed layers,

which is consistent with our observation that in those layers the within-class covariance becomes a smaller
fraction of the total covariance. This is also expected with low-rank weight matrices in these layers, as we can
see in the top row of Fig. 5. In the layers below the top layer, we can see that the rank of the features is very
high. This suggests that the deep network first projects the samples into a high-dimensional space, where it
is easier to find a classification boundary, and then extracts the most discriminative features to classify the
samples. This “hunchback” structure in the dimensionality of the features was also observed in previous
studies such as Recanatesi et al. (2019); Ansuini et al. (2019), though both of these papers used a nonlinear
measure of dimension to establish this observation.

5.3 Fixing all Collapsed Layers with Simplex ETFs
One implication of neural collapse Zhu et al. (2021) is that the last layer of a deep network can be fixed to a
simplex ETF, without negatively impacting performance. In a similar fashion, we test whether one can fix all
of the collapsed layers to be simplex ETFs and still maintain good performance. In this experiment, we train
the bottom L layers and fix the rest of the 10−L layers to be canonical simplex ETFs (Fig. 6). Specifically, the
last layer is set to be a rank C − 1 simplex ETF (for a C class problem), while the layers below are set to be
rankH − 1 simplex ETFs (whereH is the width of the network). Namely, the rankK canonical simplex ETF
is
√

K
K−1

(
IK − 1

K1K1⊤
K

). At the last layer we setW⊤
L =

√
C

C−1P
(
IC − 1

C1C1
⊤
C

)where P ∈ Rd×C contains
the first C columns of a d× d identity matrix, which lifts a C × C ETF to a d×K matrix Zhu et al. (2021). In
Fig. 6 we present the results of this experiment using MLPs on MNIST and FashionMNIST. We observe that
replacing the collapsed layers (layers 7-10) with fixed simplex ETFs does not negatively impact performance,
but replacing non-collapsed layers (layers 2-6) does. This observation suggests that the features learned in
the bottom half of the network are most crucial.
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Figure 2: (NC2) Convergence of class means to a Simplex ETF:We see that as training progresses {µℓ
c−µℓ

G}
approach equinorm and maximal equiangularity in the collapsed layers, though this is most clearly achieved
in the layers closest to the output.
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Figure 3: (NC3) Feature-Weight Alignment: In collapsed layers we see feature weight alignment measured
as the average of the cosines of the principal angles between the subspaces. This is significantly above the
alignment between random subspaces (at initialization).
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Figure 4: (NC4) Equivalence to Nearest Class Center (NCC) classification NCC classifier agrees with fW
in the collapsed layers.
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Figure 5: Estimates of Ranks of Weights and (Within Class) FeaturesWe see a low rank structure in the
weights in collapsed layers, while previous layers are nearly full rank. This is also reflected in the stable rank
of the features which first increases and then decreases in the collapsed layers.
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Figure 6: Comparison of performance of fixing collapsed layers to be ETFs We compare the accuracy
achieved by fixing a certain number of layers to be simplex ETFs. We see that fixing uncollapsed layers (lower
than layer 6 in this instance) to be ETFs results in lower accuracy, while fixing collapsed layers (7 and above)
does not hurt accuracy.
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6 Neural Collapse and Associative Memories
Associative memories Kohonen (1989); Anderson (1972) are systems that store associations between stimuli
and responses. If we have a number of stimuli response pairs {(xi,yi)}Ni=1, an associative memory A when
probed with a stimulus xi will return the response yi. If the stimuli xi are orthogonal, or near orthogonal, we
can construct the associative memory from the data as A =

∑N
i=1 yix

⊤
i . We have the following relationship

between Associative Memories and deep networks that exhibit NC:
Remark 6.1. An associative memory constructed from the last layer features and one-hot labels of a deep
network at neural collapse (NC) is equivalent to the classifier weight matrix. To see this, let us collect
the centered last layer features into a matrix HL ∈ Rp×NC and the one-hot labels into Y ∈ RC×NC . If
the condition of variability collapse is achieved, we have HL = MLY , where ML ∈ Rp×C is the matrix
of centered class mean features at the last layer. Then constructing an associative memory, we get ŴL =
Y H⊤

L = Y Y ⊤M⊤
L = N×ICM

⊤
L . This is also the weight matrix predicted by NC3 at the last layer. Moreover,

since theML is a simplex ETF the keys for the associative memory are nearly orthogonal, which is a desirable
property for robust recall.
While this does not immediately translate to intermediate layers due to the non-linearities involved, intermedi-
ate NC suggests that intermediate layers in deep networks may also be viewed as associative memories. This
interpretation has already led to interesting applications such as introducing novel concepts to a generative
model Bau et al. (2020), and editing the prediction rules of a classifier to include new concepts Santurkar
et al. (2021). A thorough understanding of NC could help make this connection more concrete.

7 Conclusion and Future Work
In this paper, we identified several extensions of neural collapse for intermediate layers and empirically
investigated these conditions in various neural network architectures. We empirically showed that several
properties appear in intermediate layers during training: 1) feature variability suppression, 2) emergence
of a simplex ETF in the layer class means, 3) alignment between features and weights, and 4) nearest class
center classification with layer features.
As future work, it would be interesting to develop a theoretical foundation for intermediate NC in deep
networks. Specifically, it would be worthwhile to study the connections between low-rank and orthogonal
weight matrices, simplex ETF features, and optimization algorithms like stochastic gradient descent. The
inductive bias towards simplex ETFs may help accelerate optimization, and make systems more efficient.
Understanding intermediate NCmay also help us choose features that better transfer across tasks Galanti et al.
(2022c,b,d). Whether intermediate NC is desirable for better generalization is also an important question for
future work.
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A Experimental details
In this section, we describe the details of the experiments in the main text.
Datasets. We consider theMNISTLeCun et al. (1998), FashionMNISTXiao et al. (2017), CIFAR10Krizhevsky
& Hinton (2009), and SVHN Netzer et al. (2011) datasets. The images were preprocessed by centering and
normalization using the pixel-wise mean and standard deviation as per the method described in Han et al.
(2022). No data-augmentation techniques were applied during training.
Network architectures. We conduct experiments with three deep network architectures. The first archi-
tecture is a multilayer perceptron (MLP) consisting of L = 10 hidden layers, where each layer contains a
linear layer of width H = 1024, followed by batch normalization and ReLU. The last layer is linear. The
second architecture is a deep convolutional network. This network starts with a stack of a 2× 2 convolutional
layer with stride 2, batch normalization, a convolution of the same structure, batch normalization, and ReLU.
Following that we have a set of L = 20 stacks of 3 × 3 convolutional layers with H = 128 channels, stride
1 and padding 1, batch normalization, and ReLU. The last layer is linear. The third architecture type is a
Resnet He et al. (2016). We use Resnet architectures of different sizes for different datasets. We stick to the
prescriptions of Han et al. (2022) and use Resnet-18 for MNIST and FashionMNIST, Resnet-34 for SVHN,
and Resnet-50 for CIFAR10.
Training details. For each combination of network and dataset, we trained the network to minimize mean
squared error (MSE) loss using an SGD optimizer with momentum and weight decay. The hyperparameter
settings were based on those used by Han et al. (2022), which include an initial learning rate of 0.02 that
is decayed twice by a factor of 0.2, a momentum of 0.9, a weight decay of 5e-4, and 350 training epochs.
In some cases (such as the resnets) we performed a small search for optimal hyperparameters around the
recommended values. The specific hyperparameters used can be found in the config files accompanying
our code. All experiments were conducted on a cluster with NVIDIA Tesla V100, GeForce GTX 1080 TI, and
A100 GPUs.
Intermediate neural collapse measurements. To make measurements, we compute the class means of
the layer features over the entire training dataset. To measure NC1 (Fig. 1), we only need the trace of the
within and between class covariances and do not need to store these matrices. For NC2 (Fig. 2), we measure
the relative standard deviation of the norms of the class feature means, and the mean and the relative
standard deviation of the pairwise inner products. For NC4 we construct an NCC classifier using the features
of each layer (Fig. 4). For NC3, we perform Singular Value Decompositions on Wℓ = UWSWV ⊤

W and
Mℓ = UMSMV ⊤

M . We then measure the PABS between VW - the basis for the input subspace ofWℓ - and
UM - the basis for the range space ofMℓ. The cosines of the PABS can be obtained by computing the singular
values of V ⊤

WUM and their average is our NC3 measure ( Fig. 3). For convolutional layers that transform
features hℓ ∈ RCin×H×W through kernels that are of dimension Wℓ ∈ RCout×Cin×kH×kW , we compute the
alignment between the features and kernel along the Cin dimension and reshape the tensors accordingly.

B Solutions without Neural Collapse
While searching for hyperparameters that best generated NC, we came across solutions that did not show
NC. As shown in Fig. 7, we present two convolutional networks trained on CIFAR10 and Fashion MNIST
that did not demonstrate NC. Further examination is required to identify the conditions under which NC is
achieved and to compare the capabilities of networks that exhibit NC and those that do not. We present this
data to highlight that NC solutions are not the only outcome of deep network training.
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Figure 7: Deep Networks without Neural Collapse These convolutional networks trained on CIFAR10 (top
row) and FashionMNIST (bottom row) do not show NC. The within class covariance stays high until the last
layer, the class means are not in a simplex ETF and the intermediate layers do not show NCC separability.

C Additional Figures establishing Intermediate Neural Collapse
In this section we display Figures 8, 9, 10, 11 showing intermediate NC for all architectures on the Fashion-
MNIST and SVHN datasets. The takeaways from these figures is largely the same as that from the figures
for MNIST and CIFAR10 in the main text. We provide these figures here for completeness. We also display
the rank estimates for weights and within class features across the layers of different deep networks for the
remaining datasets. Figures 12, 13, 14 contain these plots.
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Figure 8: (NC1) Feature variability suppression: There is a layer in a deep classifier (vertical green line)
where Tr(Σℓ

W ) (dotted) contributes a smaller fraction to Tr(Σℓ
T ) (solid) than Tr(Σℓ

B) (dashed). In all
subsequent layers this fraction remains below this threshold, showing feature variability suppression
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Figure 9: (NC2) Convergence of class means to a Simplex ETF:We see that as training progresses {µℓ
c−µℓ

G}
approach equinorm and maximal equiangularity in the collapsed layers, though this is most clearly achieved
in the layers closest to the output.
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Figure 10: (NC3) Feature-Weight Alignment: In collapsed layers we see feature weight alignment measured
as the average of the cosines of the principal angles between the subspaces. This is significantly above the
alignment between random subspaces (at initialization).

19



0 1 2 3 4 5 6 7 8 9 10
Layer

0.70

0.75

0.80

0.85

0.90

0.95

1.00

NC
C 

Ac
cu

ra
cy

NCC Accuracy, epoch 350

split
train
test

MLP: FashionMNIST

0 2 4 6 8 10 12 14 16 18 20
Layer

0.70

0.75

0.80

0.85

0.90

0.95

1.00
NC

C 
Ac

cu
ra

cy
NCC Accuracy, epoch 350

split
train
test

Convnet: FashionMNIST

0 2 4 6 8 10 12 14 16
Layer

0.70

0.75

0.80

0.85

0.90

0.95

1.00

NC
C 

Ac
cu

ra
cy

NCC Accuracy, epoch 350
split

train
test

Resnet18: FashionMNIST

0 1 2 3 4 5 6 7 8 9 10
Layer

0.2

0.4

0.6

0.8

1.0

NC
C 

Ac
cu

ra
cy

NCC Accuracy, epoch 350
split

train
test

MLP: SVHN

0 2 4 6 8 10 12 14 16 18 20
Layer

0.2

0.4

0.6

0.8

1.0

NC
C 

Ac
cu

ra
cy

NCC Accuracy, epoch 350
split

train
test

Convnet: SVNH

0 3 6 9 12 15 18 21 24 27 30 33
Layer

0.5

0.6

0.7

0.8

0.9

1.0

NC
C 

Ac
cu

ra
cy

NCC Accuracy, epoch 350

split
train
test

Resnet34: SVNH

Figure 11: (NC4) Equivalence to Nearest Class Center (NCC) classification NCC classifier agrees with fW
in the collapsed layers.
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Figure 12: Estimates of Ranks of Weights and (Within Class) FeaturesWe see a low rank structure in the
weights in collapsed layers, while previous layers are nearly full rank. This is also reflected in the stable rank
of the features which first increases and then decreases in the collapsed layers.
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Figure 13: Estimates of Ranks of Weights and (Within Class) FeaturesWe see a low rank structure in the
weights in collapsed layers, while previous layers are nearly full rank. This is also reflected in the stable rank
of the features which first increases and then decreases in the collapsed layers.
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Figure 14: Estimates of Ranks of Weights and (Within Class) FeaturesWe see a low rank structure in the
weights in collapsed layers, while previous layers are nearly full rank. This is also reflected in the stable rank
of the features which first increases and then decreases in the collapsed layers.

23


	Introduction
	Related Work
	Problem Setup
	Intermediate Neural Collapse
	Results
	Intermediate Neural Collapse
	Stable Rank of intermediate features and weights
	Fixing all Collapsed Layers with Simplex ETFs

	Neural Collapse and Associative Memories
	Conclusion and Future Work
	Experimental details
	Solutions without Neural Collapse
	Additional Figures establishing Intermediate Neural Collapse 

