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Abstract 13 

 Humans can effortlessly recognize others’ actions in the presence of complex transformations, 14 

such as changes in viewpoint. Several studies have located the regions in the brain involved in 15 

invariant action recognition, however, the underlying neural computations remain poorly 16 

understood. We use magnetoencephalography (MEG) decoding and a dataset of well-17 

controlled, naturalistic videos of five actions (run, walk, jump, eat, drink) performed by different 18 

actors at different viewpoints to study the computational steps used to recognize actions across 19 

complex transformations. In particular, we ask when the brain discriminates between different 20 

actions, and when it does so in a manner that is invariant to changes in 3D viewpoint. We 21 

measure the latency difference between invariant and non-invariant action decoding when 22 

subjects view full videos as well as form-depleted and motion-depleted stimuli. We were unable 23 

to detect a difference in decoding latency or temporal profile between invariant and non-24 

invariant action recognition in full videos. However, when either form or motion information is 25 

removed from the stimulus set, we observe a decrease and delay in invariant action decoding. 26 

Our results suggest that the brain recognizes actions and builds invariance to complex 27 

transformations at the same time, and that both form and motion information are crucial for fast, 28 

invariant action recognition. 29 

New and Noteworthy  30 

The human brain can quickly recognize actions despite transformations that change their visual 31 

appearance. We use neural timing data to uncover the computations underlying this ability. We 32 

find that within 200ms action can be read out of MEG data, and that this representation is 33 

invariant to changes in viewpoint. We find form and motion are needed for this fast action 34 

decoding, suggesting that the brain quickly integrates complex spatiotemporal features to form 35 

invariant action representations. 36 

Keywords: Action recognition, Magnetoencephalography, Neural decoding, Vision 37 
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Introduction 38 

As a social species, humans rely on recognizing the actions of others in their everyday 39 

lives. We quickly and effortlessly extract action information from rich dynamic stimuli, despite 40 

variations in the visual appearance of action sequences, due to transformations such as 41 

changes in size, position, actor, and viewpoint (e.g., is this person running or walking towards 42 

me, regardless of which direction they are coming from). The ability to recognize actions, the 43 

middle ground between action primitives (e.g., raise the left foot and move it forward) and 44 

activities (e.g., playing basketball) (Moeslund and Granum 2001), is paramount to humans’ 45 

social interactions and even survival. The computations driving this process, however, are 46 

poorly understood. This lack of computational understanding is evidenced by the fact that even 47 

state of the art computer vision algorithms, convolutional neural networks, which match human 48 

performance on object recognition tasks (He et al. 2015), still drastically underperform humans 49 

on action recognition tasks (Le et al. 2011; Karpathy et al. 2014). In particular, what makes 50 

action and other visual recognition problems challenging are transformations (such as changes 51 

in scale, position and 3D viewpoint) that alter the visual appearance of actions, but are 52 

orthogonal to the recognition task (DiCarlo and Cox 2007). 53 

Several studies have attempted to locate the regions in the brain involved in processing 54 

actions, and in some cases, locate regions in the brain containing viewpoint-invariant 55 

representations. In humans and nonhuman primates, the extrastriate body area (EBA) has been 56 

implicated in recognizing human form and action (Downing et al. 2001; Michels et al. 2005; 57 

Lingnau and Downing 2015), and the superior temporal sulcus (STS) has been implicated in 58 

recognizing biological motion and action (Perrett et al. 1985; Oram and Perrett 1996; Grossman 59 

et al. 2000; Vaina et al. 2001; Grossman and Blake 2002; Beauchamp et al. 2003; Peelen and 60 

Downing 2005; Vangeneugden et al. 2009). The posterior portion of the STS (pSTS) represents 61 

particular types of biological motion data in a viewpoint invariant manner (Grossman et al. 2010; 62 



4 
 

Vangeneugden et al. 2014). Beyond visual cortex, action representations have been found in 63 

human parietal and premotor cortex when people perform and view certain actions, particularly 64 

hand grasping and goal-directed behavior (analogous to monkey “mirror neuron” system) 65 

(Hamilton and Grafton 2006; Dinstein, Gardner, et al. 2008; Dinstein, Thomas, et al. 2008; 66 

Oosterhof et al. 2010, 2012, 2013; Freeman et al. 2013). However, recent work suggests that 67 

these “mirror neuron” regions do not code the abstract, invariant representations of actions, 68 

which are coded in visual regions (Wurm et al. 2015, 2016).  69 

Here we investigate the neural dynamics of action processing, rather than the particular 70 

brain regions involved, in order to elucidate the underlying computations. We use 71 

magnetoencephalography (MEG) decoding to understand when action information is present 72 

and how the brain computes representations that are invariant to complex, non-affine 73 

transformations such as changes in viewpoint. Timing information can constrain the 74 

computations underlying visual recognition by informing when different visual representations 75 

are computed. For example, recent successes in MEG decoding have revealed interesting 76 

properties about invariant object recognition in humans, mainly that it is fast and highly dynamic, 77 

and that varying levels of abstract categorization and invariance increase over the first 200ms 78 

following image onset (Carlson et al. 2011, 2013; Cichy et al. 2014; Isik et al. 2014).  79 

Prior work has shown that biological motion can be distinguished from spatially 80 

scrambled dots (Hirai et al. 2003; Hirai and Hiraki 2006; Pavlova et al. 2007) and inverted 81 

figures (Jokisch et al. 2005) within 200 ms. However, it remains unknown when neural signals 82 

can not only detect, but discriminate between different types of biological motion. We use timing 83 

data to ask first, when the brain can discriminate between different actions, and second, when it 84 

computes invariance to complex, non-affine transformations. Previous studies of invariant 85 

recognition of static faces and objects suggest that 3D-viewpoint invariance develops at later 86 
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stages in the visual processing hierarchy (Logothetis and Sheinberg 1996; Freiwald and Tsao 87 

2010; Leibo et al. 2017). Does this hold for invariant action recognition? 88 

 Our results show that we can read out actions as early as 200 ms after a video begins. 89 

We further find that the MEG signals are already invariant to changes in viewpoint, suggesting 90 

that the brain performs both action recognition and invariance at the same processing stage. 91 

We further show that two types of action information, form (as tested with static images) and 92 

motion (as tested with point light figures), both contribute to these immediately view-invariant 93 

representations. When either form or motion information is removed, view-invariant decoding is 94 

lower accuracy and delayed. These results suggest that features that are rich in form and 95 

motion content drive the fast, invariant representation of the actions in the human brain. 96 

 97 

Materials and Methods 98 

Action recognition dataset 99 

To study the effect of changes in view on action recognition, we used a dataset of five actors 100 

performing five different actions (drink, eat, jump, run and walk) on a treadmill from two different 101 

views (0 and 90 degrees from the front of the actor/treadmill; the treadmill rather than the 102 

camera was rotated in place to film from different viewpoints) [Figure 1] (Tacchetti et al. 2016). 103 

These actions were selected to be highly familiar, and thus something subjects would have 104 

experienced under many viewing conditions, to include both reaching-oriented (eat and drink) 105 

and leg-oriented (jump, run, walk) actions, as well as to span both coarse (eat and drink versus 106 

run and walk) and fine (eat versus drink and run versus walk) action distinctions. Every video 107 

was filmed on the same background, and the same objects were present in each video, 108 

regardless of action (e.g., to avoid confounds such as “run” being detected based on the 109 

presence of a treadmill and “drink” being detected based on the presence of a water bottle). 110 

Each action-actor-view combination was filmed for at least 52-seconds. The videos were then 111 
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cut into two-second clips that each included at least one cycle of each action, and started at 112 

random points in the cycle (for example, a jump may start midair or on the ground). This dataset 113 

allows testing of actor and view invariant action recognition, with few low-level confounds.  114 

To explore the roles of form and motion in invariant action representations, we extended 115 

this video dataset with two additional components: a form only dataset, consisting of 116 

representative single frames for each action, and a motion-only dataset, consisting of point light 117 

figures performing the same actions. For the form dataset, the authors selected one frame per 118 

video making sure that the selected frames were unambiguous for action identity (special 119 

attention was paid to the actions eat and drink to ensure the food or drink was near the mouth, 120 

and occluded views to ensure there was some visual information about action). For the motion 121 

point light dataset, the videos were put on Amazon Mechanical Turk and workers were asked to 122 

label 15 landmarks in every single frame: center of head, shoulders, elbows, hands, torso, hips, 123 

knees, and ankles. Three workers labeled each video frame. We used the spatial median of the 124 

three independent labels for each frame and landmark to increase the signal to noise ratio, and 125 

independently low-pass filtered the time series (Gaussian Filter with a 30 frames aperture and 126 

normalized convolution) for each of the 15 points to reduce the high frequency artifacts 127 

introduced by single-frame labeling. 128 

 129 

Participants  130 

Three separate MEG experiments were conducted (see below). Ten subjects (5 female, 8 right-131 

handed, age: mean±SD = 28.6±6.1) participated in experiment one, ten subjects (7 female, 10 132 

right-handed, age mean±SD = 25.2±5.0) participated experiment two, and ten subjects (7 133 

female, 9 right-handed, age: mean±SD = 28.3±5.7) participated in experiment three. All subjects 134 

had normal or corrected to normal vision. The MIT Committee on the Use of Humans as 135 
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Experimental Subjects approved the experimental protocol. Subjects provided informed written 136 

consent before the experiment.  137 

 138 

Experimental procedure 139 

In the first experiment, we assessed if we could read out different actions both within viewpoint 140 

(training and testing on videos at 0 degrees or 90 degrees, without any generalization) and 141 

across viewpoint, by training and testing on two different views (0 and 90 degrees). In this 142 

experiment ten subjects were shown 50 two-second video clips (one for each of five actors, 143 

actions, and two views, 0 and 90 degrees), each presented 20 times.  144 

To examine whether form and motion information were necessary to construct invariant 145 

action representations, in the second and third experiments we showed subjects limited “form” 146 

(static image) or “motion” (point-light walkers) datasets. Specifically, in the second experiment, 147 

ten subjects were shown 50 static images (one for each of five actors, actions, and two views, 0 148 

and 90 degrees), which were single frames from the videos in Experiment 1, for 2 seconds 149 

presented 20 times each. In the third experiment, ten subjects were shown 10 two-second video 150 

clips, which consisted of point-light walkers traced along one actor’s videos from two views in 151 

experiment one (labelled by Mechanical Turk workers as described above), presented 100 152 

times each. 153 

In each experiment, subjects performed an action recognition task, where they were 154 

asked after a random subset of videos or images (in a randomly interspersed 10% of the trials 155 

for each video or image) what action was portrayed in the previous image or video. The purpose 156 

of this behavioral task was to ensure subjects were attentive and assess behavioral 157 

performance on the various datasets. The button order for each action was randomized across 158 

trials to avoid systematic motor confounds in the decoding. Subjects were instructed to fixate 159 

centrally. The videos were presented using Psychtoolbox to ensure accurate timing of stimulus 160 
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onset. Each video had a duration of 2s and a 2s inter-stimulus interval. The videos were shown 161 

in grayscale at 3 x 5.4 degrees of visual angle on a projector with a 48 cm × 36 cm display, 140 162 

cm away from the subject. 163 

 164 

MEG data acquisition and preprocessing 165 

The MEG data were collected using an Elekta Neuromag Triux scanner with 306 sensors, 102 166 

magnetometers at 204 planar gradiometers, and were sampled at 1000 Hz. First the signals 167 

were filtered using temporal Signal Space Separation (tSSS) with Elekta Neuromag software. 168 

Next, Signal Space Projection (SSP) (Tesche et al. 1995) was applied to correct for movement 169 

and sensor contamination. The MEG data were divided into epochs from -500 - 3500 ms, 170 

relative to video onset, with the mean baseline activity removed from each epoch. The signals 171 

were band-pass filtered from 0.1–100 Hz to remove external and irrelevant biological noise 172 

(Acunzo et al. 2012; Rousselet 2012). The convolution between signals and bandpass filter was 173 

implemented by wrapping signals in a way that may introduce edge effects at the beginning and 174 

end of each trial. We mitigated this issue by using a large epoch window (-500-3500 ms) and 175 

testing significance in a manner that takes into account temporal biases in the data (see 176 

significance testing below). The above pre-processing steps were all implemented using the 177 

Brainstorm software (Tadel et al. 2011).  178 

 179 

General MEG decoding methods 180 

MEG decoding analyses were performed with the Neural Decoding Toolbox (Meyers 2013), a 181 

Matlab package implementing neural population decoding methods. In this decoding procedure, 182 

a pattern classifier was trained to associate the patterns of MEG data with the identity of the 183 

action in the presented image or video. The stimulus information in the MEG signal was 184 

evaluated by testing the accuracy of the classifier on a separate set of test data. This procedure 185 
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was conducted separately for each subject and multiple re-splits of the data into training and 186 

test data were utilized. 187 

The time series data of the magnetic field measured in each sensor (including both the 188 

magnetometers and gradiometers) were used as classifier features. We averaged the data in 189 

each sensor into 100 ms overlapping bins with a 10 ms step size, and performed decoding 190 

independently at each time point. Decoding analysis was performed using cross validation, 191 

where the dataset was randomly divided into five cross validation splits. The classifier was then 192 

trained on data from four splits (80% of the data), and tested on the fifth, held out split (20% of 193 

the data) to assess the classifier’s decoding accuracy.  194 

 195 

Decoding - feature pre-processing 196 

To improve signal to noise, we averaged together the ten different trials for each 197 

semantic class (e.g. videos of run) in each given cross validation split of each subject’s data so 198 

there was one data point per stimulus per cross validation split. We next Z-score normalized 199 

that data by calculating the mean and variance for each sensor using only the training data. We 200 

then performed sensor selection using only the training data, by applying a five-way ANOVA to 201 

each sensor’s training data to test if the sensor was selective for the different actions. We use 202 

sensors that were selective for action identity, i.e., show a significantly greater variation across 203 

class than within class, with p<0.05 significance based on a F-test (if no sensors were deemed 204 

significant, the one with the lowest p-value is selected). The selected sensors were then fixed 205 

and used for testing. To avoid circularity in our feature pre-processing, the test data was never 206 

used for the z-scoring or feature selection. 207 

Each sensor (including both magnetometers and gradiometers) was considered as an 208 

independent sensor input into this algorithm, and the feature selection, like the other decoding 209 

steps is performed separately at each 100ms time bin, and thus a different number of sensors 210 
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was selected for each subject at each time bin. The average number of sensors selected for 211 

each subject across all significant decoding time bins is shown in Table 1.  These pre-212 

processing parameters have been shown to empirically improve MEG decoding signal to noise 213 

in a previous MEG decoding study (Isik et al. 2014), however as we did not use absolute 214 

decoding performance (rather significantly above chance decoding) as a metric for when 215 

information is present in the MEG signals, we did not further optimize decoding performance 216 

with the present data. 217 

 218 

Decoding - classification 219 

The pre-processed MEG data was then input into the classifier. Decoding analyses were 220 

performed using a maximum correlation coefficient classifier, which computed the correlation 221 

between each test vector and a mean training vector that is created from taking the mean of the 222 

training data from a given class. Each test point was assigned the label of the class of the 223 

training data with which it was maximally correlated. When we refer to classifier “training” this 224 

could alternatively be thought of as learning to discriminate patterns of electrode activity 225 

between the different classes in the training data, rather than a more involved training procedure 226 

with a more complex classifier. We intentionally chose a very simple algorithm to see in the 227 

simplest terms what information is coded in the MEG data. Prior work has also shown 228 

empirically that results with a correlation coefficient classifier are very similar to standard linear 229 

classifiers like support vector machines (SVMs) or regularized least squares (RLS) (Isik et al. 230 

2014). 231 

We repeated the above decoding procedure at each time bin to assess the decoding 232 

accuracy versus time. We re-ran the above procedure 50 times for each subject. We measured 233 

decoding accuracy as the average percent correct of the test set data across all decoding runs, 234 
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and reported decoding results for the average of ten subjects in each experiment. Plots and 235 

latency measures were centered at the median value of each of the 100ms time bins. 236 

For more details on these decoding methods see (Isik et al. 2014). 237 

 238 

Decoding invariant information 239 

To see if information in the MEG signals could generalize across a given transformation, 240 

we trained the classifier on data from subjects viewing the stimuli under one condition (e.g. 0-241 

degree view) and tested the classifier on data from subjects viewing the stimuli under a 242 

separate, held out condition (e.g. 90-degree view). This provided a strong test of invariance to a 243 

given transformation. In all three experiments, we compared the within and across view 244 

decoding. For the “within” view case, the classifier was trained on 80% of data from one view, 245 

and tested on the remaining 20% of data from the same view. For the “across” view case, the 246 

classifier was trained on 80% of data from one view, and tested on 20% of data from the 247 

opposite view, so the same amount of training and test data was evaluated in each case. 248 

 249 

Significance testing 250 

We assessed action decoding significance using a permutation test. We ran the decoding 251 

analysis for each subject with the labels randomly shuffled to create a null distribution. Shuffling 252 

the labels breaks the relationship between the experimental conditions that occurred. We 253 

repeated the procedure of shuffling the labels and running the decoding analysis 1000 times to 254 

create a null distribution, and reported p-values as the percentage rank of the actual decoding 255 

performance within the null distribution. 256 

 For each experiment and decoding condition, we averaged the null decoding data 257 

across ten subjects and determined when the mean decoding across subjects was above the 258 

mean null distribution. We define the decoding “onset time” as the first time the subject-259 
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averaged decoding accuracy was greater than the subject-averaged null distribution, with p < 260 

0.05. This provided a measure of when significant decodable information was first present in the 261 

MEG signals, and is a standard metric to compare latencies between different conditions (Isik et 262 

al. 2013; Cichy et al. 2016). Time of peak decoding accuracy for each condition, an alternative 263 

established measure of decoding latency, was found to be much more variable (with 95% 264 

confidence intervals that were on average over 400 ms larger than onset times), we therefore 265 

restricted ourselves to using onset latency only. 266 

 267 

Assessing latency differences 268 

To compare when information arises in different decoding conditions (e.g. within versus 269 

across view), we compared onset latency rather than raw decoding performance, because 1) 270 

the raw magnitude of a classifier is difficult to interpret 2) we want to know when significant 271 

information is present in each signal. To compare onset latencies for the within view versus 272 

across view decoding, we performed 1000 bootstrap resamples of subjects and use the 273 

resulting distribution to compute empirical 95%-confidence intervals (CI) for the onset latency of 274 

each condition to estimate the temporal sensitivity of our measure (Hoenig and Heisey 2001), 275 

as well as for the difference in onset latency between the two conditions. Specifically, in each 276 

bootstrap run, we randomly selected a different subset of ten subjects with replacement, 277 

computed onset latencies for each condition (as outlined above) and calculated the difference in 278 

onset latency between the invariant and non-invariant conditions. We defined the onset 279 

latencies for invariant and non-invariant decoding significantly different with p<0.05 if the 280 

empirical 95% interval for their difference did not include 0 (Cichy et al. 2016).  281 

 282 

Temporal Cross Training 283 
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Beyond decoding latency, we sought to examine the dynamics of the MEG decoding 284 

using temporal-cross-training analysis (Meyers et al. 2008; Meyers 2013; Isik et al. 2014; King 285 

and Dehaene 2014). In this analysis, rather than training and testing the classifier on the same 286 

time point, a classifier was trained with data from one time point and then tested on data from all 287 

other time points. Otherwise the decoding methods (including feature pre-processing, cross 288 

validation and classification) were identical to the procedure outlined above. This method 289 

yielded a matrix of decoding accuracies for each training and test time point, where the rows of 290 

the matrix indicate the times when the classifier was trained, and the columns indicate the times 291 

when the classifier was tested. The diagonal entries of this matrix contained the results from 292 

when the classifier was trained and tested on data from the same time point (identical to the 293 

procedure described above). 294 

 295 

Results 296 

Readout of actions from MEG data is early and invariant 297 

Ten subjects viewed 2-second videos of five actions performed by five actors at two views (0 298 

degrees and 90 degrees) (Figure 1, top row) while their neural activity was recorded in the 299 

MEG. We then trained our decoding classifier on only on one view (0 degrees or 90 degrees), 300 

and tested it on the second view (0 degrees or 90 degrees). We could read out action from the 301 

subjects’ MEG data in the case without any invariance (“within view” condition) at, on average, 302 

250 ms (210-330 ms) (mean decoding onset latency across subjects based on p<0.05 303 

permutation test, 95% confidence intervals of onset latencies reported throughout in 304 

parentheses, see Methods) post video onset (Figure 2a, blue trace). Each video began at a 305 

random point in a given action sequence, suggesting that the brain can compute this 306 

representation from different partial sequences of each action. We also observed a significant 307 
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rise in decoding after the video offset, consistent with offset responses that have been observed 308 

in MEG decoding of static images (Carlson et al. 2011). 309 

We next assessed if the MEG signals were invariant to changes in viewpoint by training 310 

the classifier on data from subjects viewing actions performed at one view and testing on a 311 

second held out view. This invariant “across-view” decoding arose on average at 230 ms (220-312 

270ms) (Figure 2a, red trace). The within and across view decoding were largely overlapping 313 

(Figure 2a, insert), and their onset latencies were not significantly different (p = 0.13), 314 

suggesting that the early action recognition signals are immediately view invariant. To ensure 315 

that the lack of latency difference between the within and between view conditions was not due 316 

to the fact that we are using 100ms overlapping time bins, we re-ran the decoding 10ms time 317 

bins and 10ms step size (non-overlapping time bins). Although the overall decoding accuracy 318 

was lower, the within and across view decoding onsets were still not significantly different (p = 319 

0.62, Figure 2b).  320 

We next examined which types of actions are decoding in both the within and across 321 

decoding conditions. By analyzing the confusion matrices for the within- and across-view 322 

decoding, we found that not only are coarse action distinctions made (e.g., between run/walk 323 

and eat/drink), but so are fine action distinctions (e.g., between eat and drink) even at the 324 

earliest decoding of 250 ms (Figure 3). Further, actions performed in a familiar context (i.e. run 325 

and walk on a treadmill) were not better classified than those performed in an unfamiliar context 326 

(i.e. eat and drink on a treadmill).  327 

 328 

The dynamics of invariant action recognition 329 

Given that the within- and across-view action decoding conditions had similar onset latencies, 330 

we further compared the temporal profiles of the two conditions by asking if the neural codes for 331 

each condition were stable over time. To test this, we trained our classifier with data at one time 332 
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point, and tested the classifier at all other time points. This yielded a matrix of decoding 333 

accuracies for different train times by test times, referred to as a temporal cross training (TCT) 334 

matrix (Meyers et al. 2008; Carlson et al. 2013; Meyers 2013; Isik et al. 2014). The diagonal of 335 

this matrix shows when the classifier is trained and tested with data at the same time point, just 336 

as the line plots in Figure 2a.  337 

The within-view and across-view TCTs showed that the representations for actions, both 338 

with and without view, are highly dynamic as there is little off-diagonal decoding that is 339 

significantly above chance (Figure 4a-b). The window of significantly above chance decoding 340 

performance from 200-400 ms, in particular, is highly dynamic and decoding only within a 50-341 

100 ms window is significantly above chance. At later time points, the above chance decoding 342 

extends to a larger window that spans 300ms, suggesting the late representations for action are 343 

more stable across time than the early representations. Further, we find that significant 344 

decoding for the within and across view conditions were largely overlapping (Figure 4c) showing 345 

that information for both conditions are represented at the same time scale in the MEG data.  346 

 347 

Invariant action recognition is impaired in form- and motion-depleted stimuli 348 

To study the roles of two information streams, form and motion, in action recognition, subjects 349 

viewed two limited stimulus-sets in the MEG. The first ‘Form’ stimulus set consisted of one static 350 

frame from each video (containing no motion information). The second ‘Motion’ stimulus set, 351 

consisted of point light figures that are comprised of dots on each actor’s head, arm joints, torso, 352 

and leg joints and move with the actor’s joints (containing limited form information) (Johansson 353 

1973). Ten subjects viewed each of the form and motion datasets in the MEG. We could decode 354 

action from both datasets in the within view case without any invariance (Figure 5). The early 355 

view-invariant decoding that was observed with full movies, however, was impaired for both the 356 

form or motion datasets. In the form-only experiment, within view could be read out at 410 ms 357 
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(320- ms) and across view at 510ms (430- ms). The onset latencies of 410 ms and 510 ms are 358 

the first significantly above chance time points for the average decoding across all ten subjects. 359 

Although the average decoding across all ten subjects was significantly above chance, in more 360 

than 5% of bootstrap runs (each randomly selecting a different subset of ten subjects with 361 

replacement, see Methods), the decoding was not significantly above chance. Since we could 362 

not calculate a significant onset time in the bootsrap runs that did not reach significantly above 363 

chance decoding, the upper limit of the 95% CI for both the within and across view decoding is 364 

missing and we did not detect a significant difference between the two conditions. In the motion-365 

only experiment, within view action information could be read out significantly earlier than 366 

across view information: 210 ms (180-260 ms) versus 300 ms (300-510 ms), and was 367 

significantly different between the two conditions (p = 0.013). 368 

 369 

Discussion 370 

We investigated the dynamics of invariant action recognition in the human brain and 371 

found that action can be decoded from MEG signals as early as 200 ms post video onset, 372 

considerably less than the 2s duration of each video and most action cycles (e.g., one drink 373 

from a water bottle). This latency is similar to that found for biological motion detection in 374 

evoked responses (Hirai et al. 2003; Jokisch et al. 2005; Hirai and Hiraki 2006; Pavlova et al. 375 

2007). These results are also consistent with a recent MEG decoding study that classified two 376 

actions, reaching and grasping, slightly after 200ms post video onset (Tucciarelli et al. 2015). 377 

Crucially, we showed that these early neural signals are selective to a variety of full-body 378 

actions as well as invariant to changes in 3-D viewpoint.  379 

Interestingly we do not observe a difference in onset latency between invariant and non-380 

invariant action representations. While we cannot completely rule out differences at a finer scale 381 

than we can resolve with our methods, this appears to be different than object recognition. 382 
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Invariant object information increases along subsequent layers of the ventral stream (Logothetis 383 

and Sheinberg 1996; Rust and Dicarlo 2010) causing a delay in invariant decoding relative to 384 

non-invariant decoding (Isik et al. 2014). Further, physiology data (Freiwald and Tsao 2010) and 385 

computational models (Leibo et al. 2017) of static face recognition have shown that invariance 386 

to 3D viewpoint, in particular, arises at a later processing stage than initial face recognition. One 387 

possible account of this discrepancy is that even non-invariant (“within view”) action 388 

representations rely on higher-level visual features (that carry some degree of viewpoint 389 

invariant information) than those used in basic object representations. 390 

We characterized the dynamics of action representations using temporal cross training 391 

and found that the decoding windows for within and across view decoding are largely 392 

overlapping (Figure 4c), suggesting that the beyond onset latencies, the overall dynamics of 393 

decoding are similar for non-invariant and view-invariant action representations. It has been 394 

suggested that visual recognition, as studied with static object recognition, has a canonical 395 

temporal representation that is demonstrated by highly diagonal TCT matrices (King and 396 

Dehaene 2014). Our action results generally follow this pattern (Figure 4), but they are more 397 

stable over time than previously reported for object decoding (Carlson et al. 2013a; Cichy et al. 398 

2014; Isik et al. 2014).  399 

As shown previously, we find that people can recognize and neural signals can 400 

distinguish actions with either biological motion or form information removed from the stimulus 401 

(Johansson 1973; Schindler and van Gool 2008; Singer and Sheinberg 2010). In particular, 402 

decoding actions within-view is largely intact when form or motion cues are removed. This is 403 

likely due to the fact that within-view decoding, unlike the across-view condition, requires little 404 

generalization and can thus be performed using low-level cues in the form or motion stimuli. The 405 

across-view decoding, on the other hand, requires substantially more generalization and cannot 406 

be performed as well, or as quickly as the within-view decoding with form or motion depleted 407 
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stimuli. It is important to note, however, that the three experiments were completed separately 408 

with different subjects, and therefore we cannot directly compare decoding with full videos to the 409 

performance with form= or motion-depleted stimuli. Further, while our datasets are a best 410 

attempt to isolate form and motion information, it is important to note that static images contain 411 

implied motion and that point light figures contain some form information and have less motion 412 

information than full movies. Nevertheless, the low-accuracy and delayed invariant decoding 413 

with either limited stimulus set suggest that both form and motion information are necessary to 414 

build a robust action representation.  415 

Importantly these invariant action representations cannot be explained by low-level 416 

stimulus features, such as motion energy as the output of a standard motion energy model 417 

(Simoncelli and Heeger 1998) cannot significantly discriminate action across viewpoint 418 

(Tacchetti et al. 2016). While we cannot fully rule out the effects of eye movements or shifts in 419 

covert attention, eye movement patterns cannot be accounting for our early MEG decoding 420 

accuracy, because we do not observe a significant shift in the eye positions between different 421 

actions until after 600 ms post video onset and further the same decoder applied to MEG 422 

signals does not successfully decode action information using raw eye position data (Figure 2c).  423 

The five actions tested in this study comprise only a small subset of the wide variety of 424 

familiar actions we recognize in our daily lives. The five-way classification shows similar 425 

decoding across between all five actions, including both coarse and fine action distinctions 426 

(Figure 3a-d). These five actions were selected to be highly familiar, and thus we do not know to 427 

what extent familiarity is necessary for the immediate invariance we observed. Indeed, modeling 428 

and theoretical work suggest that in order to build templates to be invariant to non-affine 429 

transformations such as changes in 3-D viewpoint, one must learn templates from different 430 

views of each given category (Leibo et al. 2015). It remains an open question how this 431 
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invariance would translate to unfamiliar actions and how many examples would be needed to 432 

learn invariant representations of new actions.  433 

Finally, the longer latency and greater cross-temporal stability of action decoding raises 434 

the question of whether recurrent and feedback connections are used to form invariant action 435 

representations. This is difficult to test explicitly without high spatiotemporal resolution data. It is 436 

indeed likely that feedback and recurrent connections occur within the 200 ms of our earliest 437 

decoding (Lamme and Roelfsema 2000). However, further studies have shown that purely 438 

feedforward computational models can discriminate actions invariant to viewpoint, and produce 439 

representations that explain a significant amount of variance in the human MEG data (Tacchetti 440 

et al. 2016). 441 

 Taken as a whole, our results show that the brain computes action selective 442 

representations remarkably quickly and, unlike in the recognition of static faces and objects, at 443 

the same time that it computes invariance to non-affine transformations that are orthogonal to 444 

the recognition task. This may represent a key difference between action and object visual 445 

processing. Moreover, our findings suggest that both form and motion information are 446 

necessary to construct these fast invariant representations of human action sequences. The 447 

methods and results presented here provide a framework to study the dynamic neural 448 

representations evoked by natural videos, and open the door to probing neural representations 449 

for higher level visual and social information conveyed by video stimuli. 450 
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Figure legends 587 

Figure 1 – Action recognition dataset  588 

(a) We used a dataset of two-second videos depicting five actors performing five actions from 589 

five viewpoints. Frames from one example walk video at 90 degrees (top) and one example 590 

drink video at 0 degrees (bottom) are shown. We extended this dataset to (b) a “Form only” 591 

dataset, containing single (action informative) frames from each two-second movie, and (c) a 592 

“Motion only” dataset of point light videos created by labeling joints on actors in each video (a, 593 

bottom). 594 

 595 

Figure 2 – Action decoding from video data 596 

(a-b) Within and across view action decoding from MEG data. We can decode action by 597 

training and testing a simple on the same view (‘within-view’ condition), or, to assess viewpoint 598 

invariance, training on one view (0 degrees or 90 degrees) and testing on second view (‘across 599 

view’ condition), in (a) 100 ms overlapping bins (10 ms step size), or (b) 10 ms non-overlapping 600 

bins. Results are from the average of ten subjects. Error bars represent standard error across 601 

subjects. Horizontal line indicates chance decoding accuracy. Line at bottom of plot indicates 602 

group-level significance with p<0.05 permutation test, for the average null distribution across the 603 

ten subjects. The first time point in this line is the onset time for each condition, reported in the 604 

main text. Inset shows a zoom of decoding time courses from 175-525 ms post-video onset. (c) 605 

Action decoding from eye tracking data. We trained a linear classifier on the output of 606 

eyetracking data from a separate experiment. We trained the classifier with 80% of the data 607 

from all views, and tested on the 20% of held out data. Decoding methods are otherwise 608 

analgous to the MEG decoding procedure Results are from the average of five different 609 

subjects. Error bars represent standard error across subjects. Horizontal line indicates chance 610 
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decoding (20%). Decoding does not pass the group-level significance threshold of p<0.05 as 611 

determined by a permutation test.  612 

 613 

Figure 3 – Confusion matrices for action video dataset. Confusion matrices for the within 614 

and across view decoding conditions in the video dataset for (a) within view decoding at 250 ms 615 

post-video onset, (b) across view decoding at 250ms post-video onset, (c) within view decoding 616 

at 500ms post-video onset, (d) across view decoding at 500 ms post-video onset, (e) subjects’ 617 

average behavioral accuracy in Experiment 2. Y-axis shows true action labels and X-axis shows 618 

the classifier’s prediction (a-d) or subjects’ mean response (e). Colorbar indicates the fraction of 619 

videos a given action (Y-axis) that was labeled by the classifier or subject as another action (X-620 

axis).  621 

 622 

Figure 4 – Dynamics of action representations. A temporal cross training matrix showing the 623 

decoding results for training a classifier at each point in time (y-axis) and testing the classifier at 624 

all other times (x-axis), zoomed in to the time period from 0-1500ms post-video onset, for (a) 625 

within-view decoding, and (b) across-view decoding for subjects watching the 2-view video 626 

dataset (Experiment 1). Colorbar indicates mean decoding accuracy for ten subjects. Black dots 627 

indicate points when decoding is significantly above chance at group level based on p<0.05 628 

significance test. Results along the diagonal for the within and across view decoding are the 629 

same as shown in the line plots in Figure 3. (c) Significantly above chance decoding time points, 630 

based on a p<0.05 permutation test, for the within view (blue) and across view (red) conditions 631 

overlaid on the same plot for the entire time window (-500-3500 ms post video onset). 632 

 633 

Figure 5 – The effects of form and motion on invariant action recognition. (a) Action can 634 

also be decoded invariantly to view from form information alone (static images) (b) Action can 635 
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be decoded from biological motion only (point light walker stimuli). Results are each from the 636 

average of ten subjects. Error bars represent standard error across subjects.  Horizontal line 637 

indicates chance decoding (20%). Line at bottom of plot indicates group-level significance with 638 

p<0.05 permutation test, for the average null distribution across the ten subjects. The first time 639 

point in this line is the onset time for each condition, reported in the main text. 640 

  641 
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Experiment 
Subject 

Num. sensors 
selected (within view) 

Num. sensors selected 
(across view) 

video 1 9 11 

video 2 7 7 

video 3 7 9 

video 4 13 18 

video 5 6 7 

video 6 6 6 

video 7 9 10 

video 8 7 10 

video 9 8 10 

video 10 9 12 

    frame 11 11 11 

frame 12 10 4 

frame 13 20 27 

frame 14 4 5 

frame 15 6 6 

frame 16 8 9 

frame 17 12 19 

frame 18 16 23 

frame 19 7 7 

frame 20 8 10 

    point light 21 44 62 

point light 22 28 20 

point light 23 26 36 

point light 24 29 32 

point light 25 16 24 

point light 26 3 3 

point light 27 8 11 

point light 28 24 25 

point light 29 24 21 

point light 30 10 15 
 642 

Table 1 - The average number of sensors selected for decoding (based on a ANOVA on the 643 

training data, see Methods) for each of the 10 subjects in each experiment. The entire decoding 644 

procedure, including sensor selection is repeated at each time bin. Here we report the average 645 

number of sensors selected during the peak decoding time point for each subject.  646 
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