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Abstract  41 

 42 
 43 
Non-recurrent deep convolutional neural networks (DCNNs) are currently the best models of 44 
core object recognition; a behavior supported by the densely recurrent primate ventral stream, 45 
culminating in the inferior temporal (IT) cortex. Are these recurrent circuits critical to the ventral 46 
stream’s execution of this behavior? We reasoned that, if recurrence is critical, then primates 47 
should outperform feedforward-only DCNNs for some images, and that these images should 48 
require additional processing time beyond the feedforward IT response. Here we first used 49 
behavioral methods to discover hundreds of these “challenge” images.  Second, using large-50 
scale IT electrophysiology in animals performing core recognition tasks, we observed that 51 
behaviorally-sufficient, linearly-decodable object identity solutions emerged ~30ms (on average) 52 
later in IT for challenge images compared to DCNN and primate performance-matched “control” 53 
images. We observed these same late solutions even during passive viewing. Third, consistent 54 
with a failure of feedforward computations, the behaviorally-critical late-phase IT population 55 
response patterns evoked by the challenge images were poorly predicted by DCNN activations. 56 
Interestingly, very deep CNNs as well as not-so-deep but recurrent CNNs better predicted these 57 
late IT responses, suggesting a functional equivalence between additional nonlinear 58 
transformations and recurrence. Our results argue that automatically-evoked recurrent circuits 59 
are critical even for rapid object identification. By precisely comparing current DCNNs, primate 60 
behavior and IT population dynamics, we provide guidance for future recurrent model 61 
development. 62 
  63 



 

 

Introduction 64 

 65 
In a single, natural viewing fixation (~200 ms), primates can rapidly identify objects in the central 66 
visual field, despite various identity preserving image transformations, a behavior termed core 67 
object recognition1. Understanding the brain mechanisms that seamlessly solve this challenging 68 
computational problem has been a key goal of visual neuroscience 2, 3. Previous studies 4-6 have 69 
shown that object categories and identities are explicitly represented in the pattern of neural 70 
activity in the primate inferior temporal (IT) cortex, and that specific IT neural population codes 71 
are sufficient to explain and predict primate core object recognition. Therefore, understanding 72 
how the brain solves core object recognition boils down to building a neurally-mechanistic (i.e. 73 
neural network) model of the primate ventral stream that, for any image, accurately predicts the 74 
neuronal firing rate responses at all levels of the ventral stream, including IT. 75 
 76 
At present, the neural network models that best explain and predict the individual and 77 
population responses (image evoked, time averaged firing rates) of primate (macaque) IT 78 
neurons have been found in the architectural family of deep convolutional neural networks 79 
(DCNNs) trained on object categorization 7-9. These neural networks are also the current best 80 
predictors of primate behavioral patterns over dozens of core object recognition tasks 10, 11.  All 81 
neural networks in this model family are almost entirely feed-forward. Specifically, unlike the 82 
ventral stream 12-15, they lack cortico-cortical feedback circuits, sub-cortical feedback circuits, 83 
and medium to long-range intra-area recurrent circuits (as shown in Figure 1A). The short time 84 
duration (~200 ms) needed to accomplish accurate core object category and identity inferences 85 
in the ventral stream 4, 16, 17 suggests the possibility that recurrent-circuit driven computations are 86 
not critical for these inferences. In addition, it has been argued that recurrent circuits might 87 
operate at much slower time scales 18, and thus may be much more relevant for processes like 88 
regulating synaptic plasticity to improve future behavior (learning). Taken together, a promising 89 
hypothesis is that core object recognition behavior does not require recurrent processing. The 90 
primary aim of this study was to try to falsify this hypothesis, and to provide new constraints to 91 
guide further neural network model development.  92 
 93 
 94 
There is growing evidence that the feedforward DCNNs fall short of accurately predicting image-95 
by-image primate behavior in a variety of situations 11, 19. We therefore hypothesized that 96 
specific images for which the object identities are difficult for non-recurrent DCNNs to solve, but 97 
are nevertheless easily solved by primates, might be critically benefiting from recurrent 98 
computations in the primates. Furthermore, previous research (for review see 20) suggests that 99 
the impact of recurrent computations in the ventral stream should be most relevant at later time 100 
points in the image driven neural responses. Therefore we reasoned that IT neural population 101 
representations of objects in images in which those object inferences critically rely on the 102 
recurrent computations will require additional processing time to emerge (beyond the initial 103 
evoked IT population response that begins at ~90 ms; feedforward pass).  104 
 105 



 

 

To discover such images, we behaviorally compared primates (humans and monkeys) and a 106 
particular non-recurrent DCNN (AlexNet ‘fc7', 21) to identify two groups of images — those for 107 
which object identity is easily inferred by the primate brain, but not solved by DCNNs (referred 108 
to here as “challenge images”), and those for which both primates and models easily infer object 109 
identity (referred to here as “control images”). To test our neural hypothesis, we simultaneously 110 
measured IT population activity in response to each of 1320 images, using chronically implanted 111 
multielectrode arrays across IT cortex of both the left and right hemispheres of two monkeys, 112 
while monkeys performed an object discrimination task.  113 
 114 
Our results revealed that object identity decodes from IT neural populations for the challenge 115 
images took an average of ~30ms longer to emerge (~145 ms from stimulus onset) compared to 116 
control images (~115 ms from stimulus onset). Consistent with previous results, we also found 117 
that the top layers of DCNNs optimized for object categorization performance predicted ~50% of 118 
IT image-driven neural response variance at the leading edge of the IT population response. 119 
However, this fit to the IT response was significantly worse (<20% explained variance) at later 120 
time points (150-200 ms post stimuli onset) — the time points where linear decoders show that 121 
the IT population solutions to many of the challenge images emerge. Taken together, these 122 
results argue against feedforward only models for the brain’s execution of core object 123 
recognition, and instead imply a behaviorally-critical role of recurrent computations. Notably, we 124 
also found the same neural population phenomena while the monkeys passively viewed the 125 
images, implying that the putative recurrent mechanisms for successful core object inference in 126 
the primate are automatic and rapid, and not strongly state or task dependent. Furthermore, we 127 
show that the observed image-by-image difference in DCNN and primate behavior along with 128 
precisely measured IT population dynamics for each image better constrain the next generation 129 
of ventral stream neural network models over previous qualitative approaches. 130 
 131 
 132 
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Results 134 

 135 
As outlined above, we reasoned that, if recurrent circuits are critical to core object recognition 136 
behavior, then current non-recurrent DCNNs should perform less accurately than the ventral 137 
stream for some images.The first goal of this study was to discover many such challenge 138 
images. Rather than making assumptions about what types of images (occluded, cluttered, 139 
blurred, etc.) might most critically depend on feedback, we instead took a data driven approach 140 
to identify such images.  141 
 142 

Identification of DCNN challenge and control images 143 

 144 
To compare the behavioral performance of primates (humans and macaques) and current 145 
DCNNs image-by-image, we used a binary object discrimination task that we have previously 146 
tested extensively (Figure 1C, 10, 11).  For each trial, monkeys used an eye movement to select 147 
one of two object choices, after we briefly (100 ms) presented a test image containing one of 148 
those choice objects (see Primate Behavioral Testing in Methods).  Once monkeys are trained 149 
in the basic task paradigm, they readily learn each new object over full viewing and background 150 
transformations in just one or two days and they easily generalize to completely new images of 151 
each learned object 10. This rapid learning suggests that this task taps into relatively natural 152 
visual behavior, and that the object learning is unlikely to produce strong changes in the ventral 153 
visual stream.  154 
 155 
We tested a total of 1320 images (132 images of each of ten objects), in which the primary 156 
visible object belonged to one of 10 different object categories (Figure 1B). To make the task 157 
challenging, we included various image types (see Figure S1A): synthetic objects with high view 158 
variation (scale, position and rotation) on cluttered natural backgrounds (similar to the ones 159 
used in 6, 22), and images with occlusion, deformation, missing object-parts, and colored 160 
photographs (MS COCO dataset 23). 161 
 162 
Behavioral testing of all of these images was done in humans (n=88; Figure S2) and in monkeys 163 
(n=2; Figure 1D). We estimated the behavioral performance of the subject pool on each image, 164 
and that vector of image-wise ݀ᇱ performance values is referred to as ܫଵ (see Methods; also 165 
refer 11). We collected sufficient data such that the reliability of the ܫଵ vector was reasonably high 166 
(median split half reliability ̃ߩ , humans = 0.84 and monkeys = 0.88, where 1.0 is perfect 167 
reliability; see methods).  To test the behavior of each DCNN model, we first extracted the 168 
image evoked features of the penultimate simulated neural layer, e.g. fc7 layer of AlexNet 21. 169 
We then trained ten linear decoders (see Methods) to derive the binary task performances, and 170 
used a different set of images to test each model.  Figure 1D shows an image-by-image 171 
behavioral comparison between the pooled monkey population and AlexNet ‘fc7’. We defined 172 
and identified control images (blue dots; Figure 1C) as those where the absolute difference in 173 
primate and DCNN performance does not exceed 0.4 (݀ᇱ units), and we defined and identified 174 



 

 

challenge images (red dots; Figure 1D) as those where the primate performance was at least 175 
1.5 ݀ᇱ units greater than the DCNN performance. The  behavioral performances for each image 176 
(each object shown separately) are elaborated in the panels of Figure S3. Four examples of 177 
challenge and control images are shown in Figure 1E. The challenge images were not 178 
idiosyncratic to our choice of the AlexNet (‘fc7’) model Many of them also turned out to be 179 
challenge images for a range of other tested feedforward DCNNs with similar architectural 180 
parameters, e.g.,  VGG-S 24, 25, Zeiler and Fergus 26; see Figure S1B. Challenge images were 181 
also not specific to our synthetic image generation procedure. Figure S6A shows the challenge 182 
and control image estimation from the MS COCO image-set.  183 
       184 
Our results show that on average, both macaques and humans outperform AlexNet. Most 185 
importantly, this image search procedure produced two groups of images: 1) 266 challenge 186 
images that are accurately solved by primates but are not solved by a feedforward-only DCNN 187 
(AlexNet; but see later), and 2) 149 control images that are solved equally well by primates and 188 
the DCNN. On visual inspection, we did not observe any specific image property that 189 
differentiated between these two groups of images. We also did not observe any difference in 190 
performance on these two image-sets as the monkeys were repeatedly exposed to these 191 
images (Figure S4). This is consistent with earlier work on monkey behavioral training10, that 192 
showed — once the monkeys are trained with images of specific objects, their generalization 193 
performance to new images from the same generative space is very high and consistent with 194 
that of the training images. However, we observed that the reaction times of the subjects (both 195 
humans and macaques) for challenge images were significantly higher than for the control 196 
images (monkeys: ܴܶ߂  = 11.9 ms; unpaired two-sample t-test, t(413) = 3.4; p <0.0001;  197 
humans: ܴܶ߂  = 25 ms; unpaired two-sample t-test, t(413)=7.52; p<0.0001), suggesting that 198 
additional processing time is required for the challenge images. 199 
   200 

Temporal evolution of image-by-image object representation in IT  201 

Previous studies 4, 27 have shown that the identity of an object in an image is often accurately 202 
conveyed in the population activity patterns of the inferior temporal cortex in the macaque. 203 
Specifically, appropriately weighted linear combinations of the activities of these IT neurons can 204 
approximate how neurons in downstream brain regions could integrate this information to form a 205 
decision about the object identity. Such learned weighted linear combinations can accurately 206 
predict the average behavioral performance in all tested core object recognition tasks 6. That 207 
previous work assumed one weighted linear combination of the neural population response 208 
vector per object category (each is termed an “object decoder”) and we adopted that same 209 
linear-decode assumption here as well.   210 
 211 
In this study, we aimed to compare and contrast these linear object decodes from IT for the 212 
challenge and control images. First, we wanted to know if these IT object decoders were as 213 
accurate as the primates for both types of images —as predicted by the leading IT decoding 214 
model 6 — because that would demonstrate that the ventral stream successfully solves the 215 
challenge images (images that are, by definition, not solved by current feedforward DCNNs, but 216 



 

 

are somehow solved by primates). Second, we reasoned that, if recurrent computations were 217 
crucial to these solutions, those computations would introduce additional processing time, and 218 
therefore IT object decodes for challenge images should emerge later than IT object decode for 219 
control images.  Thus, we here used a sliding decoding time window (10 ms) that was narrower 220 
than prior work 6 so that we could precisely probe the temporal dynamics of linearly-decodable 221 
object category information. 222 
 223 
To estimate the temporal evolution of the IT object decode for each image, we used large scale 224 
multi-electrode array recordings (Figure 2A) to sample and record hundreds of neural sites 225 
across IT cortex in two awake, behaving macaques. In each monkey, we implanted multiple 226 
chronic 96-channel microelectrode arrays, inferior to the superior temporal sulcus (STS) and 227 
anterior to the posterior middle temporal sulcus (pMTS); each array  sampled from  ~25 mm2  of 228 
the posterior, central and anterior part of IT. Recording sites that yielded a significant visual 229 
drive (݀௩௜௦௨௔௟ᇱ ), , high selectivity and high image rank order response reliability (ߩ௦௜௧௘ூோை) across 230 
trials   were considered for further analyses (see Neural recording quality metrics in Methods; 231 
Figure S5 shows the average neural reliability across all neurons over time). In total, we 232 
recorded from 424 valid IT sites which included 159 and 139 sites in the right hemisphere and 233 
32 and 94 sites in the left hemisphere of monkey M (shown as inset in Figure 2A) and monkey 234 
N respectively. 235 
 236 
 237 
To determine the time at which explicit object identity representations are sufficiently formed in 238 
the IT population activity, we plotted the temporal trajectory of the IT object decode accuracy for 239 
each image. The IT decodes were obtained by training 10 linear (SVM) classifiers to predict the 240 
respective object categories from the IT population vector using 10 ms non-overlapping time 241 
bins. We computed the neural decoding accuracies (NDA) per time-bin by training and testing 242 
independently at each time bin.   Consistent with prior work 27, this reveals that the the linearly 243 
available information is not the same at each time — for example decoders trained at early time 244 
bins (~100-130) do not generalize to late time bins with respect to decoding accuracies(Figure 245 
S16).  Thus, we determined the time at which the NDA measured for each image reached the 246 
level of the subject’s (pooled monkey) behavioral accuracy. We termed this time, the Object 247 
Solution Time (OST), and we emphasize that each image has a potentially unique solution time  248 
(ܱܵ ௜ܶ௠௔௚௘). Briefly, OST for each image, was defined as the time (relative to image onset) when 249 
the linear IT population decode (see Methods; Figure 2A, top panel) first rose to within the error 250 
margins of the pooled monkey behavioral score for that image (see examples in Figure. 2B).  251 
Because we recorded many repetitions of each image, we were able to measure ܱܵ ௜ܶ௠௔௚௘ very 252 
accurately (standard error of ~9ms on average, as determined via bootstrapping across 253 
repetitions). We also observed that the OSTs estimated by randomly subsampling half (n=212) 254 
the total number of sites were significantly correlated (Spearman R was 0.77 and 0.76 for 255 
control and challenge images respectively; p<0.00001; and ܱܶܵ߂ was maintained ~30 ms) with 256 
the OSTs from the total number of sites (n=424).   257 
 258 
 259 



 

 

Figure 2B shows the temporal evolution of the IT object decode and the OST estimates for two 260 
control images and two challenge images.  For all four images, the correct (ground truth) 261 
answer is the object ‘bear’ (insets in Figure 2B).  Two observations are apparent in these 262 
examples.  First, for both the control and the challenge images, the IT decodes achieve the 263 
behavioral accuracy of the monkey (note, behavioral accuracy is similar for all four images, by 264 
design). Second, the IT decode solutions for challenge images emerge slightly later than the 265 
solutions for the control images.  266 
 267 
Both of these observations were also found on average in the full sets of challenge and control 268 
images.  First, the IT decodes achieved the primate behavioral level of accuracy on average for 269 
the challenge and control image-sets (~91 % of challenge images and ~97 % of control 270 
images), which meant that we could determine an OST for essentially all of these images. 271 
Second, and consistent with our hypothesis, we observed that IT object solution times 272 
(ܱܵ ௜ܶ௠௔௚௘) for the challenge images were, on average, ~30 ms later compared to the control 273 
images. Specifically, the median OST for the challenge images was 145 ± 1.4 ms (median ± 274 
SE) from stimulus onset and the median OST for the control images was 115 ± 1.4 ms (median 275 
± SE) (Figure 2C). The average difference (~30 ms) between the OSTs of challenge and control 276 
images did not depend on our choice of behavioral accuracy levels (Figure S7A) or image-set 277 
type (Figure S6B). We also observed that there is a significant correlation between OSTs 278 
estimated using a random half of the total number of sites (20 random splits) with that of the 279 
entire dataset (Spearman R was 0.77 and 0.76 for control and challenge images respectively;  280 
p<0.00001; and ܱܶܵ߂ was maintained ~30 ms; OSTcontrol= 122 ±  2.4 ms, OSTchallenge  = 151 ± 281 
3.1 ms; estimated as median±SE of OST across control and challenge images, which were 282 
estimated by averaging across 20 random split halves of the full neural population). 283 
 284 
 285 
 286 
These results are consistent with the hypothesis that recurrent circuit computations are critical 287 
to core object recognition (see Introduction). Thus, we next carried out a series of controls to 288 
rule out alternative explanations for these results. 289 

Comparison of initial visual drive in IT evoked by control and challenge images  290 

 291 
We considered the possibility that the observed ܱܵܶ lag for the challenge images might have 292 
been due to the IT neurons taking longer to start responding to these images. For example, if 293 
the information in those images took longer to be transmitted by the retina. However, the data 294 
do not support this possibility. First, we observed that control and challenge images share the 295 
same population neural onset response latencies  — the difference in IT response onset latency 296 
was only 0.17 ms (median; ± 0.21 ms, SE; paired t-test; t(423) = 0.3896, p = 0.69; see Figure 297 
3A, Figure S7B), suggesting that the initial visual drive for the images in both sets arrive at 298 
approximately the same time in IT.  299 
 300 
 301 



 

 

 302 
We considered the possibility that the difference in the OST between control and challenge 303 
images for each object category is primarily driven by neurons that specifically prefer that 304 
category (object relevant neurons). To address this, we first asked whether the object relevant 305 
neurons show a significant difference in response latency (i.e.ݐ߂௢௡௦௘௧ (challenge - control image) 306 
> 0) when measured for their preferred object category. Our results (as demonstrated in Figure 307 
S8 A-C) show that ݐ߂௢௡௦௘௧ was not significant for any object category. In fact a closer inspection 308 
(top panel of Figure S8C) reveals that for some objects (e.g. bear, elephant, dog) ݐ߂௢௡௦௘௧ was 309 
actually negative — that is, a trend for slightly shorter response latency for challenge images. 310 
Finally, to test the possibility that there was an overall trend for the most selective neurons to 311 
show a significant ݐ߂௢௡௦௘௧, we computed the correlation between the ݐ߂௢௡௦௘௧ and the individual 312 
object selectivity per neuron, per object category. We observed (bottom panel: Figure S8C) that 313 
there was no dependence of object selectivity per neuron on the response latency differences.  314 
In sum, the later mean OST for challenge images cannot be simply explained by longer 315 
response latencies in the IT neurons that “care” about the object categories.  316 
 317 
Interestingly however, we found that firing rates (R) were significantly higher (%߂R = 17.3%, 318 
paired t-test; t(423) = 6.8848, p <0.0001) for challenge images compared to control images, 319 
tested on a 30 ms window centered at 150 ms post stimuli onset (see Figure 3A).  We do not 320 
yet know how to interpret this higher firing rate, but one possible explanation of this difference in 321 
IT mean firing rate is the effect of additional inputs from activated recurrent circuits into the IT 322 
neural sites at later time points (see Discussion).  Regardless, these observations show that the 323 
challenge images drive IT neurons just as quickly and at least as strongly as the control images.  324 
 325 
When we closely examined the neural population response latencies for each image, we found 326 
that the time at which the IT population firing rates started to increase from baseline (onset 327 
latency; tonset) and when the population firing rate reached its peak (tpeak) were on average earlier 328 
than the OST for the images (Figure 3B and 3C). We also found no correlation (Pearson r = 329 
0.009; p = 0.8) between the population response onset latency for each image (see Methods) 330 
and the OST for that image (see Figure 3D). For example, inspection of Figure 3D reveals that 331 
some of the challenge images evoke faster-than-average latency responses in IT, yet have slow 332 
OSTs (~200 ms). Conversely, some of the control images evoke slower-than-average IT 333 
responses, yet have relatively fast OSTs (~110 ms). In sum, these results show that visual drive 334 
rapidly reaches IT for nearly all of these images, but that, for some images (mostly the 335 
challenge images), that visually driven population activity takes longer to evolve to an accurate, 336 
linearly-decodable format (OST).  337 
 338 

Controls for low level image properties 339 

 340 
We next considered the possibility that the average time lag for the challenge image OSTs 341 
might have been due to low level image property differences between the two image-sets. From 342 
previous research, we know that temporal properties of IT neurons depend critically on low level 343 



 

 

image features like total image contrast energy 28, spatial frequency power distribution 29, and 344 
spatial location of the visual objects 30. So we asked if these low level explanations might 345 
explain the lag of the challenge image ܱܵܶs.  First, we did not find any significant differences 346 
 in neural firing rate onset latencies 347  (tonset = 0.17 ms, paired t-test; t(423) = 0.3896; p=0.697߂)
(Figure 3A, Figure S4B) between control and challenge images across the recorded neural 348 
sites. We also observed that solution times were not significantly correlated with image contrast 349 
(Spearman 0.04-=ߩ; p=0.47). Second, we used the SHINE (spectrum, histogram, and intensity 350 
normalization and equalization; Figure S7C) technique 31 to equate low level image properties 351 
across the control and challenge image-sets, and re-ran the recording experiment (subsampling 352 
118 images each from the control and challenge image-sets; no. of repetitions per image = 44; 353 
see Methods). The average estimated difference in ܱܵܶ values between “SHINED” challenge 354 
and control images was still ~24 ms (Figure S7D).  Third, we tested whether the overall 355 
difference in OST between the challenge and control images, was specific to certain low or high 356 
values of various image based properties (image clutter, blur, contrast, object size and object 357 
eccentricity; for definition — see Methods). We observed that although certain image properties 358 
were significantly correlated with the absolute OST values, the ܱܶܵ߂ was consistently ~30 ms at 359 
different levels of these factors (Figure S18).   360 
 361 
To test whether ܱܶܵ߂ (challenge - control) depends on neurons with higher or lower absolute 362 
latencies, we divided the neural population into two groups — low latencies (<25 percentile of 363 
the neural latencies; n = 67) and high latencies (>75 percentile of all neural latencies; n = 67). 364 
We found that both neural groups conveyed similar information about the two types of images.  365 
Specifically, we observed that there was no significant difference between control and challenge 366 
image decoding accuracies estimated at the OST of each image, for both the low and high 367 
latency populations (median ݀௛௜௚௛ି௟௔௧௘௡௖௬ᇱ௖௢௡௧௥௢௟  = 1.23, ݀௛௜௚௛ି௟௔௧௘௡௖௬ᇱ௖௛௔௟௟௘௡௚௘  = 1.3, ݀௟௢௪ି௟௔௧௘௡௖௬ᇱ௖௢௡௧௥௢௟  = 1.05, 368 ݀௟௢௪ି௟௔௧௘௡௖௬ᇱ௖௛௔௟௟௘௡௚௘  = 1.04; unpaired t-test for high latency group, t(388)=0.17, p=0.86; unpaired t-test 369 
for low latency group, t(388)=1.2, p = 0.2). Consistent with our main result, we also found that 370 
the low latency group of neurons and the the high latency group of neurons each showed a 371 
positive lag for decoding of challenge images relative to control images ( ݕܿ݊݁ݐܽܮ݁݀݋ܿ݁ܦ߂௧௛ୀଵ.଴௟௢௪  372 
= ~22 ms, ݕܿ݊݁ݐܽܮ݁݀݋ܿ݁ܦ߂௧௛ୀଵ.଴௛௜௚௛  = ~18 ms; note that we here set  a decoding threshold of 1.0 to 373 
compensate for the smaller number of neurons relative to the ~400 needed to achieve monkey 374 
behavioral ݀ᇱ). 375 
 376 
To test whether the response latencies of an earlier area in the ventral stream hierarchy (area 377 
V4) to the control and challenge images are different, we also simultaneously recorded from 378 
area V4 in the left (95 sites) and right (56 sites) hemispheres of monkey M and N respectively 379 
(see Methods). We found no significant difference in the response latencies (both onset and 380 
peak) between control and challenge images across the V4 sites (Figure S9; paired t-test; 381 
t(150)=0.2; p=0.8). These results further support the hypothesis that the ܱܶܵ߂  between the 382 
challenge and the control images in IT is not driven by image properties that evoke shorter 383 
latencies for control images at lower levels of the visual system.     384 
 385 
 386 



 

 

Object solution estimates and timing during passive viewing 387 

  388 
 389 
To test whether the late-emerging object solutions in IT only emerge when the animal is 390 
performing the task (“active” condition), we also recorded IT population activity during “passive” 391 
viewing of all the challenge and control images. Monkeys fixated a dot, while images were each 392 
presented for 100 ms (same duration as the active task viewing of the image, see Figure. 1), 393 
followed by 100 ms of no image, followed by the next image for 100 ms, etc. (typically 5 images 394 
were presented per fixation trial; see Methods).  A priori, several outcomes of switching from 395 
active to passive viewing seemed likely: a decreased goodness of both the early-emerging and 396 
the late-emerging IT decoded solutions, a decreased goodness of the late-emerging solutions, a 397 
further delay in the late-emerging solutions, or no effect.   398 
 399 
First, similar to the active condition (%߂R = 17.3%), we observed that challenge images evoked 400 
a significant higher firing rate (%߂R = 13.2%, paired t-test; t(423) = 8.27, p <0.0001) at later 401 
time points (tested on a 30 ms window centered at 150 ms post stimuli onset) compared to the 402 
control images (Figure S10A). Second, similar to the active viewing, we observed that we could 403 
successfully estimate the object solution times for 92% of challenge and 98% of control images. 404 
The object solution times estimated during the active and passive conditions were also strongly 405 
correlated (Spearman 0.76 = ߩ; p <0.0001). Similar to the active condition, challenge image 406 
solutions required an additional time of ~28 ms (on average) to achieve full solution compared 407 
to the control images (Figure S10B). In sum, we observe that the solutions in IT emerge with a 408 
similar lag and overall accuracy (goodness) during passive viewing. This suggest that the 409 
putative recurrent computations that underlie the late-emerging IT object information are not 410 
task dependent, but are instead reflexive and automatically triggered by the images. This is 411 
consistent with previous findings of McKee et al. 32, where they reported that macaque IT cortex 412 
predominantly shows task-independent visual feature representation. Similar results have also 413 
been reported in humans 33.  414 
 415 
However, because these animals were trained on the object discrimination task prior to any 416 
neural data collection, it might be that the OST difference is due to internal processes that are 417 
only activated in trained monkeys (e.g. mental task performance?) or somehow due to the 418 
training history itself.  To test this, we carried out the same analyses on smaller sets of data 419 
from two untrained animals. Specifically, given our behavioral work in the current study to sort 420 
images into two types (challenge and control images; Figure. 1D), we were able to sort control 421 
and challenge images out of a pool of images that we had previously collected in two untrained 422 
monkeys during a passive fixation task (previously reported in 6,35,7,8). To appropriately compare 423 
with the results from the trained monkeys in this study, we matched the set of common images 424 
(640 images), array implant locations (left hemispheres; posterior and central IT), number of 425 
neural sites (168), and number of image repetitions (43).  We observed a small, but significant 426 
overall decrease in decoding accuracy across all images in the untrained monkey IT decodes 427 
(paired t-test; median ݀߂ᇱ = 0.23, t(639) = 7.78; p<0.0001).  Most importantly however, we found 428 
that the IT cortex of untrained monkeys demonstrated lagged decode solutions for the challenge 429 
images (relative to the control images) that are very comparable to those observed from the 430 



 

 

trained monkey IT populations (estimated at a decoding accuracy threshold of 1.8; 431 ݕܿ݊݁ݐܽܮ݁݀݋ܿ݁ܦ߂௧௛ୀଵ.଼௨௡௧௥௔௜௡௘ௗ  = ~34 ms;  ݕܿ݊݁ݐܽܮ݁݀݋ܿ݁ܦ߂௧௛ୀଵ.଼௧௥௔௜௡௘ௗ  = ~30 ms; see Figure S11). In 432 
sum, the main experimental observation we report here (lagged OST for challenge images) 433 
appears to be largely automatic, and it does not require, and is not the results of, laboratory 434 
training. 435 
 436 

IT predictivity across time using current feedforward deep neural network models 437 
of the ventral stream  438 

 439 
We reasoned that, if the late-emerging IT population solutions are indeed dependent on 440 
recurrent computations that are lacking in current DCNN models, then perhaps the previously 441 
demonstrated ability of those models to (partially) explain and predict individual IT neurons 8 442 
was due mostly to the similarity of the DCNN population response to the feedforward portion of 443 
the IT population response. To test this idea, we asked how well the DCNN “IT” population 444 
response pattern (which is not temporally evolving) could predict the time-evolving IT neural 445 
population response pattern up to and including the ܱܵܶ of each image. To do this, we used 446 
previously described methods (similar to 8). Specifically, we quantified the IT population 447 
goodness of fit as the median (over neurons) of the noise corrected explained response 448 
variance score (IT predictivity; Figure S12; also see Methods).  449 
 450 
First, we observed that the top layers (penultimate) of the DCNN (AlexNet ‘fc7’) predicted 44.3 ± 451 
0.7% of the potentially explainable (i.e. image-driven) IT neural response variance during the 452 
early response phase (90-110 ms; Figure 4A) for all images.  This result further confirms that 453 
feedforward DCNNs indeed approximate the initial (putative largely feedforward) IT population 454 
response pattern. However, we observed that the ability of this DCNN’s “IT” population 455 
response to predict the IT population pattern significantly worsened (<20% explained variance) 456 
as that response pattern evolved over time (Figure 4A). This drop in IT predictivity was not due 457 
to low signal to noise ratio of the neural responses during those time points because our 458 
explained variance measure already compensates for any changes in SNR, and also because 459 
SNR remains relatively high in the late part of the IT responses (Figure S5). In sum, the gradual 460 
drop in IT predictivity by these feedforward DCNN models is consistent with the hypothesis that 461 
late-phase IT population responses are modified by the action of recurrent circuits that are not 462 
contained in those DCNN models. Consistent with our hypothesis that challenge images rely 463 
more strongly on those recurrent circuits than control images, we observed that the drop in IT 464 
predictivity coincided with the solution times of the challenge images (refer top panel histograms 465 
for OST distributions of challenge and control images). 466 

Evaluation of deeper CNNs as models of ventral visual stream processing 467 

Although, the above results suggest the likely importance of recurrent computations in the 468 
primate ventral stream for some images, we are still left with the open question: what specific 469 
computational function do recurrent circuits provide beyond the feedforward representation 470 



 

 

during core object recognition behavior? It is understood in the artificial neural network 471 
community that finite-time recurrent neural networks can be constructed as very deep, 472 
feedforward-only neural networks with weight sharing across layers that are recurrently 473 
connected in the original recurrent network34.  Thus, we reasoned that the actions of recurrent 474 
circuits in the ventral stream might be computationally equivalent to stacking further non-linear 475 
transformations onto the initially evoked (~feedforward) IT population response pattern. In 476 
particular, perhaps neural populations from newer DCNNs for visual categorization that have an 477 
even higher number of stacked nonlinear transformations might better approximate the 478 
recurrent computations of the ventral stream, even though they were not specifically designed to 479 
emulate the anatomical recurrent circuits of the ventral stream.  To test this idea, we asked if 480 
existing very deep CNNs provide a better neural match to the IT response at its late phase and 481 
to the image-by-image patterns of behavioral performance. Currently there are many deeper 482 
CNNs available that outperform the baseline DCNN (AlexNet) used here, such as inception-v3 483 
35, inception-v4 36 and ResNet-50, ResNet-10137. Based on the number of layers (non-linear 484 
transformations), we divided the tested DCNN models into two groups, deep (8 layers; AlexNet, 485 
Zeiler and Fergus model, VGG-S) and deeper (>20 layers, inception-v3, inception-v4, ResNet-486 
50, ResNet-101) CNNs.  We made three observations, that corroborate our speculation.  487 
 488 
 489 
Given that decodes out of IT neural populations, typically have the highest behavioral 490 
consistency to that of primates6, compared to any other area in the ventral stream,  we first 491 
searched all the above mentioned neural networks to determine which layer of the models has 492 
the highest ܫଵ behavioral consistency on our image-set. We referred to this layer as the model-493 
IT layer. Interestingly, we observed that the model-IT layers of very deep CNNs predict IT neural 494 
responses at the late phases (150-250 ms) significantly higher (߂Predictivity = 5.8%, paired t-495 
test; t(423) = 14.26, p <0.0001) than “regular-deep” models like AlexNet (Figure 4B; scatter plot 496 
comparisons with AlexNet shown separately in Figure S13). This observation suggests that very 497 
deep CNNs might indeed be approximating “unrolled” versions of the ventral stream’s recurrent 498 
circuits. Second, as expected from the ImageNet challenge results 38, we observed an 499 
increased performance and therefore reduced number of challenge images for very deep CNNs. 500 
Third, we found that the images that remain unsolved by these very deep CNNs (i.e. challenge 501 
images for these models) showed even longer ܱܵܶs in IT cortex than the original full set of 502 
challenge images (Figure 4C). Assuming that longer ܱܵܶ  is a signature of more recurrent 503 
computations, this suggests that the newer, very deep CNNs have implicitly, but only partially, 504 
approximated — in a feedforward network — some of the computations that the ventral stream 505 
implements recurrently to solve some of the challenge images. 506 
 507 

Evaluation of CORnet (a regular-deep-recurrent CNN) as a model of the ventral 508 
visual stream 509 

 510 
To more directly ask if the experimental observations above might indeed be the result of 511 
recurrent computations, we implemented an ANN model that does recurrent computations.  512 



 

 

Specifically we tested a regular-deep (i.e. less than 10 layers) recurrent neural network model, 513 
termed CORnet 39 We chose this particular network given its very high performance on brain-514 
score (http://brain-score.org/40), an online platform that hosts the neural and behavioral 515 
benchmarks for core object recognition models. The IT-layer of CORnet has within-area 516 
recurrent connections (with shared weights). The model currently implements five time-steps 517 
(pass1- pass5 in Figure 4B). Therefore, the activity arising at the first time-step in the model-IT 518 
layer is nonlinearly transformed to arrive at the output of the second time step and so on. 519 
Indeed, we observed that CORnet had higher predictivity (Figure 4C) for the late-phase IT 520 
responses (for images that had late OSTs; >145 ms). In addition, pass-1 and pass-2 521 
(corresponding to time-step 1) of the network had a significant (multiple-comparison corrected- 522 
paired t-test; t(423)=12.78; p<0.00001) lower IT predictivity compared to pass-3 and 4 for later 523 
time-steps, whereas the opposite was true for earlier time-steps (Figure S14). Taken together, 524 
these results further argue for recurrent computations in the ventral stream.         525 

Comparison of backward visual masking between challenge and control images  526 

So far we have observed that feedforward DCNNs poorly predict the IT neural responses at 527 
later times beyond the putative feedforward response (90-110 ms post image onset), during 528 
which a majority of the challenge images (~82%) evoke their object solutions in IT. Based on 529 
these results, we hypothesized that these later IT population responses are critical for 530 
successful core object recognition behavior for many of the challenge images (~57% of 531 
challenge images have OST>140 ms). To further test this idea, we performed an additional 532 
behavioral experiment that aimed to corroborate the neurophysiology results. We modified the 533 
original object discrimination paradigm by adding a visual mask (phase scrambled image, 41) for 534 
500 ms (Figure 5A), immediately following the test image presentation: a manipulation 535 
commonly known as backward visual masking. Such backward masking has been previously 536 
associated with selective disruption of the recurrent inputs to an area from other areas 42, 43, 537 
limiting the visual processing to the initial feedforward response44. Given that solutions for the 538 
challenge images can arise in IT cortex only at later time points compared to the control images, 539 
we reasoned that if disruption in processing produced by a visual mask affects IT at earlier 540 
times, it will produce larger behavioral deficits for challenge images compared to control images. 541 
However, we predicted that these differences should subside at longer presentation times when 542 
enough time is provided for the recurrent processes to build a sufficient object representation for 543 
both control and challenge images in IT. Therefore, during this experiment, we tested a range of 544 
masking disruption times by randomly interleaving the sample image duration (and thus the 545 
mask onset). Specifically, we tested 34, 67, 100, 167 and 267 ms (see Methods).  Our results 546 
(Figure 5B) show that visual masking indeed had a significantly stronger effect on the challenge 547 
images at smaller presentation durations compared to the control images. Consistent with our 548 
hypothesis, we did not observe any measurable masking differences between the two image-549 
sets at longer presentation times (~267 ms). Median ݀߂ᇱ  (difference between control and 550 
challenge images grouped by objects) averaged across all 10 objects were 0.5, 0.81, 0.33, 0.40, 551 
and -0.02 for 34, 67, 100, 167 and 267 ms presentation duration respectively. The difference in 552 
performance was statistically significant at the .05 significance level (Bonferronni adjusted) for 553 
all presentation durations except 267 ms. Together with the neurophysiology results, these 554 



 

 

observations provide converging evidence that rapid, automatic, recurrent ventral stream 555 
computations are critical to the brain’s ability to infer object identity in the challenge images, 556 
even at the rapid time scale of natural vision (~200 ms per fixation).  557 

Model-driven versus image-property driven approaches to study recurrence 558 

Previous research has suggested that recurrent computations in the ventral stream might be 559 
necessary to achieve pattern completion when exposed to occluded images 45-47, object based 560 
attention in cluttered scenes 45, 48, etc. Indeed, we observe that several image properties like 561 
object size, presence of occlusion, and object eccentricity, as well as a combination of all these 562 
factors (Figure 6) are significant, but very weak predictors of our putative recurrence signal (the  563 
OST vector; see Methods: Estimation of the OST prediction strength). In comparison, the 564 
performance gap between AlexNet and the monkey behavior (݀߂ᇱ) is a significantly stronger 565 
predictor of OST. Therefore, our results suggest another possible image-wise predictor of 566 
ventral stream recurrence — the difference in performance between feed-forward DCNNs and 567 
primates, ݀߂ᇱ  . This vector is likely itself dependent on a complex combination of image 568 
properties, such as those mentioned above.  However, it is directly computable and our results 569 
show that it can serve as a much better model guide.  In particular, we find that ݀߂ᇱ  is 570 
significantly predictive of the OST  for each image (Spearman  = 0.44; p < 0.001), and, in this 571 
sense, is a much better predictor of the engagement of ventral stream recurrence than any of 572 
the individual image properties. 573 

  574 



 

 

Discussion 575 

 576 
The overall goal of this study was to ask if recurrent circuits are critical to the ventral stream’s 577 
execution of core recognition behavior — the ability to report object category in the central 10 ∘ 578 
with less than 200 ms of image viewing duration. We reasoned that, if computations mediated 579 
by recurrent circuits are critical for some images, then one way to find such images is by finding 580 
images that are difficult for non-recurrent DCNNs to solve, but are nevertheless easily solved by 581 
primates.  Thus we first used extensive behavioral testing to find such challenge images along 582 
with behaviorally matched control images.  With these in hand, we then aimed to look for a likely 583 
empirical signature of recurrence — the requirement of additional time to complete successful 584 
processing.  To ask this question, we first had to confirm that the challenge images that are 585 
behaviorally solved (by definition) were, in fact, solved by the ventral stream — as predicted by 586 
current models of the neural mechanisms underlying core recognition 6.  Using large-scale IT 587 
population neurophysiology, we confirmed part of this prediction: behaviorally-sufficient linearly 588 
decodable object solutions emerged in the IT population activity for essentially all of the 589 
challenge images (assessed with the same number of neurons and training exampled as for the 590 
control images).  But looking at the temporal evolution of these IT population solutions 591 
simultaneously revealed a key observation not revealed in prior work 6  — the IT solutions were 592 
lagged by an average of ~30ms later for challenge images compared to the control images. In 593 
addition, we also found that the temporally lagged IT population response patterns that 594 
contained the linearly-decodable object identity solutions were poorly predicted by DCNN model 595 
“neural” population responses to the same challenge images.  This stands in contrast to the 596 
early IT population responses, which were much better predicted by the DCNN model, 597 
consistent with prior work 8. Notably, we observed both of these findings during active task 598 
performance (when the animals had to report the identity of the dominant object in the image), 599 
but we found all of these results to be almost identical during passive viewing. Taken together, 600 
these results imply that automatically-evoked recurrent circuits are critical for object 601 
identification behavior even at the fast timescales of core object recognition.  602 
 603 
The idea that “feedback”, broadly construed, is important to vision and to object recognition is 604 
not new (see 49 for review). Previous reports 50 demonstrated that different forms of information 605 
can be decoded from early and late responses in IT, suggesting a potential role of intra-areal 606 
recurrent inputs during the late-phase IT responses. While such broad concepts about the 607 
potential role of feedback in vision have been previously suggested and partly explored, we 608 
believe that this is the first work to examine these questions at such large scale, at the fast time 609 
scales of core object recognition; the first to do so using image computable models of the neural 610 
processing to guide the choice of experiments (i.e. the images and discrimination tasks), and 611 
the first to do so with an implemented linking model (decoder) of how IT supports recognition 612 
behavior.  613 



 

 

Late object identity solution times in IT imply recurrent computations underlie 614 
core recognition 615 

The most parsimonious interpretation of the results reported here is that the late phases of the 616 
stimulus evoked responses in IT depend on some type (or types) of recurrent computations that 617 
are not present in today’s non-recurrent DCNN ventral stream models. And our comparisons 618 
with behavior suggest that these IT dynamics are not epiphenomenal, but are critical to core 619 
object recognition behavior.  But what kind(s) of additional computations are taking place and 620 
where in the brain do those recurrent circuit elements live?  We do not yet know the answers to 621 
these questions, but we can speculate to generate a testable set of hypotheses. Based on the 622 
number of synapses between V1 and IT, Tovee 51 proposed that the ventral stream comprises 623 
of stages that are approximately 10-15 ms away from each other. Our observation of an 624 
additional processing time of ~30 ms for challenge images is therefore equivalent to at least two 625 
additional processing stages. Thus, one possible hypothesis is a cortico-cortical recurrent 626 
pathway between the ventral stream cortical areas including IT and lower areas like V4, V2 and 627 
V1 (similar to suggestions of 52-54). This possibility is consistent with observations of temporally-628 
specific effects in the response dynamics of V4 neurons 55 for images with occlusion. 629 
Alternatively, the temporal lag signature we report here is also consistent with the possibility that 630 
IT is receiving important recurrent flow from downstream areas like the prefrontal and perirhinal 631 
cortices (e.g. as suggested by 56, 57). We also cannot rule out the possibility that all of the 632 
additional computations are due to recurrence within IT itself (e.g. consistent with recent models 633 
such as  47), or due to subcortical circuits (e.g. basal ganglia loops, 58).  These hypotheses are 634 
not mutually exclusive. Given all that prior work, the main contribution of our work is to take the 635 
very broad notion of “feedback” and pin down a narrower case that is both experimentally 636 
tractable (i.e. the neural phenomena is observable in IT for a prescribed set of images) and is 637 
guaranteed to have high behavioral relevance. The present results now motivate the need for 638 
direct perturbation studies that aim to independently suppress each of those circuit motifs to 639 
assess the relative importance of each of these circuit motifs.  Such perturbations should be 640 
paired with IT electrophysiological recordings and behavior. The results of the present study 641 
also provide sets of images and predictions of exactly how and when IT will be disrupted when 642 
the critical circuit motif(s) is/are suppressed.  Specifically, our measurements of both the ∆݀ᇱ 643 
and the ܱܵ ௜ܶ௠௔௚௘ vectors provide observable signatures of recurrent computations that make 644 
clear predictions for such direct neural suppression studies. Based on our results here, we 645 
predict that a specific disruption of the relevant recurrent circuits will prevent the emergence of 646 
the object solutions to the challenge images in IT.  This will in turn result in larger behavioral 647 
deficits in the challenge images (relative to the control images). Note however, that the results 648 
reported here provide more specific predictions for future perturbation experiments — beyond 649 
control and challenge image differences.  The estimated OST vector (putative “recurrence” 650 
signal) predicts exactly which individual images will be most affected (i.e. the images showing 651 
longer solution times). This knowledge can be used to optimize the image-sets and behavioral 652 
tasks for these next experiments. 653 
 654 



 

 

Temporally specific failures of current ventral stream encoding models imply that 655 
recurrent circuits are needed to improve those models  656 

 657 
Prior to this study, the best models of the ventral visual stream belonged to a class of 658 
feedforward DCNNs, e.g. HMO 8, AlexNet 21 and VGG 25, 59. These studies 7, 8 have 659 
demonstrated that feedforward DCNNs can explain ~50% of the within-animal explainable 660 
response variance in stimulus evoked V4 and IT responses (averaged responses from 70 - 170 661 
ms post-stimulus onset). Our results here confirm that feedforward DCNNs indeed approximate 662 
~50% of the first 30 ms (~90-120 ms) of the stimulus evoked, within-animal explainable IT 663 
response variance, thus establishing DCNNs as a good functional approximation of the 664 
feedforward pass of the primate ventral stream. However, in addition, we observed that the 665 
ability of DCNN neural populations to predict IT neural responses drops significantly at later 666 
phases of the stimulus evoked IT responses (>150 ms after image onset, see Figure 4A).  This 667 
is consistent with our inference that the late object solution times for challenge images are 668 
primarily caused by the additional processing time required by recurrent processes in the ventral 669 
stream. Recruitment of recurrent circuits in the form of both intra and inter-cortical feedback 670 
during these times might explain why the feedforward-only DCNN activations poorly predict the 671 
late IT responses. In addition, other forms of dynamics coding, for instance, short-lived 672 
spatiotemporal patterns of spiking 60 might also be relevant, and currently are missing from 673 
DCNNs.       674 

Unique object solution times per image motivate the search for better models of 675 
the link between IT neural population patterns and core object recognition 676 
behavior 677 

 678 
Majaj et al. 6 experimentally rejected a large number of alternative models that link ventral 679 
stream population activity to core object recognition behavior (“decoding models”). The authors 680 
showed that a simple linear decoding model, formed by linearly weighting the population activity 681 
of IT neurons (integrated from 70-170 ms post image onset) was sufficient to explain and predict 682 
the average performance of human subjects in each of a set of 64 tested core object recognition 683 
tasks.  However, in the Majaj et al. 6 study, the key predictor variable (behavioral performance) 684 
was computed as an average over all test images for any given task. The authors (one of us 685 
among them) speculated that a much finer-grain predictor variable, e.g. image-level behavioral 686 
performance, could provide a stronger test of these decoding models. Here we observe that, 687 
even for images that have statistically non-distinguishable levels of behavioral performance, the 688 
linearly-decodable information in the IT population pattern varies quite substantially over the IT 689 
response time window used by the decoding models proposed by Majaj et al. (specifically — 70-690 
170 ms post stimulus onset). Taken together, this argues that future work in this direction might 691 
successfully reject most or even all of the LaWS of RAD IT decoding models, and thus drive the 692 
field to create better mechanistic neuronal-to-behavioral linking hypotheses.     693 
 694 
 695 



 

 

Role of recurrent computations: deliverables from these data and insights from 696 
deeper CNNs 697 

 698 
Prior studies have strongly associated the role of recurrent computations during visual object 699 
recognition tasks with overcoming certain specific challenging image properties that might be 700 
boiled down to a single word or phrase such as “occlusion” 43, high levels of “clutter” 45, 701 
“grouping” of behaviorally relevant image regions61 or the need for visual “pattern completion” 47, 702 
61, 62. While we agree that such ideas or task conditions might recruit recurrent processes in the 703 
ventral stream, the present work argues that picking any one of these single ideas is not the 704 
most efficient approach to constrain future models of the mechanisms of object recognition. 705 
Specifically, we have here found that a very good way to expose which images rely most heavily 706 
on recurrent computations in the ventral stream is model-based.  That is, we use the shallower 707 
models to find images for which the difference between feedforward-only DCNN and primate 708 
behavior (∆݀ᇱ) is the largest, and this difference is a better predictor of the neural phenomena of 709 
recurrence than any of the image-based properties (see Figure. 6).  We interpret this to mean 710 
that the models effectively embed knowledge about multiple interacting image properties that 711 
cannot be described by single words or phrases, but that this knowledge better accounts for the 712 
what happens in the feedforward part of the response than those other types of explanations.     713 
 714 
While this is a good way to focus experimental efforts, it does not yet expose the computational 715 
role of recurrence, i.e., the exact nature of the computational problem solved by recurrent 716 
circuits during core object recognition. Interestingly, we found that deeper CNNs like inception-717 
v3, v4 36, ResNet-50,101 37, that introduce more nonlinear transformations to the image pixels, 718 
compared to shallower networks like AlexNet or VGG, are better models of the late phase of IT 719 
responses (the phase that is most behaviorally relevant for DCNN-challenge images). This is 720 
also consistent with a previous study 34 where it was shown that a shallow recurrent neural 721 
network (RNN) is equivalent to a very deep CNN (e.g. ResNet) with weight sharing among the 722 
layers. Therefore, we speculate that what the computer vision community has achieved by 723 
stacking more layers into the CNNs, is a partial approximation of something that is more 724 
efficiently built into the primate brain architecture in the form of recurrent circuits. That is, during 725 
core (~200 ms) object recognition, recurrent computations act as additional non-linear 726 
transformations of the initial feedforward IT response, to produce more explicit (linearly 727 
separable) solutions. This provides a qualitative explanation for what recurrent circuits provide 728 
in a variety of challenging image conditions, the purpose of which is to achieve a more explicit 729 
object representation at the level of IT. What is now needed are new recurrent artificial neural 730 
networks (here we provided results from one such model: CORnet39) that successfully 731 
incorporate these ideas. While the data presented here cannot fully specify the form of those 732 
ANNs, they will provide a strong check (see below) on any model that aims to succeed in these 733 
more advanced vision challenges where primates still exceed machines, as well as behavioral 734 
tasks that deal with more dynamic visual input (i.e. movies) and associated tasks such as action 735 
recognition, etc.    736 
 737 



 

 

Constraints for future models provided by our data 738 

 739 
 740 
Our results motivate a change in the architecture of artificial neural networks that aim to model 741 
the ventral visual stream (i.e. addition of recurrent circuits) — motivating a switch from largely 742 
feedforward DCNNs to recurrent DCNNs. However, a primary goal of experiments is not simply 743 
to provide motivation, but to also provide validation and strong constraints for guiding the 744 
construction of those new models. The results obtained here provide three precisely measured 745 
constraints for next generation neural network models. First, we provide a behavioral vector, ∆d′ 746 
that quantifies the performance gap between current feedforward DCNNs (e.g. AlexNet) and the 747 
image-by-image primate core object recognition behavior ( ଵܫ ). Second, for each of these 748 
images, we have estimated the time at which object solutions are sufficiently represented in the 749 
macaque IT cortex (i.e. the ܱܵ ௜ܶ௠௔௚௘  vector). Third, we have reliably measured the neural 750 
responses to each of the tested images at their respective object solution times (potential target 751 
features for models). Next generation dynamic models of the ventral stream should be 752 
constrained to produce the target features (object solutions) at these times. We will also host 753 
the images, primate behavioral scores, estimated object solution times, and the modeling 754 
results at http://brain-score.org40. 755 
 756 
 757 
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Methods 759 

 760 

Subjects 761 

The nonhuman subjects in our experiments were two adult male rhesus monkeys (Macaca 762 
mulatta). All human studies were done in accordance with the Massachusetts Institute of 763 
Technology Committee on the Use of Humans as Experimental Subjects. A total of 88 764 
observers participated in the binary object discrimination task. Observers completed these 20-765 
25 min tasks through Amazon's Mechanical Turk, an online platform in which subjects can 766 
complete experiments for a small payment. 767 

Visual stimuli: generation  768 

Generation of synthetic (“naturalistic”) images 769 
 770 
High-quality images of single objects were generated using free ray-tracing software 771 
(http://www.povray.org), similar to Majaj et al. 6. Each image consisted of a 2D projection of a 772 
3D model (purchased from Dosch Design and TurboSquid) added to a random background. The 773 
ten objects chosen were bear, elephant, face, apple, car, dog, chair, plane, bird and zebra 774 
(Figure 1B).  By varying six viewing parameters, we explored three types of identity while 775 
preserving object variation, position (x and y), rotation (x, y, and z), and size. All images were 776 

achromatic with a native resolution of 256 × 256 pixels (see Figure S1A for example images). A 777 

total of 1120 naturalistic images (112 per object category) were used.  778 

Generation of natural images (photographs) 779 
 780 
Images pertaining to the 10 nouns, were download from http://cocodataset.org. Each image was 781 
resized to 256 x 256 x 3 pixel size and presented within the central 8 ∘. We used the same 782 
images while testing the feedforward DCNNs. A total of 200 COCO images (20 per object 783 
category) was used.    784 
 785 

Quantification of image properties 786 
 787 
We have compared the ability of different image properties to predict the putative recurrence 788 
signal, inferred from our results. These image properties were either pre-defined during the 789 
image generation process (e.g. object size, object eccentricity, and the object rotation vectors, 790 
presence of an object occluder) or computed after the image generation procedure. The post 791 
image generation properties are listed below: 792 



 

 

 793 
Image contrast: This was defined as the variance of the luminance distribution per image 794 
(grayscale images only). 795 
 796 
Image blur: The image processing literature contains multiple measures of image focus 797 
based on first order differentiation or smoothing followed by differentiation. We have used 798 
a technique from Santos et al. 63 to define the focus of an image.  799 
 800 
Image clutter: This measure (Feature Congestion) of visual clutter is related to the  local 801 
variability in certain key features, e.g., color, contrast, and orientation 64. 802 

Primate behavioral testing 803 

Humans tested on amazon mechanical turk 804 
 805 
We measured human behavior (88 subjects) using the online Amazon MTurk platform which 806 
enables efficient collection of large-scale psychophysical data from crowd-sourced “human 807 
intelligence tasks” (HITs). The reliability of the online MTurk platform has been validated by 808 
comparing results obtained from online and in-lab psychophysical experiments 6, 10. Each trial 809 
started with a 100 ms presentation of the sample image (one out of 1360 images). This was 810 
followed by a blank gray screen for 100 ms; followed by a choice screen with the target and 811 
distractor objects (similar to 11).  The subjects indicated their choice by touching the screen or 812 
clicking the mouse over the target object. Each subject saw an image only once. We collected 813 
the data such that, there were 80 unique subject responses per image, with varied distractor 814 
objects.  815 
 816 

Monkeys tested during simultaneous electrophysiology 817 
 818 

Active binary object discrimination task 819 
 820 
We measured monkey behavior from two male rhesus macaques. Images were presented on a 821 
24-inch LCD monitor (1920 × 1080 at 60 Hz) positioned 42.5 cm in front of the animal. Monkeys 822 
were head fixed. Monkeys fixated a white square dot (0.2°) for 300 ms to initiate a trial. The trial 823 
started with the presentation of a sample image (from a set of 1360 images) for 100 ms. This 824 
was followed by a blank gray screen for 100 ms, after which the choice screen was shown 825 
containing a standard image of the target object (the correct choice) and a standard image of 826 
the distractor object. The monkey was allowed to view freely the choice objects for up to 1500 827 
ms and indicated its final choice by holding fixation over the selected object for 400 ms. Trials 828 
were aborted if gaze was not held within ±2° of the central fixation dot during any point until the 829 



 

 

choice screen was shown. Prior to the final behavioral testing, both monkeys were trained in 830 
their home-cages on a touchscreen (for details see11; details of the code and hardware available 831 
at https://github.com/dicarlolab/mkturk)   to perform the binary object discrimination tasks. We 832 
used a separate set of images that were synthesized using the same image generation protocol 833 
to train the monkeys on the binary object discrimination task. Once the behavioral performance 834 
stabilized during the training, we then tested the monkeys on the image-set described in the 835 
manuscript along with simultaneous electrophysiology. 836 
 837 

Passive Viewing 838 
 839 
During the passive viewing task, monkeys fixated a white square dot (0.2°) for 300 ms to initiate 840 
a trial. We then presented a sequence of 5 to 10 images, each ON for 100 ms followed by a 100 841 
ms gray (background) blank screen. This was followed by fluid reward and an inter trial interval 842 
of 500 ms, followed by the next sequence. Trials were aborted if gaze was not held within ±2° of 843 
the central fixation dot during any point. 844 

Behavioral Metrics 845 

We have used the same one-vs-all image level behavioral performance metric (ܫଵ) to quantify 846 
the performance of the humans, monkeys, deep HCNNs and neural based decoding models for 847 
the binary match sample tasks. This metric estimates the overall discriminability of each image 848 
containing a specific target object from all other objects (pooling across all 9 possible distractor 849 
choices).  850 
For example, given an image of object ‘݅’, and all nine distractor objects (݆ ≠ ݅)  we first compute 851 
the average hit rate,  852 

௜௠௔௚௘௜݁ݐܴܽݐ݅ܪ     = ∑ೕసభభబ ௉௖೔೘ೌ೒೐೔,ೕಯ೔ଽ , where ܲܿ refers to the fraction of correct responses 853 
for the binary task between objects ‘݅’ and ‘݆’. We then compute the false alarm rate for the 854 
object ‘݅’ as 855 ݉ݎ݈ܽܣ݁ݏ݈ܽܨ௜ = 1 − ௜௠௔௚௘௝ஷ௜݁ݐܴܽݐ݅ܪ)݃ݒܽ ) 

The unbiased behavioral performance, per image, was then computed using a sensitivity index 856 ݀ᇱ, 857 
    ݀௜௠௔௚௘ᇱ = ௜௠௔௚௘௜݁ݐܴܽݐ݅ܪ)ݖ ) −  858 ,(௜݉ݎ݈ܽܣ݁ݏ݈ܽܨ)ݖ
where ݖ is the inverse of the cumulative Gaussian distribution. The values of ݀ᇱ were bounded 859 
between -5 and 5. Given the size of our image-set, the ܫଵ vector contains 1320 independent ݀ᇱ 860 
values. The estimated median false alarm rate across objects were 0.11 and 0.18 for the 861 
monkey behavior and neural decoding performance respectively. 862 
 863 
To compute the reliability of the estimated ܫଵ vector, we split the trials per image into two equal 864 
halves by resampling without substitution. The Spearman-Brown corrected correlation of the two 865 
corresponding ܫଵ vectors (one from each split half) was used as the reliability score (i.e. internal 866 
consistency) of our ܫଵ estimation.  867 



 

 

Large scale multielectrode recordings and simultaneous behavioral recording 868 

Surgical implant of chronic micro-electrode arrays 869 
Before training, we surgically implanted each monkey with a head post under aseptic conditions. 870 
After behavioral training, we recorded neural activity using 10 × 10 micro-electrode arrays (Utah 871 
arrays; Blackrock Microsystems). A total of 96 electrodes were connected per array. Each 872 
electrode was 1.5 mm long and the distance between adjacent electrodes was 400 μm. Before 873 
recording, we implanted each monkey multiple Utah arrays in the IT and V4 cortex. In monkey 874 
M, we implanted  3 arrays in right hemisphere (all 3 in IT) and  3arrays in the left hemisphere (2 875 
in IT and 1 in V4). In  monkey N, we implanted  3 arrays in the left hemisphere (all 3 in IT) and 3 876 
arrays in the right hemisphere(2 in IT and 1 in V4). The left and right hemisphere arrays were 877 
not implanted simultaneously. We recorded for ~6-8 months from implants in one hemisphere 878 
before explanting the arrays and implanting new arrays in the opposite hemisphere. Array 879 
placements were guided by the sulcus pattern, which was visible during surgery. The electrodes 880 
were accessed through a percutaneous connector that allowed simultaneous recording from all 881 
96 electrodes from each array. Behavioral testing was performed using standard operant 882 
conditioning (fluid reward), head stabilization, and real-time video eye tracking. All surgical and 883 
animal procedures were performed in accordance with National Institutes of Health guidelines 884 
and the Massachusetts Institute of Technology Committee on Animal Care. 885 
 886 

Eye Tracking  887 
 888 
We monitored eye movements using video eye tracking (SR Research EyeLink 1000). Using 889 
operant conditioning and water reward, our 2 subjects were trained to fixate a central white 890 
square (0.2°) within a square fixation window that ranged from ±2°. At the start of each 891 
behavioral session, monkeys performed an eye-tracking calibration task by making a saccade to 892 
a range of spatial targets and maintaining fixation for 500 ms. Calibration was repeated if drift 893 
was noticed over the course of the session.  894 

Electrophysiological Recording 895 
During each recording session, band-pass filtered (0.1 Hz to 10 kHz) neural activity was 896 
recorded continuously at a sampling rate of 20 kHz using Intan Recording Controller (Intan 897 
Technologies, LLC). The majority of the data presented here were based on multiunit activity.  898 
We detected the multiunit spikes after the raw data was collected.  A multiunit spike event was 899 
defined as the threshold crossing when voltage (falling edge) deviated by more than three times 900 
the standard deviation of the raw voltage values. Of 960 implanted electrodes, five arrays 901 
(combined across the two hemispheres) × 96 electrodes × two monkeys, we focused on the 424 902 
most visually driven, selective and reliable neural sites. Our array placements allowed us to 903 
sample neural sites from different parts of IT, along the posterior to anterior axis. However, for 904 
all the analyses, we did not consider the specific spatial location of the site, and treated each 905 
site as a random sample from a pooled IT population. 906 
  907 

Neural recording quality metrics per site 908 
 909 



 

 

Visual drive per neuron (݀௩௜௦௨௔௟ᇱ ): We estimated the overall visual drive for each electrode. This 910 
metric was estimated by comparing the COCO image responses of each site to a blank (gray 911 
screen) response.  912 
 913 ݀௩௜௦௨௔௟ᇱ = (௖௢௖௢ܴ)݃ݒܽ − ට12(௚௥௔௬ܴ)݃ݒܽ ோ೎೚೎೚ଶߪ) + ோ೒ೝೌ೤ଶߪ )  

 914 
  915 
 916 
Image rank-order response reliability per neural site (ߩ௦௜௧௘ூோை): To estimate the reliability of the 917 
responses per site, we computed a Spearman-Brown corrected, split half (trial-based) 918 
correlation between the rank order of the image responses (all images).  919 
 920 
Selectivity per neural site: For each site, we measured selectivity as the d’ for separating that 921 
site's best (highest response-driving) stimulus from its worst (lowest response-driving) stimulus.  922 
d’ was computed by comparing the response mean of the site over all trials on the best stimulus 923 
as compared to the response mean of the site over all trials on the worst stimulus, and 924 
normalized by the square-root of the mean of the variances of the sites on the two stimuli: 925 ݕݐ݅ݒ݅ݐ݈ܿ݁݁ݏ௜ = ݉݁ܽ݊(ܾ௜⃗ ) − ௜⃗ݓ)݊ܽ݁݉ )ඨݎܽݒ(ܾ௜⃗ ) + ௜⃗ݓ)ݎܽݒ )2

 

 926 

where ܾ௜⃗  is the vector of responses of site i to its best stimulus over all trials and ݓ௜⃗
 is the vector 927 

of responses of site i to its worst stimulus. We computed this number in a cross-validated 928 
fashion, picking the best and worst stimulus on a subset of trials and then computing the 929 
selectivity measure on a separate set of trials, and averaging the selectivity value of 50 trial 930 
splits. 931 
 932 
 933 
 934 
Inclusion criterion for neural sites: For our analyses, we only included the neural recording sites 935 
that had an overall significant visual drive (݀௩௜௦௨௔௟ᇱ ), an image rank order response reliability 936 
 that was greater than 0.6 and a selectivity score that was greater than 1. Given that most 937 (௦௜௧௘ூோைߩ)
of our neural metrics are corrected by the estimated noise at each neural site, the criterion for 938 
selection of neural sites is not that critical. It was mostly done to reduce computation time and 939 
eliminate noisy recordings. 940 
 941 

Population Neural response latency estimation 942 
 943 
Onset latencies (tonset) were determined as the earliest time from sample image onset when the 944 
firing rates of neurons were higher than one-tenth of the peak of its response. We averaged the 945 
latencies estimated across individual neural sites to compute the population latency. 946 
 947 



 

 

Peak latencies (tpeak) were estimated as the time of maximum response (firing rate) of a neural 948 
site in response to an image.  We averaged the peak latencies estimated across individual 949 
neural sites to compute the population peak latency per image. 950 
 951 
Both of these latency measures were computed across different sets of images (control and 952 
challenge) as mentioned in the article.  953 
 954 
 955 
 956 

Estimation of solution for object identity per image 957 

 958 

IT cortex 959 
To estimate what information downstream neurons could easily “read” from a given IT neural 960 
population, we used a simple, biologically plausible linear decoder (i.e., linear classifiers), that 961 
has been previously shown to link IT population activity and primate behavior 6. Such decoders 962 
are simple in that they can perform binary classifications by computing weighted sums (each 963 
weight is analogous to the strength of synapse) of input features and separate the outputs 964 
based on a decision boundary (analogous to a neuron’s spiking threshold). Here we have used 965 
a support vector machine (SVM) algorithm with linear kernels. The SVM learning model 966 
generates a decoder with a decision boundary that is optimized to best separate images of the 967 
target object from images of the distractor objects. The optimization is done under a 968 
regularization constraint that limits the complexity of the boundary. We used L2 (ridge) 969 
regularization, where the objective function for the minimization comprises of an additional term 970 
(to reduce model complexity),   971 
 972 

L2 (penalty) = 
ఒଶ ∑௝ୀଵ௣  ௝ଶ  973ߚ

 974 
where ߚ and p are the classifier weights associated with ‘p’ predictors (e.g. 424 neurons).  The 975 
strength of regularization, ߣ was optimized for each train-set and a stochastic gradient descent 976 
solver was used to estimate 10 (one for each object) one-vs-all classifiers. After training each of 977 
these classifiers with a set of 100 training images per object, we generated a class score (ܿݏ) 978 
per classifier for all held out test images given by,  979 
ܿݏ 980  = ߚܴ +  981  ,ݏܾܽ݅
 982 
where R is the population response vector and the bias is estimated by the SVM solver.  983 
  984 
The train and test sets were pseudo-randomly chosen multiple times until we every image of our 985 
image set was part of the held-out test set. We then converted the class scores into probabilities 986 
by passing them through a softmax (normalized exponential) function.  987 

௜ܲ௠௔௚௘௜ = ݁௦௖೔∑ ݁௦௖೔ଵ଴௜ୀଵ  

 988 



 

 

Our behavioral ܫଵ scores are all trial-averaged metrics. Therefore, in order to generate a 989 
comparable trial-averaged performance per image — a probability for each classifier output, 990 
given any image ( ௜ܲ௠௔௚௘௜ ) was generated. The decoders are therefore trained and tested with 991 
trial-averaged data.  992 
 993 
We then computed the binary task performances, by calculating the percent correct score for 994 
each pair of possible binary task given an image. For instance, if an image was from object i, 995 
then the percent correct score for the binary task between object i and object j , ܲݎ௜,௝  was 996 
computed as, 997 
௜௠௔௚௘௜,௝ݎܲ 998      = ௜ܲ௠௔௚௘௜

௜ܲ௠௔௚௘௜ + ௜ܲ௠௔௚௘௝  

From each percent correct score, we then estimated a neural ܫଵ score (per image), following the 999 
same procedures as the behavioral metric. 1000 

Object solution time per image in IT (ܱܵ ௜ܶ௠௔௚௘) 1001 
 1002 
Object solution time per image, ܱܵ ௜ܶ௠௔௚௘ was defined as the time it takes for linear IT 1003 
population decodes to reach within the error margins of the pooled monkey behavioral ܫଵ score 1004 
for that image. In order to estimate this time, we first computed a neural ܫଵ vector for non-1005 
overlapping 10 ms time bins post the sample image onset. We then used linear interpolation to 1006 
predict the value of the ܫଵ vector per image at any given time between 0 and 250 ms. We then 1007 
used the Levenberg-Marquardt algorithm to estimate the time at which the neural ܫଵ vector 1008 
reached the error margins of the pooled monkey behavioral ܫଵ. 1009 
 1010 

We balanced the control and challenge image populations at each level of 1011 
the monkeys’ performance. Therefore, we discarded challenge images that 1012 
showed a ݀ᇱ of 5 or higher since there were no equivalent control images at 1013 
that behavioral-accuracy level. However, we estimated the average OST 1014 
for the challenge images at d’>=5 to be 150.2 ms (well within the range of 1015 
other challenge image OSTs). Deep Convolutional Neural Networks 1016 
(DCNN)  1017 

Binary object discrimination tasks with DCNNs   1018 

We have used two different techniques to train and test the DCNN features on the binary object 1019 
discrimination task.  1020 
 1021 
1. Back-end training (transfer learning): Here we have used the same linear decoding scheme 1022 
mentioned above (for the IT neurons) to estimate the object solution strengths per image for the 1023 
DCNNs. Briefly, we first obtained an ImageNet pre-trained DCNN (e.g AlexNet). We then 1024 



 

 

replaced the last three layers (i.e. anything beyond ‘fc7’) of this network with a fully connected 1025 
layer containing 10 nodes (each representing one of the 10 objects we have used in this study).  1026 
We  then trained this last layer with a back-end classifier (L2 regularized linear SVM; similar to 1027 
the one mentioned for IT) on a subset of images from our image-set (containing both control 1028 
and challenge images). These images were selected randomly from our imageset and used as 1029 
the train-set. The remaining images were then used for the testing (such that there is no overlap 1030 
between the train and test images). Repeating this procedure multiple times allowed us to use 1031 
all images as test images providing us with the performance of the model for each image. The 1032 
features extracted from each of the DCNN models were projected onto the first 1000 principle 1033 
components (ranked in the order of variance explained) to construct the final feature set used. 1034 
This was done to maintain consistency while comparing different layers across various DCNNs 1035 
(some include ~20000 features) and control for the total number of features used in the 1036 
analyses. 1037 
 1038 
2. Fine-tuning: Although the steps mentioned above (transfer learning) is more similar to how 1039 
we think the monkey implements the learning of the task in his brain, we cannot completely rule 1040 
out the possibility that the representations of the images in IT do not change after training with 1041 
our image-set. Prior work suggests that such IT population response changes are modest at 1042 
best65. Therefore, we also fine-tune (end-to-end) the ImageNet pre-trained AlexNet with images 1043 
(randomly selected from our own image-set) and test on the remaining held out images. This 1044 
technique also involves first obtaining an imagenet pertained DCNN, and replacing the final 3 1045 
layers (e.g. beyond AlexNet ‘fc7’) with a fully connected layer of 10 nodes. However, the key 1046 
difference of this technique with the transfer learning technique is that the new network is now 1047 
trained end-to-end with stochastic gradient decent on separate training images from our own 1048 
image-set used to test the monkeys. Figure S15 shows that the three main findings of our article 1049 
(discovery of challenge images; lagged solutions for challenge images and lower IT predictivity 1050 
for late-phase IT responses) are well replicated even with a fine-tuned ImageNet pre-trained 1051 
AlexNet. 1052 
 1053 

 1054 

Prediction of neural response from DCNN features 1055 

 1056 
We modeled each IT neural site as a linear combination of the DCNN model features (illustrated 1057 
in Figure S12). We first extracted the features per image, from the DCNNs’ layers. The features 1058 
extracted were then projected onto its first 1000 principle components (ranked in the order of 1059 
variance explained) to construct the final feature set used. For example, we used the features 1060 
from AlexNet’s 21 ‘fc7’ layer to generate Figure 4A. Using a 50%/50% train/test  split of the 1061 
images, we then estimated the regression weights (i.e how we can linearly combine the model 1062 
features to predict the neural site’s responses) using a partial least squares (MATLAB 1063 
command: plsregress) regression procedure, using 20 retained components. The neural 1064 
responses used for training  (RTRAIN) and testing  (RTEST) the encoding models were averaged 1065 
firing rates (measured at the specific sites) within the time window considered. We treated each 1066 
time window (10 ms bins) independently for training and testing. The training images used for 1067 
regressing the model features onto a neuron, at each time point, were sampled randomly 1068 
(repeats included random subsampling) from the entire image set. For each set of regression 1069 



 

 

weights (ݓ) estimated on the training image responses (RTRAIN), we generated the output of that 1070 
‘synthetic neuron’ for the held out test set (MPRED) as 1071 

 1072 
௉ோா஽ܯ   = ݓ) ∗ (ாௌ்்ܨ +  1073  ,ߚ
where ݓ and ߚ are estimated via the PLS regression and FTEST are the model activation 1074 
features for the test image-set. 1075 

 1076 
The percentage of explained variance, IT predictivity (for details refer 8) for that neural site, was 1077 
then computed by normalizing the r2 prediction value for that site by the self-consistency of the 1078 
test image responses (ߩோ೅ಶೄ೅

) for that site and the self-consistency of the regression model 1079 
predictions ( ெುೃಶವߩ

)  for that site (estimated by a Spearman Brown corrected trial-split 1080 
correlation score).  1081 
 1082 

   IT predictivity = (௖௢௥௥(ோ೅ಶೄ೅,ெುೃಶವ)ටఘೃ೅ಶೄ೅∗ఘಾುೃಶವ )ଶ  1083 

 1084 
To achieve accurate cross-validation results, we had to test the prediction of the model on held 1085 
out image responses. But to make sure we have exposed the mapping procedure (mapping the 1086 
model features on to individual IT neural sites) to images from the same full generative space 1087 
and especially from both the control and challenge image categories, for each time step —  we 1088 
randomly sub-sampled image responses from the entire image set (measured at that specific 1089 
time step). This ensured that the mapping step was exposed to exemplars from both the control 1090 
and the challenge images groups. 1091 
 1092 

Estimation of the OST prediction strength  1093 

We compared how well different factors and ࢊࢤᇱ between monkey behavior and AlexNet ‘fc7’, 1094 
predicted the differences in the object solution time (OST) estimates. Each image has an 1095 
associated value for different image properties, either categorical e.g. occcluded/non-occluded  1096 
or continuous e.g. object size etc. We first divided the image-sets into two groups, high and low, 1097 
for each factor. The high group for each factor contained images with values higher than 95th 1098 
percentile of the factor distribution, and the low group contained the ones with values less than 1099 
5th percentile of the distribution.  For the categorical factor like occlusion, the high group 1100 
contained images with occlusion and the low group contained images without occlusion. Then, 1101 
for each factor we performed a one-way ANOVA with object solution time as the dependent 1102 
variable. The rationale behind this test was if the experimenter(s) were to create image-sets 1103 
based on any one of these factor, how likely is it expose a large difference between the OST 1104 
values. Therefore, we used the F-value of the test (y-axis in Figure 6) to quantify the OST 1105 
prediction strength.     1106 

 1107 



 

 

Data and code availability  1108 
 1109 
At the time of publishing, the images used in this study and the data associated with all the 1110 
figures will be publicly available at our github repository (https://github.com/kohitij-kar). We will 1111 
also host the images, primate behavioral scores, estimated object solution times, and the 1112 
modeling results at http://brain-score.org40.  1113 
 1114 
 1115 
 1116 

Figure Caption 1117 

 1118 
Figure 1. Behavioral screening and identification of control and challenge images. A) We task both 1119 
primates (humans and macaques; top row) and feedforward DCNNs (bottom row) to identify which object 1120 
is present in each Test image (1320 images).  The top row shows the stages in the ventral visual pathway 1121 
in primates (retina, LGN: lateral geniculate nucleus, areas V1, V2, V4, and IT), which is implicated in core 1122 
object recognition. We can conceptualize each stage as rapidly transforming the representation of the 1123 
image ultimately yielding to the primates’ behavior (i.e. producing a behavioral report of which object was 1124 
present). The blue arrows indicate the known anatomical feedforward projections from one area to the 1125 
other. The red arrows indicate the known lateral and top down recurrent connections. The bottom row 1126 
demonstrate a schematic of a similar pathway commonly present in the DCNNs. These networks contain 1127 
a series of convolutional  and pooling layers with nonlinear transforms at each stage, followed by fully 1128 
connected layers (which approximates macaque IT neural responses) that ultimately gives rise to the 1129 
models’ “behavior.” Note that the DCNNs only have feedforward (blue) connections. B) Object categories. 1130 
We used ten different object types; bear, elephant, face, plane, dog, car, apple, chair, bird and zebra. C) 1131 
Binary object discrimination task. Here we show the timeline of events on each trial. Subjects fixate a dot. 1132 
The test image (8 ∘) containing one of ten possible objects was shown for 100 ms. After a 100 ms delay, 1133 
a canonical view of the target object (the same noun as that present in the test image) and a distractor 1134 
object (from the other 9 objects) appeared, and the human or monkey indicated which object was present 1135 
in the test image by clicking on or making a saccade to one of the two choices respectively. D) 1136 
Comparison of monkey performance (pooled across 2 monkeys) and DCNN performance (AlexNet; ‘fc7’ 1137 
21). Each dot represents the behavioral  task performance (1ܫ; refer Methods) for a single image. We 1138 
reliably identified challenge images (red dots) and control images (blue dots). Error bars are bootstrapped 1139 
s.e.m. E) Examples of four challenge and four control images.  1140  1141 



 

 

Figure 2. Large scale multiunit array recordings in the macaque inferior temporal cortex. A) Schematic of 1142 
array placement, neural data recording and object solution time estimation. We recorded extracellular 1143 
voltage in IT from two monkeys, each hemisphere implanted with 2 or 3 Utah arrays. For each image 1144 
presentation (100 ms), we counted multiunit spike events (see Methods for details), per site, in non 1145 
overlapping 10 ms windows, post stimulus onset to construct a single population activity vector per time 1146 
bin. These population vectors (image evoked neural features) were then used to train and test cross-1147 
validated linear support vector machine decoders (d) separately per time bin. The decoder outputs per 1148 
image (over time) were then used to perform a binary match to sample task, and obtain neural decode 1149 
accuracies (NDA) at each time bin. An example of the neural decode accuracy over time is shown in the 1150 
top panel. The time at which the neural decodes equal the primate (monkey) performance, is then 1151 
recorded as the object solution time (OST) for that specific image. B) Examples of IT population decodes 1152 
over time, with the estimated object solution times for four images; two control (top panel: blue curves) 1153 
and two challenge images (bottom panel: red curves). The red and blue dots are the estimated neural 1154 
decode accuracies at each time bins. The solid lines are nonlinear fits of the decoder accuracies over 1155 
time (see Methods). The gray lines indicate the ܫଵ performance of the primates (pooled monkey) for the 1156 
specific images. Error bar indicates bootstrapped s.e.m.  C) Distribution of object solution times for both 1157 
control (blue) and challenge (red) images. The median OST for control (blue) and challenge (red) images 1158 
are shown in the plot with dashed lines. The inset in the top shows the median evolution of IT decodes 1159 
over time until the OST for control (blue) and challenge (red) images.   1160 

 1161  1162  1163 
Figure 3. Relationship between object solution times and neural response latencies. A) Comparison of 1164 
neural responses evoked by control (blue) and challenge (red) images. We estimated two measures of 1165 
population response latency:  Population onset latency (tonset) and Population peak latency (tpeak). B) 1166 
Distributions of the population onset latencies (median across 424 sites), population  peak response 1167 
latencies (median across 424 sites) and object solution times for control images (n=149). C) Same as in 1168 
B) but for challenge images (n = 266). D) Comparison of population onset latencies and object solution 1169 
times for both control (blue) and challenge images (red). Vertical error bars show s.e.m across neurons 1170 
and horizontal error bars show bootstrap (across trial repetition) standard deviation of ܱܵܶ estimates.  1171  1172  1173 
 1174 
 1175 

Figure 4. Predicting IT neural responses with DCNN features. A) IT predictivity of AlexNet’s ‘fc7’ layer as 1176 
a function of object solution time (ms). For each time bin, we consider IT predictivity only for images that 1177 
have a solution time equal to or higher than that time bin. Error bars indicate the standard error of mean 1178 
across neurons. Top panel shows the distribution of object solution times for control (blue) and challenge 1179 
(red) images. B) IT predictivity computed separately for late OST images (OST>150 ms; total of 349 1180 
images) at the corresponding object solution times, as function of deep (AlexNet, Zeiler and Fergus, 1181 
VGG-S), deeper (Inception, ResNet) CNNs and deep-recurrent CNNs (CORnet). * indicates a statistically 1182 
significant difference between two groups. The inset to the right shows a schematic representation of 1183 
CORnet that has recurrent connections (shown in red) at each layer (V1, V2, V4 and IT) C) Comparison 1184 
of median OST for different sets of challenge images: the set of challenge images is defined with respect 1185 
to each DCNN model (thus, the exact set of images is different for each bar, and the number of images is 1186 
indicated on top of the bars). In each case, the challenge images are defined as the set of images that 1187 
remain unsolved by each model (using the fixed definitions of this study, see text). Note that the use of 1188 
deeper CNNs and the deep-recurrent CNN, resulted in the discovery of challenge images that required 1189 
even longer ܱܵܶs in IT cortex than the original set challenge images (defined for AlexNet ‘fc7’). * indicates 1190 
a statistically significant difference between two groups. 1191 
 1192 



 

 

 1193 

Figure 5. A) Binary object discrimination with backward visual masking. The test image (presented for 34, 1194 
67, 100, 134 or 267 ms) was followed immediately by a visual mask (phase scrambled image) for 500 ms, 1195 
followed by a blank gray screen for 100 ms and then the object choice screen. Monkeys reported the 1196 
target object by fixating it on the choice screen. B) Difference in behavioral performance between control 1197 
and challenge image after backward visual masking. Each bar on the plot (y-axis) is the difference in the 1198 
pooled monkey performance during the visual masking task (A) between control and challenge images at 1199 
the respective sample image presentation durations (x-axis). The top panel inset shows the raw 1200 
performance (݀ᇱ) for the two groups of images (blue: control images, red: challenge images). Error bars 1201 
denote the standard error of mean across all objects. 1202 

 1203 
Figure 6. Comparison of ܱܵܶ prediction strength between different image properties, a combination of all 1204 
estimated image properties, and the ∆݀′

 vector (deviation of model behavior from pooled monkey 1205 
behavior). The red dashed line denotes the significance threshold of the F-statistic. Image properties like 1206 
object size, eccentricity, presence of an occluder, as well as a combination of these properties (referred to 1207 
as “all-factors”) significantly predict ܱܵܶ. However, the ∆ ݀′

 vector provides the strongest OST 1208 
predictions. Error bars denote the bootstrap standard deviation over images. * denotes a significant 1209 
difference between the two groups — image properties vs ݀߂ᇱ, estimated with repeated measures 1210 
ANOVA (F(1,10)>100; p<0.0001; multiple-comparison using Turkey test showed a significant difference 1211 
between ∆ ݀′

 and all other image properties).   1212 
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