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Abstract

Within a statistical learning setting, we propose and study an iterative regularization algo-
rithm for least squares defined by an incremental gradient method. In particular, we show that,
if all other parameters are fixed a priori, the number of passes over the data (epochs) acts as a
regularization parameter, and prove strong universal consistency, i.e. almost sure convergence
of the risk, as well as sharp finite sample bounds for the iterates. Our results are a step towards
understanding the effect of multiple epochs in stochastic gradient techniques in machine learning
and rely on integrating statistical and optimization results.

1 Introduction

Machine learning applications often require efficient statistical procedures to process potentially
massive amount of high dimensional data. Motivated by such applications, the broad objective
of our study is deriving learning procedures with optimal statistical properties, and, at the same
time, computational complexities proportional to the generalization properties allowed by the data,
rather than their raw amount [5]. In this paper, we focus on iterative regularization as a viable ap-
proach towards this goal. The key observation behind these techniques is that iterative optimization
schemes applied to scattered, noisy data exhibit a self-regularizing property, in the sense that early
termination (early-stop) of the iterative process has a regularizing effect [19, 22]. Indeed, iterative
regularization algorithms are classical in inverse problems [14], and have been recently considered
in machine learning [6, 32, 2, 4, 8, 24], where they have been proved to achieve optimal learning
bounds, matching those of variational regularization schemes such as Tikhonov [7, 29].
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In this paper, we consider an iterative regularization algorithm for the square loss, based on a
recursive procedure updating the solution after processing one training set point at each iteration.
Methods of the latter form, often broadly referred to as online learning algorithms, have become
standard in the processing of large data-sets, because of their often low iteration cost and good
practical performance. Theoretical studies for this class of algorithms have been developed within
different frameworks. In composite optimization [17], in stochastic optimization [18, 27], in on-
line learning, a.k.a. sequential prediction [10], and finally, in statistical learning [9]. The latter is
the setting of interest in this paper, where we aim at developing an analysis keeping into account
simultaneously both statistical and computational aspects. To place our contribution in context, it
is useful to emphasize the role of regularization and different ways in which it can be incorporated
in online learning algorithms. The key idea of regularization is that controlling the complexity of a
solution can help avoiding overfitting and ensure stability to achieve improved results [31]. Clas-
sically, regularization is achieved perturbing (penalizing) the objective function with some suitable
functional, or replacing the original risk minimization problem by a constrained problem obtained
restricting the space of possible solutions [31]. Model selection is then performed to determine the
amount of regularization suitable for the data at hand. More recently, there has been an interest
in alternative, possibly more efficient, ways to incorporate regularization. We mention in particular
[33, 1] (see also [30]) where there is no explicit regularization by penalization, and the step-size of
an iterative procedure is shown to act as a regularization parameter. Here, for each fixed step-size,
each data point is processed once, but multiple passes are indeed needed to perform model selection
(that is pick the best step-size). We also mention [20] where an interesting adaptive approach is
proposed, which seemingly avoid model selection under certain assumptions.

In this paper, we consider a different regularization strategy, which is widely used in practice.
Namely, we consider no explicit penalization, fix the step size a priori, and analyze the effect of
the number of passes over the data, which becomes the only free parameter to avoid overfitting,
i.e. regularize. The associated regularization strategy, that we dub incremental iterative regulariza-
tion, is hence based on early stopping. The latter is a well known "trick”, for example in training
large neural networks [16], and is known to perform very well in practice [15]. Our goal is to
provide a theoretical understanding of the generalization property of the above heuristic for incre-
mental/online techniques by grounding it in solid theoretical terms. Towards this end, we develop
a theoretical analysis considering the behavior of both the excess risk and the iterates themselves.
For the latter we obtain sharp finite sample bounds matching those for Tikhonov regularization in
the same setting. Finite sample bounds for the excess risk can then be easily derived, albeit possibly
suboptimal. Our results are developed in a capacity independent setting [11, 28], that is under no
conditions on the covering or entropy numbers [28]. In this sense our analysis is worst case and
dimension free. To the best of our knowledge the analysis in the paper is the first theoretical study
of regularization by early stopping in incremental/online algorithms, and thus a first step towards
understanding the effect of multiple epochs of stochastic gradient for risk minimization.

The rest of the paper is organized as follows. In Section 2 we describe the setting and the
main assumptions, and in Section 3 we state the main results, discuss them and provide the main
elements of the proof, which is deferred to the supplementary material. In Section 4 we present
some experimental results on real and synthetic datasets.

Notation We denote by Ry = [0, +oo[, Ryt =]0,400[, and N* = N~ {0}. Given a normed space
B and linear operators (A;)i<i<m, Ai: B — B for every i, their composition A4,, o --- o A; will be
denoted as [[", A;. By convention, if j > m, we set [\ ; Ai = I, where [ is the identity of B. The
operator norm will be denoted by || - || and the Hilbert-Schmidt norm by || - || zs. Also, if j > m, we



set Y ;" A; = 0.

2 Setting and Assumptions

We first describe the setting we consider and then introduce and discuss the main assumptions
that will hold throughout the paper. We essentially follow the framework proposed in [12, 25]
and further developed in a series of follow up works [7, 2, 26, 8]. Unlike these papers where a
reproducing kernel Hilbert space (RKHS) setting is considered (see Section A), here we develop an
equivalent formulation within an abstract Hilbert space. This latter formulation is close to the setting
of functional regression [23] and reduces to standard linear regression if # is finite dimensional, see
Section A.

Let ‘H be a separable Hilbert space with inner product and norm denoted by (-,-)y and ||-||5. Let
(X,Y) be a pair of random variables on a probability space (2, S,P), with values in # and R,
respectively. Denote by p the distribution of (X, Y), by py the marginal measure on H, and by p(-|x)
the conditional measure on R given = € H. Considering the square loss function, the problem under
study is the minimizazion of the risk,

inf E(w), E(w)= / ((w, )y — y)de(:U,y) , D
weH HxR
provided the distribution p is fixed but known only through a training set z = {(z1,y1),- -, (Zn,yn)},

that is a realization of n € N* independent identical copies of (X,Y). In the following, we measure
the quality of an approximate solution w € H (an estimator) controlling the excess risk

5 —inf e
E(w) ind &
If the set of solutions of Problem (1) is non empty, that is O = argmin,, £ # &, we also consider

Hw—wTH , where w! = argmin |Jw||y. 2)
weO

H
More precisely we are interested in deriving almost sure convergence results and finite sample
bounds on the above error measures. This requires making some assumptions that we discuss next.
We make throughout the following basic assumption.

Assumption 1 There exist M € ]0,+oo] and x € |0, 4o0o[ such that |[y| < M p-almost surely, and
|||, < K py-almost surely.

The above assumption is fairly standard. The boundness assumption on the output is satisfied in
classification, see Section A, and can be easily relaxed, see e.g. [7]. The boundness assumption on
the input can also be relaxed, but the resulting analysis is more involved. We omit these develop-
ments for the sake of clarity. It is well known that (see e.g. [13]), under Assumption 1, the risk
is a convex and continuous functional on L?(H, py), the space of square-integrable functions with
norm || f ”;2) = [o;xg |f()[2dpy(x). The minimizer of the risk on L*(H, py) is the regression function
fo(x) = [ydp(y|z) for py-almost every = € H. By considering Problem (1) we are restricting the
search for a solution to linear functions. Note that, since H is in general infinite dimensional, the
minimum in (1) might not be achieved. Indeed, bounds on the above error measures depend on
if, and how well, the regression function can be linearly approximated. The following assumption
quantifies in a precise way such a requirement.



Assumption 2 Consider the space £, = {f : H - R | 3w € H with f = (w,-) py-a. s.}, and let
L, be its closure in L?(H, py). Moreover, consider the operator

L:L*(H,pu) = L*(H,pn), Lf(x)= / (w,2') f(2')dp(a'), Vf e L*(H,pn). 3)
Define g, = argmin - 1fo = gll - Ley r € [0, +00[, and assume that

(3g € L*(H,p3)) suchthat g,=L"g. 4

The above assumption is standard [28]. Since its statement is somewhat technical, and we provide
a more general formulation in a Hilbert space with respect to the usual RKHS setting, we further
comment on its interpretation. We begin noting that £, is the space of linear functions indexed
by H and is a proper subspace of L?(H, p3), if Assumption 1 holds. Moreover, under the same
assumption, it is easy to see that the operator L is linear, self-adjoint, positive definite and trace
class, hence compact, so that its fractional power in (3) is well defined. It can be shown fairly easily
that the space £, can be characterized in terms of the operator L, namely

L, =LY (L*(H, pn)) - (5)

This last observation allows to provide an interpretation of Condition (4). Indeed, given (5), for
r = 1/2, Condition (4) states that g, belongs to £, rather than its closure. In this case, Problem 1
has at least one solution, and the set O in (2) is not empty. Vice versa, if O # @ then g, € £,, and wh
is well-defined. If » > 1/2 the condition is stronger than for » = 1/2, since the images of L?(#, py)
with respect to L" are nested subspaces for increasing r'.

2.1 TIterative Incremental Regularized Learning

The learning algorithm we consider is defined by the following iteration.

Let wy € H and v € R;,. Consider the sequence (w;);cn generated through the following
procedure: given ¢ € N and w; € H, define

Wiy = Uy, (6)

a7t ey —yi)w, i=1,...,n. (7)

Each cycle, called an epoch, corresponds to one pass over data. The above iteration can be seen as
the incremental gradient method [3, 17] for the minimization of the empirical risk corresponding to
z, that is the functional

N 1 —

E(w) =~ Z((wwﬁ% —yi)*. 8)

n -
1=1

LIf r < 1/2 then the regression function does not have a best linear approximation since g, ¢ L£,, and in particular,
for r = 0 we are not making any assumption. Intuitively, for 0 < r < 1/2, the condition quantifies how far g, is from L,,
that is to be well approximated by a linear function.



(see also Section B.2).Indeed, there is a vast literature on how the iterations (6), (7) can be used to
minimize the empirical risk [3, 17]. Unlike these studies in this paper we are interested in how the
iterations (6), (7) can be used to approximately minimize the risk £. The key idea is that while i,
is close to a minimizer of the empirical risk when ¢ is sufficiently large, a good approximate solution
of Problem (1) can be found by terminating the iterations earlier (early stopping). The analysis in
the next few sections grounds theoretically this latter intuition.

3 Early stopping for incremental iterative regularization

In this section we present and discuss the main results of the paper, together with a sketch of the
proof. The complete proofs can be found in Appendix B. We first present convergence results and
then finite sample bounds for the norm and the excess risk.

Theorem 3.1 In the setting of Section 2, let Assumption 1 hold. Let v € |0,x~!]. Then the following
hold:

(i) If we choose a stopping rule t*: N* — N* such that

* 3
lim t*(n) =400 and lim t(n)"logn =0 )
n—+o0o n—+oo n
then
lim (W (p)) — inf E(w) =0 P-almost surely. (10)

n—+00 weH

(ii) Suppose additionally that the set O of minimizers of (1) is nonempty and let w' be defined as in
(2). If we choose a stopping rule t*: N* — N* satisfying the conditions in (9) then

[+ () — w' ||l — 0 P-almost surely. (11

The above result shows that for an a priori fixed step-sized, consistency is achieved computing
a suitable number ¢*(n) of iterations of algorithm (6)-(7) given n points. The number of required
iterations tends to infinity as the number of available training points increases. Condition (9) can
be interpreted as an early stopping rule, since it requires the number of epochs not to grow too fast.
In particular, this excludes the choice t*(n) = 1 for all n € N*, namely considering only one pass
over the data. Given the currently known results,the failure of a single pass does not appear to be
surprising, considering the stepsize is fixed (not depending on n) and we are not averaging. In the
following remark we make clear that, if we let the step size to depend on the length of one epoch,
convergence is recovered also for one pass.

Remark 3.2 (Recovering Stochastic Gradient descent) Note that if in Theorem 3.1 we let v to
depend on n, than we can choose t*(n) = 1. Indeed, choosing v(n) = k= 'n%, with a < 1/4,
which coresponds to a stochastic gradient method with step-size x~'n®~!, we can derive almost
sure convergence of £(w;) — infy € as n — +oo relying on the same proof.

To derive finite sample bounds we need to impose additional conditions. We will see that the
behavior of the bias of the estimator depends on the smoothness assumption (4). We are in position
to state our main result, giving a finite sample bound.



Theorem 3.3 (Finite sample bounds in %) In the setting of Section 2, let v € |0,x™!] for every
t € N. Suppose that Assumption (2) is satisfied for some r € |1/2,+oc[. Then the set O of minimizers
of (1) is nonempty, and w' in (2) is well defined. Moreover; the following hold:

(i) There exists ¢ € |0, +oo[ such that, for every t € N*, with probability greater than 1 — 6,

R 32log(16/6 _ _ —
by — wlpy < ig/(ﬁ/)(M/@ V2 L oMkt 43 gl s 3/2) t (12)
r—1/2\" /2
() e a
~y
(ii) For the stopping rule t* : N* — N* defined by t*(n) = [n?rlﬁk with probability greater than
1-4,
. i 16 ~1/2 2 1 r—3/2
ey — 'l < (32108 (= ) (M2 + 200%67" + 3llgl|pm
N I s a9

Note that the dependence on x suggests that a big x, which corresponds to a small ~, helps in
decreasing the sample error, but increases the approximation error. Next we present the result for
the excess risk. We consider only the attainable case, that is the case » > 1/2 in Assumption 2. The
case r < 1/2 is deferred to Appendix A, since both the proof and the statement are conceptually
similar to the attainable case.

Theorem 3.4 (Finite sample bounds for the risk — attainable case) In the setting of Section 2, let
Assumptions 1 holds, and let v € 0, x™!]. Let Assumption 2 be satisfied for some r € ]1/2, +oc]. Then
the following hold:

(i) For every t € N*, with probability greater than 1 — ¢,

2(3210g(16/6))

r
vt

E(ty) —inf & <
H

9 2r
[M+2M%—1/2+3M\|g\|p] t2+2< ) lgll2  (15)

1
(i) For the stopping rule t*: N* — N* t*(n) = [n20+7 |, with probability greater than 1 — ,

16\ S 2
Dos s < Y —1/2 r
E (W () 1%f5 < [8 (3210g 5 ) <M+2M K + 3K Hng)

2r
,
+2(”) ug|i] /40 16

Equations (12) and (15) arise from a form of bias-variance (sample-approximation) decompo-
sition of the error. Choosing the number of epochs that optimize the bounds in (12) and (15) we
derive a priori stopping rules and corresponding bounds (14) and (16). Again, these results confirm
that the number of epochs acts as a regularization parameter and the best choices following from
equations (12) and (15) suggest multiple passes over the data to be beneficial. In both cases, the
stopping rule depends on the smoothness parameter » which is typically unknown, and hold-out
cross validation is often used in practice. Following [8], it is possible to show that this procedure
allows to adaptively achieve the same convergence rate as in (16).
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3.1 Discussion

We discuss a few comments and comparisons. In Theorem 3.3, the obtained bound can be compared
to known lower bounds, as well as to previous results for least squares algorithms obtained under
Assumption 2. Minimax lower bounds and individual lower bounds [7, 29], suggest that, for r >
1/2, O(n("=1/2)/(2r+1)) is the optimal capacity-independent bound for the 7 norm?. In this sense,
Theorem 3.3 provides sharp bounds on the iterates. Bounds can be improved only under stronger
assumptions, e.g. on the covering numbers or on the eigenvalues of L [28]. This question is left for
future work. The lower bounds for the excess risk [7, 29] are of the form O(n~2"/(2"*1)) and in this
case the results in Theorems A.1 and 3.4 are not sharp, and in principle could be improved. Our
results can be contrasted with online learning algorithms mentioned in the introduction that use
step-size as regularization parameter. Optimal capacity independent bounds are obtained in [33],
see also [30] and indeed such results can be further improved considering capacity assumptions, see
[1] and references therein.

Interestingly, our results can also be contrasted with non incremental iterative regularization ap-
proaches [6, 32, 2, 4, 8, 24]. Our current results show that incremental iterative regularization,
with distribution independent step-size, behaves as a full gradient descent,at least in terms of iter-
ates convergence. We believe that proving additional advantages of incremental regularization over
the batch one is an interesting future research direction. Finally, we note that optimal capacity inde-
pendent and dependent bounds are known for several least squares algorithms including Tikhonov
regularization see e.g. [29] and references therein, as well as for a larger class of so called spectral
filtering methods [2, 8]. These algorithms can be seen to be essentially equivalent from a statistical
perspective but different from a computational point of view.

3.2 Elements of the proof

The proofs of the main results are based on a decomposition of the error to be estimated in two
terms. The idea is to build an auxiliary sequence and to majorize the error with the sum of two
quantities that can be interpreted as a sample and an approximation error, respectively. Bounds
on these two terms are then provided. The main technical contribution of the paper is the sample
error bound. The difficulty in proving this result is due to the fact that multiple passes over the data
induce complex statistical dependences in the iterates.

Error decomposition. We consider an auxiliary iteration (w;);cny which is the expectation of the
iterations (6) and (7), starting from wg € ‘H with step-size v € R, ;. More explicitly, given w; € H,
the considered iteration generates w1 according to

W41 = U?, (17)
where u} is given by
u = wy; up = uit — 7/ ((uj™ @)y — y) wdp(x,y) . (18)
N JHxR

%In a recent manuscript, it has been proved that these are indeed minimax lower bounds (G. Blanchard, personal
communication)



If we let S: H — L?(H, py) be the linear map w + (w,-)%, which is bounded by /s under
Assumption (1) holds, then it is well-known that

(VtEN) E(in) —inf € =[Sty — gpll, < 2|1Sty — Swrll, + 2| Swr — g, |,
< 26| — wel|3; + 2(E(wy) — inf £). (19)

In this paper, we refer to the gap between the empirical and the expected iterates |w; — wy||3 as
the sample error, and to A(t,~,n) = £(w;) — infy, £ as the approximation error. Similarly, if w' (as
defined in (2)) exists, using the triangle inequality, we obtain

[y — whla < [y — wella + [Jwe — wh|. (20)

Proof main steps. In the setting of Section 2, we summarize the key steps to derive a general
bound for the sample error. Indeed, this is the main technical contribution of the paper. The proof of
the behavior of the approximation error is more standard. The bound on the sample error is derived
through many technical lemmas and uses concentration inequalities applied to martingales. Its
complete derivation is reported in Section B.2. We underline that the crucial point is the probabilistic
inequality in STEP 5 below. We need to introduce the additional linear operators: T: H — H: T =
5*S, (Vo € X) Sp: M — R: Syw = (w,z), and Tp: H — H: T, = S,5% Moreover, set T =
S, Ty, /n. We are now ready to state the main steps of the proof of the main results.

Sample error bound (STEP 1 to 5)

STEP 1 (see Proposition B.6): Find equivalent formulations for the sequences w; and wy:

. . 1<, S
Wi = (I — 1)y + ’Y(n E ijyj> + ’YQ <Awt - b)
Jj=1

wip1 = (I —yT)wy +vS%g, + Y2 (Awg — b),

with
1 n [ n ~ k—1 1 n [ n ~ k—1
A== (1-11) | 1 YTy, b= =N || (I—ﬁTzi) Ton > S5;.
k=2 Li=k+1 j=1 k=2 Li=k+1 j=1
1 n [ n ~ k—1 1 n [ n ~ k—1
— _ *
A== ‘H (I—5T> TZT, b=— ’H <I—aT) TZSgp.
k=2 Li=k+1 j=1 k=2 Li=k+1 j=1

STEP 2 (see Lemma B.7): Use the formulation obtained in STEP 1 to derive the following recursive

inequality
t—1

A ~\ T ~ N\ t—k+1
= wp = (1= 7T +724) (o~ wo) +7 > (I-+T+74) (21)
k=0
with
. . 1 <X . .
G = (7= T+ 34 = A+ (13 8- 875, ) +2(0-) (22)

i=1
STEP 3 (see Lemmas B.8 and B.9): Initialize @y = wy = 0, prove that ||[I — 4T + vA| < 1 and
derive from STEP 2 that

t—1 n
) : . 1 o ;
i = willae < 5 (IT = T+ 1A = A S gl + ¢ (|| D2 85,01 = 8%, + 16— Bl
k=0 i=1



STEP 4 (see Lemma B.10): Let Assumption 2 hold for some r € R, and g € L?(H, py). Prove that

(VteM) [lwlln < max{x" 2, ()12 "} |gll, if r €[0,1/2]
o /ﬁ:rfl/ZHQHp if r € [1/2,+00]

STEP 5 (see Lemma B.11 and Proposition B.12: Prove that with probability greater than 1 — ¢ the
following inequalities hold:

32K2 4 32k M2 4

A—Allgs < ==log - b—blly < log -
| IIHs_3\/ﬁ g 5 b= bl[» < N,
1< 16k . 2 1< 16/kM . 2
L N [>T R
Hn; ' HS_?)\/ﬁOgé niz;swly Sng_ 3vn &5

STEP 6 (approximation error bound, see Theorem B.14): Prove that, if Assumption 2 holds
for some r € |0, 400, then

2r
. r 2
) e < () ol

Moreover, if Assumption 2 holds with » = 1/2, then ||w; — w'|% — 0, and if Assumption 2 holds for

some r € |1/2, +oc[, then
_ 1/2 r—1/2
il < (T
e =o'l < (“52) il
STEP 7: Plug the sample and approximation error bounds obtained in STEP 1-5 and STEP 6 in (19)
and (20), respectively.

4 Experiments

Synthetic data. We consider a linear regression problem with random design in R? x R. The
input points (x;)1<;<y are uniformly distributed in [0, 1] and the output points are obtained as y; =
(w*, ®(z;)) + N;, where N; is a gaussian noise with zero mean and standard deviation 1 and ¢ =
(¢r)1<k<d is a dictionary of trigonometric functions whose k-th element is y(x) = cos((k — 1)x) +
sin((k — 1)z). In Figure 1, we plot the test error for d = 5 (with n = 80 in (a) and 800 in (b)).
The plots show that the number of the epochs acts as a regularization parameter, and that early
stopping is beneficial to achieve a better test error. Moreover, according to our theoretical findings,
the experimental results suggest that the number of performed epochs should increase if the number
of available training points increases.

Real data. We tested the kernelized version of our algorithm (see Appendix A) on the cpuSmall?®,
Adult and Breast Cancer Wisconsin (Diagnostic)? real-world datasets. We considered a subset
of Adult, with n = 1600. The results are shown in Figure 2. A comparison of the test errors
obtained with the kernelized version of the method proposed in this paper (Kernel Incremental
Iterative Regularization (KIIR)), Kernel Iterative Regularization (KIR), that is the kernelized version
of gradient descent, and Kernel Ridge Regression (KRR) is reported in Table 1. The results show that

e R ORBReS FEsoAt aciieve @ testarror somparable to that of KIR, and KRR.

“Adult and Breast Cancer Wisconsin (Diagnostic), UCI repository, 2013.
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Figure 1: Evolution of the test error with the number of iterations. In (a), n = 80, and total number
of iterations of IIR is 8000, corresponding to 100 epochs. In (b), n = 800 and the total number of
epochs is 400. The best test error is obtained for 9 epochs in (a) and for 31 epochs in (b).
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Figure 2: Training (orange) and validation (blue) classification errors obtained by KIIR on the
Breast Cancer dataset as a function of the number of iterations over the training points. As can
be seen by visual inspection, the test error increases after a certain number of iterations, while the
training error is approximately decreasing with the number of iterations.

Table 1: Test error comparison on real datasets. Median values over 5 trials.

Dataset Ny d Error Measure KIIR KRR KIR
cpuSmall 5243 12 RMSE 5.9125 || 3.6841 | 5.4665
Adult 1600 123 Class. Err. 0.167 0.164 | 0.154
Breast Cancer 400 30 Class. Err. 0.0118 || 0.0118 | 0.0237
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A Some Special Cases of Interest

Finally, before proving our main results, we illustrate and discuss a few special instances of the
considered setting and related quantities.

Linear and Functional Regression In classical linear regression, data are described by the follow-
ing model

T .
Yi=w,Ti+0;, t1=1....n
where §;, i = 1,...,n, are i.i.d. sample from a normal distribution and w,, z1, ..., z, € R? d € N*.
In fixed design regression, the inputs 1, ..., z, are assumed to be fixed, while in random design

regression they are random sample according to some fixed unknown distribution [28]. It is easy
to see that this latter setting is a special case of the framework in the paper (indeed the analysis in
the paper can be also adapted with minor modifications to the fixed design setting). The regression
model can be further complicated assuming the function of interest to be non linear (while we
might still restrict the search of a solution to linear estimators). This can be dealt with for example
considering kernel methods as we discuss below. Another special case of the setting in the paper is
that of functional regression, where the input points are assumed to be infinite dimensional objects,
for example curves, and they are formally described as functions in a Hilbert space. Clearly also this
example is subsumed as a special case of our setting.

Learning with Kernels The setting in the paper reduces to nonparametric learning in RKHS as a
special case. Let = xR be a probability space with distribution p, that be can seen as the input/output
space. The goal is then to minimize the risk, that, considering the square loss function, is given by

E(f) = / (v — 1()2du(€, ) 23)

and is well defined for all measurable functions. A common way to build an estimator is to consider
a symmetric kernel K : = x Z — R which is positive definite, that is for which the matrix with
entries K(&;,&;), 4,j = 1...n, is positive semidefinite for all in &1, ..., &, € E, n € N*. Such a kernel
defines a unique Hilbert space of function %, with inner product (-, -) - and such that for all { € Z,
K¢(-) = K(&, ) € Hi and the following reproducing property holds for all f € Hg, f(§) = (f, K¢) -
To see how this setting is subsumed by the one in the paper, it is useful to introduce the (feature)
map ¢ : = — Hg, where (§) = K¢, for { € Z and further consider P : = xR — Hi x R, where
D(&,y) = (Ke,y), for € € Z and y € R. Assuming the kernel to be measurable, we can view ® as
a random variable. If we denote its distribution on Hx x R by yg, then we can then let H = Hg
and p = pg. It is known that the functions in a RKHS a measurable provided that the kernel is
measurable [28], hence if we consider the risk of a function f € Hx we have

[ (v — £(6)%dule,y) = / (v — (f, Ke) ) 2dulE,y) = / (v — {f. ) 2dp(z. ),
=xR xR

HXR

where we made the change of variables (K¢, y) = (z,y). As is well known in machine learning, we
can view learning a function using a kernel as learning a linear function in suitable Hilbert space.
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Integral and Covariance Operators. The operator L can be seen as an integral operator associated
to a linear kernel and is closely related to the covariance operator, or rather the second moment
operator defined by p. This connections allows to interpret Assumption 2 in terms of the principal
components.

To see this note that, under Assumption 1 it is easy to see that S is bounded, and its adjoint is
given by

S*: L*(H,pn) = H, S*w= /:L'f(l’)dpq.[(l‘), Vf e L2, pu).

Then a straightforward calculation shows that L = SS*. Moreover we can define T': L?(H, py) — H
as T'= 5*S and check that

Tw:/:1c(XJ:Ed,Oq.[(a:)7 Yw € H,

where z ® x = (z,-) z, for all z € H. The operator T is the second moment operator associated to
p and its eigenfunctions are the principal components. Under Assumption 1, the operators T, L are
linear, positive, sef-adjoint and trace class, S, S* are bounded and Hilbert Schmidt, hence compact.
The operators 7', L have the same non zero eigenvalues (o;); which are the square of the singular
values of S. If we denote by (v;); the eigenfunctions of 7', the eigenfunctions of L can be chosen to
be (u;); with uj(z) = o (v}, z),, py-almost surely. This latter observation allows an interpretation
of Condition (4). By considering higher fractional power we are essentially assuming that the re-
gression function can be linearly approximated and its approximation can be effectively represented

considering the principal components associated to large eigenvalues.

Binary Classification The results in the paper can be directly applied to binary classification. In-
deed, in this setting the outputs are binary valued i.e. {—1,1} and the goal is to learn a classifier
c¢:H — {—1, 1} with small misclassification risk

R(c) =P(c(X)#Y). (24)

The above risk is minimized by the so called Bayes decision rule defined by b,(x) = sign(2p(1|z) —1),
pu- almost surely, and where for a € R, sign(a) = 1, if @ > 1 and sign(a) = —1 otherwise. A
relaxation approach is usually considered to learn a classification rule, which is based on replacing
the risk R with convex error functional defined over real valued functions, e.g. considering (23). A
classification rule is then obtained by taking the sign.

So called comparison results quantify the cost of the relaxation. In particular, it is known that the
following inequality related R and £ defined in (24), (23) respectively,

R(sign(f)) — R(by) <\/E(f) = E(f,)

for all measurable functions f. The latter inequality allows to derive excess misclassification risk and
can be improved under additional assumption. We refer to [32], for further details in this direction.

B Proofs

In this appendix we prove the main results. The proof is quite long, and will be given relying on a
series of lemmas.
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B.1 Preliminary Results

We collect very general results that will be applied to our setting.

Let B be a normed space. For every r € N, let A,.: B — B be a linear operator, let (B,),cy be a
sequence in B, and define the sequence (X, ),cn in B recursively as

Xr+1 = A’V‘X'I‘ + B'I“ (25)

We repeatedly use the following well-known equality, which is valid for every » € N* and for every

integer s < r,
r—1 r—1 r—1
X, = <HA1-> XS+Z< II A1-> By (26)

k=s \i=k+1

We next state an auxiliary lemma, establishing the minimizing property of the gradient descent
iteration also when the infimum is not attained. Despite the result is a basic property of a very clas-
sical algorithm, we were not able to find the proof of this fact. Convergence properties of gradient
descent are usually studied in two settings: for differentiable functions (not necessarily convex) and
for convex functions. In the first case, the typical results do not assume existence of a minimizer
and establish convergence to zero of the gradient of the function [22]. In the convex setting, the
minimizing property is established assuming the existence of a minimizer [22].

Lemma B.1 Let H be a Hilbert space, and F': H — R be a convex and differentiable function with
B-Lipschitz continuous gradient. Let vy € H, let (n)ren be such that, for every k € N, n;, € ]10,2/5] and
define, for every k € N, vy = vy — N VE (vg). Then

[l — ol
NMueH) F(u)— Flu) < —F— 27)
’ 22?:0 nj

In particular, if Y .y Mk = +00, F(vy,) — inf F.
Proof. Since F' is convex and differentiable,
(VEeN)VYu e H) F(u)— F(vg) > (VF(vg),u — vg)n
= nk_l(vk — Ukt 1, U — VK- (28)
Therefore,
(VE e N) 2np(F(u) — F(vk) > —2(Vk+1 — Uk, U — V) n
= [lu — vl = lowsr — ol3; = llu — vell3

= MRIIVE (i) 13, + 1w = vk 3, = llu — i3, (29)

Let t € N and define o, = EZ:O N, Summing (29) for k = 0, ...,t we obtain

t t
200 F(u) =2 mkF(vr) > Y nil V(o) [l + llw — vega |3 — [lu — vol 3 (30)
k=0 k=0

Using the Lipschitz continuity of the gradient of F' (see [22, Equation (15) p.6]),

(Vk e N)  F(vg) — F(vps1) > mp <1 - n’f) IV F(u)]I3
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Therefore,

(€N OLF(0) = ok F(onsr) + eaFonin) = o (1= %57 ) IVFI, G
Summing (31) for k =0,...,t — 1 we get, for every t € N
t—1 3
— UtF 'Ut -+ anF vk > denk (1 — k) HVF(Uk H (32)
k=0 k=0
Adding (32) to (30) we get, for every u € H
t t—1 n 5
204(F (u Z RV E () e+ llu=vesn 1= lu—voll3+2 D ow (1 - k) IV F (vx )13
-0 k=0
and hence,
lu — wvoll3,
(Vu € H) F(v) = F(u) < ————*.
20'75
0

We next recall a probabilistic inequality for martingales [21, Theorem 3.4] (see also [30, Lemma
A.1 and Corollaries A.2 and A.3]).

Theorem B.2 Let (&;, Fi)1<i<n be an adapted family of random vectors taking values in a Hilbert space

with norm || - ||, such that E[§;|Fi—1] = 0 a.s. Assume that there exist M € R, such that [|&]| < M.
Then, for every 6 €0, 1] the following holds

({ Z@

_S\Flog }) >1-46.

B.2 Proof of STEP 1

Here we first introduce a recursive expression which is satisfied by the sequence ()¢, that allows
to interpret the incremental gradient iteration as a gradient descent iteration with errors. To do so,
we start by introducing some further notation and then show that the iteration presented in (6)-(7)
results from the application of the incremental gradient method to the empirical risk.

Let x € H and define S,: H — R, by setting S,w = (w, x)3. Then S, is a bounded linear operator
and ||Sz|| < ||z|l». Using this linear operator, and the operator S introduced in Assumption 2,
Problems (1) and (8) can be expressed as convex quadratic minimization problems. The empirical

risk can be written as
n

E(w) = % S (Sarw — 10)?, (33)

=1

and recalling Assumption 2 and (19), we have
gw)= [ (Sulx) - y)Pdp(e,y) = [Sw - g2 +infe. (34)
HXR H
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Define the operators
T-H—H: T=S5"S, and (VzxeX) Tpy:H—H: T, =5,5,. (35)
Then, computing the gradients of £ and £ respectively, (6)-(7) can be rewritten as
@) = iy aﬁ:ag—l—%(z’m” L_Sty), i=1,....n (36)
and (17)-(18) can be expressed as

W =wiup=ujt - (T - 57,). (37)

It is apparent from (36) that the considered iteration is derived from the application of the incre-
mental gradient algorithm to the empirical error (see [3, 17]). At the same time (37) shows that
iteration (17)-(18) can be seen as the result of applying the incremental gradient descent algorithm
to the expected loss, which clearly, for fixed n, can be written as

1 n
w n;é’(w)

Lemma B.3 Let t € N, and let w; be defined as in (17)-(18), with wy = 0. Let n = /n. Then

nt—1

wg =1 Z (I— T]T)nt_j_ls*gp. (38)
=0

Proof. Let, for every k € N,
Vg1 = (I —nT)vg +nS7gp.
Then, by (37), w: = vy, and (38) follows. O

In other words, the statement of Lemma B.3 states that the ¢-th epoch of the incremental gradient
descent iteration in (17)-(18). coincides with n steps of gradient descent with stepsize v/n.

Next, we relate the iteration (6)-(7) to the gradient descent iteration on the empirical error. These
will be used in the error analysis and provide some useful comparison between these two methods.
Hereafter, 7 is the operator (}.7 | Ty,)/n.

The following lemma provides an alternative expression for the composition of linear operators.

Lemma B.4 Let n € N*, let (T;)1<i<n be a family of linear operators from H to H, and let (w;)1<i<n C

H"™. Then -
H(I T)=1I- ZT +Z< H ﬂ))TkZTj (39)
j=1

= = i=k+1

and
n n

S (IT 70w sz S (I (I—Ti))Tijjwj (40)

=1 k=i+1 k=2 i=k+1
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Proof. By induction. Equality (39) is trivially satisfied for n = 1. Suppose now that n > 2, and that
(39) holds for n — 1. Then

n

n—1
[[a-m)=a-1)[[-T0)
=1

=1
n—1 n—1 n—1 k—1
:(I—Tn)(I—ZTj+ ( >TkZTJ>
k=2 j=1

j=1 i= k+1
n—1 n—1 n k—1
—I— ZT T, ZT+ ( IT u >TkZT]
= i=k+1 j=1
=1- ZT +Z< H - T) TkZTja
= i=k+1 j=1

and the validty of (39) for every n € N* follows by induction.

Equality (40) is trivially satisfied for n = 1. Suppose now that n > 2 and that (39) holds for n — 1.
Then

n n n—1 n
ST t=m0)w=>( IT (= T0)wi+w,
=1 k=i+l1 =1 k=i+1
n—1 n—1 n—1 k—1
= =T (Y wi =3 ((TI 0 -1)1 > wy) +wn
=1 k=2 i=k+1 j=1
n n—1 n—1 n k—1
Su S-S (-m)nYw,
i=1 j=1 k=2 i=k+1 j=1
n n n k—1
= wi = (] 0-1)n Y w.
=1 k=2 i=k+1 j=1

and the conclusion follows. U The following lemma establishes an equivalent expression for the
iterates (6)-(7).

Lemma B.5 Let t € N. Then,

g1 = ﬁ([ L1, )wt+72 H (1-211,) S (41)

i=1 =1 k=i+1

Proof. For every i € {1,...,n}, the update of 9! in (7) can be equivalently written as in (36), and is
of the form (25), with A, =1 — (y/n)T%,.,, and B, = (v/n)S;, . yr+1, for every r € {0,...,n — 1},
and X, = ;. Equation (41) follows by writing (26) for r =n — 1. 0

Proposition B.6 For every t € N, the iteration (6)-(7) can be written as

. A 1 . P
ey = (I —~T )iy + 7<n > ijyj> +9° (Awt - b) : (42)
j=1
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with

. k-1 . 1 k-1 )
A=— Z H (I— *Txl) v D Tayy b= n—z I1 (I— %Tx) Toe D S50 43)
k=2i=k+1 j=1 k=2 i=k+1 J=1

The iteration (17)-(18) applied to £ can be expressed as
w1 = (I —yT)wy +vS*g, + v (Aw, — b). (44)

with

1 n n
A== [H (1- 1) TZT b= QZ [ [T (1-17)

k=2 Li=k+1 k=2 Li=k+1
Proof. Equations (42) and (43) follow from Lemma B.4 and Lemma B.5 applied with (Vi €
{1,...,n}) T; = (y/n)T,,. Equations (44) and (45) follow from Lemma B.4 and Lemma B.5 ap-
plied with (Vi € {1,...,n}) T; = (y/n)T. O

k—1
T S*gp. (45)
j=1

Note that, although not explicitly specified, the operator A and the element b € A in Proposi-
tion B.6 depend on n. Equation (42) allows to compare the update resulting from one epoch of the
iteration (6)-(7) with the one of a standard gradient descent on the empirical error with stepsize -,
which is given by

A 7 o YR o
Brig = (1 - Z;Tx) Ot z;sxjyj (46)
J= J=

for an arbitrary oy € H. As can be seen comparing (42) and (46), In particular, the incremental
gradient descent can be interpreted as a perturbed gradient descent step, with perturbation

& =2 (Awt - B) .

B.3 Proof of STEP 2

The following recursive expression is key to get sample bounds estimates, and is at the basis of
Lemma B.9.

Lemma B.7 In the setting of Section 2, let t € N and let W and w; be defined as in (6)-(7) and w; be
defined as (17)-(18), respectively. Define A and b as in (43), and A and b as in (45). Then

. Y t—k+1
Dy — wy = (1_7T+72A) (160 — wo) +VZ(I 7T+7A) Ce (47)
with
. . 1 < . .
G = (T —T)wyg +v(A — A)wy + <n Z Sy.Yi — S*gp> +v(b—b). (48)
i=1

Proof. We have

UAJH_I = (I — ’)/T + ’}/QA)UA}t + % Z A;lyl — ’728 (49)



Adding and subtracting (—~7" + v2A)w; it follows from (44) that
Tf}t+1 — Wit1 = ([ — ")/T + ’}’214)(@15 - wt) + ")/(T — T)’U}t + ")/2<A — A)wt

~

+ 7(% Z; Sty — S*gp) +9°(b—b)

Relying on equation (25) we get (53). U

B.4 Proof of STEP 3

Next we provide a lemma to bound the norm of the operator appearing in (53), and acting on the
random variable (;, in (54).

Lemma B.8 In the setting of Section 2, let v €]0,nx~!]. Then

I =T +7°A < 1. (50)
Proof. It follows from Lemma B.4, equation (39) applied with 7; = T}, and the definition of Ay, in
(43) that

n
1—7T+72A:H<1—1T%>. (51)
i=1 "
Since ||T%,|| <  and by assumption v/n < k=1, ||[I — (v/n)T%,| < 1 and the statement follows. [
We next provide a first inequality for the sample error.

Lemma B.9 Let ¢ € N arEd let w; and w; be defined as in (6)-(7) and w; be defined as (17)-(18),
respectively. Define A and b as in (43), and A and b as in (45). Then

t—1

A 7 A 1 . Gk * 7
e — e < Y (1T = T+ 1A= A1) S ol + 92 ()30 S0~ 5%, + 416 - b)) 52
k=0 =1

B

Proof. By Lemma B.7 we derive that

Ck (53)

t—1
R . 5 i\t . N\ t—k+1
Wy — wy = (I—WT—i—y A) (wo—wo)+*yZ(I—’yT+7A>
k=0
with

. . 1 & - . .
G = (7= T + (A= Ay + (& > 8- )+ (54)

Since wop = wg, we have

t—1
e — willn <73 =AF + AP (55)
k=0

By Lemma B.8, for every j € N, ||I — 4T +~2A| < 1, and therefore

t—1 n
) . . 1 s, .
I = wilae < (T = Tl + 1A = A S el + (2] D7 Sa = 579, | + 22110 — bl )
k=0 i=1
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B.5 Proof of STEP 4

Here, we provide a bound for ||w||%. The proof technique is similar to that of known results in
inverse problems [14], although the bound obtained in (56) is novel.

Lemma B.10 In the setting of Section 2, let Assumption 1 hold, let n € N*, and let v € |0,nx™'[. Let
wo = 0, and let t € N. Then the following hold:

(i) Let Assumption 2 hold with r € [0,1/2]. Then

lwellz < max{x""", (v)/*"} ||gl], - (56)

(ii) Suppose that O is nonempty. Then there exist w' as in (2) and 8 € R, such that
[wisrlln < B.

(iii) Let Assumption 2 hold with r € ]1/2, +oo|. Then w' is well defined and

r—1/2

lwealle < &= gl - (57)

Proof. Let € € ]|0,x| and set n = /n. By Lemma B.3 and by the spectral theorem [14, equation

(2.43)1, we derive
nt—1 nt—1

Wiyl = Z S*n H (I—nL)g,. (58)
=0

i=j+1
(i): By (58)

nt—1

S Lm N (I —pL)™

el < 77‘ lall, (59)

77(1 . no_)nt—j-i-l

llgll,

= max{ sup ntno/>*7 sup o "1/? (1 —(1- na)m>} all,
c€[0,¢] o€le,k]

<¥(e)llgll,
where (Ve € R.) 9(¢) = max {61/2+’"nt77, e’“‘l/Q}. Since e is arbitrary,

el < inf 0ol (60)

Now note that e € |0, +o0] — ntne/2*" is strictly increasing, and has limit equal to zero at zero.
On the contrary, € € |0, +o0] — "~ /2 is strictly decreasing and lim,_,o+ €"~'/? = +00. Hence, there
exists a unique point € € |0, +oc| such that

r=1/2 if e €10,7€]
tpel/2Hr — gr=1/2 and _J€ ) 61
e ‘ v(e) ntne'/2Tif e € [€, +00] , (61
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therefore € is the unique minimizer of v. Solving for € in (61), we get € = (ntn)~'. We derive, again
from (61), that

min () = max{r" /2, (yt)"/>77}.
ec|0,k

Finally, (60) yields
1/2—r
Jwrallne < (2¢) " lgll, -

(ii): First note that, by Fermat’s rule, S*g, = Tw'. It follows form Lemma B.3 that

nt—1

j=0
= (I — nT)nth.

Let (01, him)men be an eigensystem of T'. Since w' € N(T)* (see [14, Proposition 2.3]), it follows

that w' =Y (W', hy) ki, Therefore,
2
e =B = 3 |1 = o)™ (! ) (62)
meN

Since, for every m € N, each summand is bounded by |(w', h,,)|?, and 3", o [{w', k) |?, the Domi-

nated Convergence Theorem yields

2

. _tn2 . . nt T _

Jim o= wfF = 37 lim|(1=no)™ (W, h)| = 0. (63)
meN

Hence, the sequence (||wq||#)ten is bounded.

(iii): Arguing as in the proof of (i), it follows from (58) and Assumption 2 that

_ ¢
wepilly < sup o™ /2 (1 — (1 =no)" )} lgll,
o€[0,k]

< w2 gl

B.6 Proof of STEP 5

The main novel probabilistic estimates are given in the following proposition. This is the more
involved part of the proof, where many tricks are needed in order to get a manageable expression.
The proof is based on writing the terms A — A and b — b as a sum of martingales and then apply
Theorem B.2 to derive concentration inequalities. We start with the following well-known lemma,
which is a direct consequence of Theorem B.2 (see also [12]).

Lemma B.11 In the Setting of Section 2, let Assumption 1 hold. For every § € ]0,1]
1 « 16k 2
P H* TJC.—TH < Mg >1-34, 6
<n; ' HS_3\/HOg5 - (64)
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and

(HZS* yi — S*ng 16\FM1 g5> >1-4. (65)

Proof. Equation 64 follows from Theorem B.2, since (Txi — T)i<i<n is a family of ii.d. ran-
dom operators taking values in the space of Hilbert-Schmidt operators satisfying ||7'||zs < x and
|T%,||ms < k (see also [12]). Equation 65 follows from Theorem B.2 applied to the i.i.d. random
vectors (S5 y; — S* fp)1<i<n in H whose norms are bounded by 2xM. 0

Proposition B.12 In the Setting of Section 2, let Assumption 1 hold, let v € }O, nk ! [, and let 6 €]0, 1.
Then

X 32% . 4
P(]|A—A < log— | >1-6 66
<|| HHS_3\/E 0g5>_ ; (66)
and
32k M? 4
b—blly < 1 >1-0. 67
P (1= o < 25 105 7) 2 (©7)
Proof. We first show a useful decomposition. Recall that
11 & = 11 e
j=2 " i=j+1 =1 J=2  i=j+1 =1
For every j € {2,...,n}, set
Bi=|]] 0-+T)|To;, Bi=|]] U-vD)|T
i=j+1 i=j+1
we have
A 1<n . (12 1. -1
A—A: E B] (n T:Ez) ZBjiT
j=2 =1 j=2
1 n_ 1 Jj—1
= B < (TIZ - T)) + QT , (68)
n - n
7j=2 =1
with .
Qu="(B;~ ). (69)

We next bound each term appearing in (68). By Lemma B.11, with probability greater than 1 — 4,

144 165 . 2
BN FORCER] S v L 70
On the other hand
B0< TT 7= 27 im < v (71

__7]_
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Note that } ", Bj (1 /n Z{;ll (T, — T)) is Hilbert-Schmidt, for T, and T" are Hilbert-Schmidt op-
erators, with ||T;,||gs < x and ||T'||gs < &, and the family of Hilbert-Schmidt operators is an ideal
with respect to the composition in L(#). Therefore, by (70) and (71),

7—1

8 R ) < 5

=1

holds with probability greater than 1 — 9, for any 6 € )0, 1. Next we write the quantity @,, appearing
in the second term in (68) as the sum of a martingale. For short, we set n = % and for all j €
{2,...,n} we denote

n n
H?: H (I_nTwi)v H?: H (I_UT)a
i=j 41 i=j+1

so that from the definition of Q,, in (69),

n

Qn=> (T, — ;7).

=2

We can derive a recursive update that determine a different expression for the quantity (),, as follows.
Letse{l,...,n—1}.

s+1

Qun = YT, —T1517)
j=2

S
= Ty, —T)+ Yy _(BHT, —157T)
j=2

S
= (Toyy —T) + Z((I = 1Ty U5 T; — (I = nT)IIGT)
j=2
S S
= (Tws+1 -+ - 77T9E5+1) (Hijj o H}?T) +n(T - TZSH) Z HjT
j=2 Jj=2

<

= (I - 77Tms+1)QS + (sz+1 - T) (I B ”ZH?T) ’
j=2

Applying equation (25), since ); = 0, we get

Qu=>_ 6 (73)
=1
where, ©; = 0 and, for every [ € {2,...,n},
n -1 -1
o= I] (I—%Tﬂ) (T, —T) I—%Z I1 (I—%T)T
i=l1+1 §=2i=j+1

Foreveryl=1,...,n
E[©;] =0,
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being 15,, ..., T, independent and E[(7,, — T')] = 0. Moreover the conditional expectation
E[©;|©141,...,0,] =0,

since T, is independent from Ty, ,,...,T,,. Therefore the sequence (©;);<;<, is a martingale
difference sequence. The operator O, is Hilbert-Schmidt, since it is the composition of a Hilbert-
Schmidt operator with a continuous one. Moreover, ||O;|| = 0. Next, since the operator 7" is compact
and self-adjoint and 0 < /n < 1/||T||, from the spectral mapping theorem, for every [ € {2,...,n}

/yl*l -1 -1 i1
HI—EZ I1 (I——T)TH_ Sup]‘l—jz;x(l—x) .

=2 i=j+1 €l

We have

-1 -1

0<y w(l—a) /=) ((1 —a) (1 x)"j) —1-(1-2)2%<1

Jj=2 Jj=2

Therefore
-1 -1

155 (AP

=2 i=j+1

Using the last inequality, we derive

ous = | IT (7 372 ) it 7] - z H (r-27)7|

<[ Tey = Tllas
< 2k.

Then, Theorem B.2 applied to (0;);<;<p, yields

1 165 | 2
156, < 2
with probability greater than 1 — §. Therefore, with probability greater than 1 — §
16k2 2
ot < 3

The statement thgn follows recalling the decomposition in (68), and summing (75) with (72). From
the definition of b and b in equations (42) and (45) respectively, we have

- :an;B Z 22;3 ngw (76)
j =1 j =1

and equation (67) follows reasoning as in the previous part of the proof. [

25



B.7 Sample error

The proof of the bound on the sample error easily follows from the above results.
Theorem B.13 (Sample error) Let Assumption 1 hold. Let n € N*, suppose that v € ]0,ns~t|, and

let wy = wy = 0. Let § € |0,1], and, for every t € N*, let w; and w; be defined as in (6)-(7) and
(17)-(18), respectively. Then the following hold:

(i) Let Assumption 2 hold, for some r € [0,1/2], and let t € N*. Then, with probability greater than

1-9
R log(16/6
([0 — welly < g?f\fn/) [(16V/EM + 326 M)t (77)
. 1-2r 2 . .
+(165 + 32K27)]|g|| , max {H 124, (3 —5 + - 27«t3/2 > 312 H '

(i) Let t € N*, and let Assumption 2 hold for some r € [1/2,+00]. Then, with probability greater
than1—§

log(16/4)

3vn
Proof. Substituting the bounds obtained in Lemma B.11 and Proposition B.12 with ¢/4 into (52),
and applying Lemma B.9, we obtain yield that with probability bigger than 1 — ¢

iy — wel|z < [16\/EM + 326 M2y + (16K + 326%7))| gupm—l/?} 1. (78)

) log(16/5 it
[y — we|lg < %(ﬁ/) (7(16/{ +326%7) S [l 3 + ’yt<16\/EM + 32/<;M27>> .
k=0

Statements (i) and (ii) directly follow from the bound on ||w]|| obtained in Lemma B.10. O

B.8 Proof of STEP 6 — approximation error

The proof of this result is similar to that of the approximation error bounds obtained in [32, 33],
and uses spectral techniques, which are classical in linear inverse problems [14].

Theorem B.14 (Approximation error) In the setting of Section 2, let Assumption 1 hold, let n € N,
let wy € M, let v € |0,ns™! [ and let (w)ien e defined as in (17)-(18). Then the following hold:

(i) The approximation error £(w;) — infy € — 0.
(ii) Suppose that O is nonempty. Then w' in (2) exists and |lw — wTHH — 0.

(iii) Let Assumption 2 hold for some r € |0, +oc[. Then

2r
. r 2
etw) g < () ol
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(iv) Let Assumption 2 hold for some r € |1/2, +oo|. Then w' in (2) is well-defined and

r—1/2\""2
e =l < (“2) il

Proof. (i): This is a direct consequence of Lemma B.1.

(ii): The proof is the same lines as that of Lemma B.10-(ii). See in particular (63).

(iii): It follows from Lemma B.3 that

nt—1

|1Sver1 — gpllp = H (( Z Ln([ _ nL)nt—j—H) 7 I>gp
=0

t
= sup o (1—n0)"|gll,-
a€[0, | L]

p

Note that, the last term is maximized at o = rn/(v(r + nt 4 1)), hence for every o € [0, +o0],
w(1-39)" = (eram) (- )”
n y(r + nt) r+nt
nr r
< (o)
y(r + nt)

<(i)-

Finally, the equality
E(wy) — i%fé’ = || Swy — gp||f2,,

yields the statement.

(iv): Since L'/2 is a partial isometry between L*(H, py) and S(H) and g, = L'/2(L""1/2g) by
Assumption (2), it follows that g, € S(H), and thus O is nonempty, and w' is well defined. Moreover,
since S*g, = Tw', we also get that Tw' = S*L"g = T"S*g, implying that w' = TTT"S*g. It follows
from Lemma B.3 and [14, Equation 2.24] that

nt—1

w&—wwH<HTW”(§jnTU—nTWtﬂl—f)?
§=0

lgll,

_ t
= sup o2 (1-na)" gl

a€lo,|IL]]
r—1/2\r-1/2
<
<(=55)

where the last inequality can be derived proceeding as in (iii). U

B.9 STEP 7: proof of the main results

Let us denote by S(¢,n,d) the right hand side of (77). Then, combining the sample error estimate
with the error decomposition (19), we can immediately derive the following inequalities

E () — inf & < 26(S(t,n,8))? + 2A(t,v,n)

[ = whllae < S(t,n,8) + [Jwy — w'|
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with probability greater than 1 — 4. Note that analogous inequalities hold for the case » > 1/2 and
with respect to the norm in #. We are now ready to prove the Theorems stated in Section 3. The
proof of universal consistency is a consequence of the sample and approximation error bounds, and
of the application of Borel-Cantelli Lemma.

Proof of Theorem 3.1. (i): Recalling the error decomposition in (19), we have

E(thy) — nf € < 2y - we|3, + 2(E(wy) — inf &),

Suppose that t > 1. Theorem B.13 applied with » = 0 yields that there exists ¢ € R, such that,
with probability greater than 1 — §

t3/210g(16/9)
3vn

[y — wely < + E(wy) — i%fé’. (79)

Since >, .7 = +oo and v < k! < nk~!, by Theorem B.14(i), A(t) = E(wy) — infy & — 0.
Moreover, A(t*(n)) — 0 since t*(n) — +o0o0. Letn € Ry and let a € |1, +o00[. By (9), there exists
n € N such that, for every n > a, nn/t*(n)3 > alogn. Define

Ay = { e ) it > A ) + e} (50

By (79), for every n > n, P(A,,) < 16 exp(—nn/t*(n)31=9) < exp(—alogn). Therefore,

> P(Any) > 0" < oo,

n>n n>n

hence the Borel-Cantelli lemma yields P((;.>; U,>x 4n,n) = 0, and almost sure convergence follows.

(ii): Since O is nonempty, it follows that there g, € S(H) = L'/?(H). Therefore, Assumption 2 is
satisfied with » = 1/2. From Theorem B.13(ii), that there exists ¢; € R such that, with probability
greater than 1 — ¢
c1tlog(16/0)

3v/n
Moreover, since >, 7 = 400 and v < nk~1, by Theorem B.14(ii), ||w; — w'||3x — 0. Reasoning as
in (i), we obtain (11). 0

|0 — we|ly < (81)

Proof of Theorem 3.3. (i): It follows from Theorem B.13(ii), that with probability greater than
1—-9

32log(16/9) [

[y — wy|3 < Mr=Y2 4 oM2k7 4 3672 gl | (82)

Moreover, Theorem B.14(iv) yields

r—1/2\""?
e = ol < (“2) " ol 53

Inequality (12) follows by adding (82) with (83).
(ii): Let « € |0, 4o0[ and let t*(n) = [n®]. Minimizing the right hand side in (12), we get

a—1/2=a(1/2—-71)
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leading to the expression of t*(n). Now, let n € N* and 3 € [1, 2] be such that n® < t*(n) = fn® <
n® + 1. Then, by (12) we get

/2—r
i — wellpe < BY2"2r +13210g(16/6) [Mi~Y/2 + 202571 4+ 35712 g, nH (84)

and

r—1/2\ "2 1a-r
||wt—wT||H§< 5/ ) lglln (85)

Equation (14) follows recalling that 5 € [1,2[in (i). [

Proof of Theorem 3.4. (i): Recalling (19), it follows from Theorem B.13(i) and Theorem B.14(iii),
that

(3210g(16/5))”

9 2r
SO Tar s aar el e+ () ol o0

€ (i) — inf € <2 -

(ii): As in the proof of Theorem 3.3(ii), set ¢t = [n®]. Then, minimizing the right hand side in
(86), we derive
200 — 1 = —2ar

which gives a = 1/(2r+2). Let n € N* and S € [1, 2] be such that n® < t*(n) = n® < n®+1. Then,
plugging the expression of ¢*(n) into (86). we get

M +2M%k 2 4 357 ||g]| ) 0t/ Y

2r
n 2() /g 2.
:

3210g(16/9))>
(i) — it £ < 8 5210816/0) [
H n

A Non attainable case

Theorem A.1 (Finite sample bounds for the risk — non attainable case) In the setting of Section 2,
let Assumption 1 hold, and let v € ]0,x™!]. Let Assumption 2 be satisfied for some r € ]0,1/2]. Then
the following hold:

(i) For every t € N*, with probability greater than 1 — 4,

2
321og(16/4) —1/2
E(iy) —inf §8< ) 0 2021/ 4 Sl Y o
H 3—2r
1—2r 2 r\*"
r 29 — 2
w3y orlall| +2(5) ol (57
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(ii) For the stopping rule t*: N* — N*
*(n) = [n5] (88)

with probability greater than 1 — 6,

~ : 162 2 —172, Gllgl 3—6r . ’
E(thy-(n)) — i €< [8(3210g6> <M+2M k24 3o T35, 9l

2r
r2(1) ||gu,%] w2l (89)

As for the attainable case, equation (87) arises from a form of bias-variance (sample-approximation)
decomposition of the error. Choosing the number of epochs that optimize the bounds in (87), we de-
rive a priori stopping rules (88) and corresponding bound (89). Again, these results confirm that the
number of epochs acts as a regularization parameter and the best choice follows from equation (87).

Proof of Theorem A.1. (i): This follows from Theorem B.13(i) and Theorem B.14(iii).

(ii): It follows plugging the expression of t*(n) into the inequality in (i). O
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