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ABSTRACT

Hippocampal functions are responsible for encoding spatial
and temporal dimensions of episodic memory, and hippocam-
pal reactivation of previous awake experiences in sleep is
important for learning and memory consolidation. Therefore,
uncovering neural representations of hippocampal ensem-
ble spike activity during various behavioral states would
provide improved understanding of neural mechanisms of
hippocampal-cortical circuits. In this paper, we propose
two Bayesian nonparametric methods for this purpose: the
Bayesian modeling allows to impose informative priors and
constraints into the model, whereas Bayesian nonparamet-
rics allows automatic model selection. We validate these
methods to three different hippocampal ensemble recordings
under different task behaviors, and provide interpretation and
discussion on the derived results.

Index Terms— Bayesian nonparametrics, hidden Markov
model, hidden semi-Markov model, population codes

1. INTRODUCTION

Neuronal spikes are the basic codes for representing and
transmitting information in the brain. A fundamental goal
in computational neuroscience is to understand the repre-
sentation of neuronal population codes and discover latent
structure of spatiotemporal neural data under various brain
states. Today, development in neuroscience has enabled us to
simultaneously record a large number of neuronal ensemble
spike activity in rodents and primates. However, it remains
a statistical challenge to fully interpret the ensemble spike
activity and link its representation to the animal’s behavior,
task, or internally-driven computation. In many scenarios, the
behavioral measure can be either abstract (non-quantitative)
or absent (such as during sleep). In some scenarios, it is de-
sired to infer the latent structure based on the ensemble spike
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activity alone. In these cases, it is preferred to employ an
unsupervised learning paradigm to extract the inherent struc-
ture of neuronal ensemble spikes. State-space methods and
Bayesian methods are powerful in analyzing spatiotemporal
neural data [3, 5].

In this paper, we employ the principle to rat hippocampal
ensemble spike activity recorded during different behavioral
states, including spatial navigation and sleep. Uncovering
neural representations of hippocampal population codes may
reveal important mechanisms of episodic memory of space
and time, and memory consolidation during sleep [17, 18, 16].
Specifically, we model the animal’s state as a latent Marko-
vian or semi-Markovian process. The state may correspond
to animal’s spatial location (which is unobserved from the in-
ternal brain’s perspective, or may be referred to an undefined
internal neural process that drives the ensemble spike activ-
ity. We develop two Bayesian nonparametric extensions of
hidden Markov model (HMM) for characterizing such data.
The Bayesian nonparametric approach automatically adapts
the model size according to the observed data. We then de-
velop a Markov Chain Monte Carlo (MCMC) inference al-
gorithm to explore the posterior distribution of the unknown
state and parameters.

2. BASIC MODEL DESCRIPTION

We used a finite m-state HMM to characterize the temporal
population spiking activity from a population ofC hippocam-
pal neurons [2, 4]. We assume, first, the latent state pro-
cess followed a first-order discrete-state Markov chain S =
S1:T ≡ {St} ∈ {1, . . . ,m}, and second, the spike counts of
individual place cells at discrete time index t, conditional on
the hidden state St, followed a Poisson probability with their
respective tuning curve functions Λ = {λc} = {λc,i}. The
HMM is summarized as follows:

p(y1:T , S1:T |π,P ,Λ) = p(S1|π)
T∏
t=2

p(St|St−1,P )

×
T∏
t=1

p(yt|St,Λ),

978-1-5090-0746-2/16/$31.00 c©2016 IEEE



p(S1|π) = Multinomial(S1|π),
p(St|St−1,P ) = Multinomial(St|P St−1,:),

p(yt|St,Λ) =

C∏
c=1

Poisson(yc,t|λc,St).

where P = {Pij} denotes an m-by-m state transition ma-
trix, with Pij representing the transition probability from state
i to j; yc,t denotes the number of spike counts from cell c
within the t-th temporal bin and y1:T = {yc,t}C×T denotes
time series of C-dimensional population response vector; and
Poisson(yc,t|λc,i) defines a Poisson distribution with the
rate parameter λc,i when St = i. Finally, log p(y1:T |S,θ)
defines the observed data log likelihood given the latent state
sequence S and all parameters θ = {π,P ,Λ} (where π =
{πi} denotes a probability vector for the initial state S1).

We further introduce the following prior distributions over
the parameters [4]:

π ∼ Dir(α01), P i,: ∼ Dir(α01),

α0 ∼ Gamma(aα0
, 1), λc,i ∼ Gamma(a0c , b

0
c).

where Dir denotes the Dirichlet prior distribution, and
Gamma(a0c , b

0
c) denotes the gamma prior distribution with

shape parameter a0c and scale parameter b0c .

3. BAYESIAN NONPARAMETRIC MODELING AND
INFERENCE

3.1. HDP-HMM

In our previous work [15], we generalized the finite-state
HMM above with a Bayesian nonparametric model known
as a hierarchical Dirichlet process (HDP)-HMM. Specifi-
cally, we sample a distribution over latent states, G0, from
a DP prior, G0 ∼ DP(γ,H), where γ is the concentration
parameter and H is the base measure. We also place a
prior distribution over the concentration parameter, γ ∼
Gamma(aγ , 1). Given the concentration, we sample from the
DP via the “stick-breaking process (STP)”: the stick-breaking
weights, β, is drawn from a beta distribution:

β̃i ∼ Beta(1, γ), βi = β̃i

i−1∏
j=1

(1− β̃j) (1)

where β1 = β̃1,
∑∞
i=1 βi = 1, and Beta(a, b) defines a beta

distribution with two shape parameters a > 0 and b > 0. The
name “stick-breaking” comes from the interpretation of βi as
the length of the piece of a unit-length stick assigned to the
i-th value. After the first i − 1 values having their portions
assigned, the length of the remainder of the stick is broken
according to a sample π̃i from a beta distribution, and β̃i in-
dicates the portion of the remainder to be assigned to the i-th
value. Therefore, the STP defines a DP—the smaller γ, the
less of the stick will be left for subsequent values.

After sampling β, we next sample the latent state vari-
ables, in this case λc, from the base measure H . Our
draw from the DP(γ,H) prior is then given by G0 =∑∞
j=1 βjδλ(j)

c
. Thus, the stick breaking construction makes

clear that draws from a DP are discrete with probability one.
Given a countably infinite set of shared states, we may

sample the rows of the transition matrix, P i,: ∼ DP(α0,β).
We place the same prior over π. The base measure is β,
a countably infinite vector of stick-breaking weights, that
serves as the mean of the DP prior over the rows of P . The
concentration parameter α0 governs how concentrated the
rows are around the mean. The hierarchical prior is required
to provide a discrete yet countably infinite set of latent states
for the HMM.

3.2. HDP-HSMM

The HSMM extends the standard HMM by assuming that the
state transition probability Pij depends that the amount of the
sojourn time in state i. In many real-world examples, the la-
tent process is not always Markvoian in that the state dura-
tions may follow more specific probability distributions, such
as Poisson, negative binomial, lognormal and inverse Gaus-
sian distribution (note that the standard HMM corresponds
to a geometric sojourn time distribution such that the proba-
bility of staying in state i for d steps is P dii(1 − Pii)). One
idea is to introduce an explicit-duration semi-Markov mod-
eling for each state. Here, we adapt our HDP-HMM into an
HDP-HSMM based on the formulation in [11, 12]. Specifi-
cally, we assume that the sojourn duration in state i, denoted
by p(dt|St = i), follows a parametric distribution form:

dt|St = i ∼ NegBin(r, p)

=

(
d+ r − 2
d− 1

)
(1− p)rpd−1 (d = 1, 2, · · · )

where NegBin(r, p) denotes a negative binomial distribution
(discrete analog of the gamma distribution), which reduces to
the geometric (Geom) distribution when r = 1 as a special
case (i.e., Markovian). We use an “embedding trick” for the
negative binomial distribution [12]

d ∼ NegBin(r, p)⇐⇒ d = 1 +

r∑
k=1

zk

where zk ∼ ShiftedGeom(1−p) are independent and iden-
tically distributed (i.i.d.) having a geometric distribution with
parameter 1− p shifted so that support includes 0.

3.3. Bayesian inference

Previously, we developed variational Bayes (VB) and MCMC
inference procedures for HDP-HMM [15]. Specifically, we
used a “weak limit” approximation in which the DP prior was



approximated with a symmetric Dirichlet prior:

γ ∼ Gamma(aγ , 1)

α0 ∼ Gamma(aα0
, 1)

β|γ ∼ Dir(γ/M, . . . , γ/M),

π|α0,β ∼ Dir(α0β1, . . . , α0βM ),

P i,:|α0,β ∼ Dir(α0β1, . . . , α0βM ).

where M denoted a truncation level for approximating the
distribution over the countably infinite number of states. This
prior weakly converges to the DP prior as the dimensionality
of the Dirichlet distribution approaches infinity [11].

In the case of HDP-HSMM inference, we use the HMM
embedding for HSMM with NegBin(r, p). We impose a uni-
form prior (integer values {1, 2, . . . , rmax}) over the shape
parameter r and a beta prior over p. The Gibbs sampling pro-
cedure follows the procedure in [12]: First, sample the state
sequence S1:T using a block sampler and the message pass-
ing algorithm; second, sample the negative binomial param-
eters (ri, pi) for each state i = 1, 2, . . . ,m given the state
sequences. In total, the time complexity of each Gibbs iter-
ation is reduced from O(m2T + mT 2) to O(m2T + mTr)
(linear in time T ).

For Poisson likelihood, we use a Gibbs sampler for pa-
rameter Λ. Since we are using conjugate gamma priors, the
posterior can be updated in a closed form

λc,i|y,S ∼ Gamma

(
α0
c +

T∑
t=1

yc,tI[St = i], β0
c +

T∑
t=1

I[St = i]

)
.

Under the weak limit approximation, the priors on P i,: and π
reduce to Dirichlet distributions, and we can derive conjugate
Gibbs updates for these parameters as follows:

π|α0,β ∼ Dir (α0β + 1S1) ,

P i,:|α0,β ∼ Dir (α0β + ni) ,

ni,j =

T−1∑
t=1

I[St = i, St+1 = j],

where 1j is a unit vector with a one in the j-th entry. Condi-
tioned upon the firing rates, the initial state distribution, and
the transition matrix, we can jointly update the latent states
using a forward filtering, backward sampling algorithm to ob-
tain a full sample from p(S|P ,π,Λ).

Regarding the firing rate hyperparameters {α0
c , β

0
c} for

cell c, we previously proposed three methods for update
[15]: (i) empirical Bayesian (EB), which aims to maximize
the marginal likelihood of the spike counts; (ii) Hamil-
tonian Monte Carlo (HMC) sampling for joint posterior
{logα0

c , log β
0
c}; and (iii) sampling the scale hyperparam-

eter β0
c (using a gamma prior) while fixing the shape hyper-

parameter, α0
c . In practice, we found that the second and third

methods worked very well.
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Fig. 1. The m-state HMM (or HDP-HMM or HDP-HSMM)
is used to characterize hippocampal neuronal ensemble spikes
in time. The virtual spatial topology is derived from the in-
ferred state transition matrix P , warm/cold color represents
the direction of time evolution along the graph.

In the testing phase, for the test data ytest we compute
the predictive log likelihood with samples from the posterior
distribution generated by our MCMC algorithm:

log p(ytest|y1:T ) = log
∑
S

∫
p (ytest,Stest|θ) p (θ|y1:T ) dθ,

≈ log
1

N

N∑
n=1

∑
Stest

p (ytest,Stest|θn) ,

where {θn}Nn=1 ∼ p(θ|ytrain) denote the Monte Carlo sam-
ples from the posterior.

4. RESULT VISUALIZATION AND
INTERPRETATION

Upon completion of inference, we obtain the posteriors for
latent states {S1:T }, P and Λ. Based on the correspondence
of state and behavioral measures, we construct a “state space
map” [4] for validation: a perfect state space map shall have a
one-to-one mapping. To visualize the inferred state transition
matrix, we further apply a force-based algorithm to derive
a scale-invariant topology graph that defines the connectiv-
ity between different states (nodes), which may offer intuitive
result interpretation and qualitative assessment. A schematic
diagram of the procedure is shown in Fig. 1 [6].

5. EXPERIMENTAL DATA AND RESULTS

5.1. Experimental protocol and recordings

In Dataset 1, Long-Evans rats were freely foraging in a famil-
iar open field arena (Fig. 2, left panel) for about 25 minutes
[4]. In Dataset 2, rats were first put in a sleep box for 4 hours,
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Fig. 2. Rats’ run trajectories in the open field (Dataset 1) and
circular maze (Dataset 2a).

Table 1. Statistics of rat hippocampal ensemble record-
ings.

Dataset # cells Period Behavior
1 49 24.3 min free foraging in an open field
2a 77 25.4 min free foraging in a circular track
2b 77 480 min rest in a sleep box

and then moved to a familiar circular track (Fig. 2, right panel)
for running about 25 minutes, and then put back to the sleep
box for another 4 hours [9]. Readers are referred to previous
publications for more experimental details [15, 9].

Custom microelectrode drive or silicon probe arrays were
implanted in the animal’s dorsal hippocampal CA1 area. Ex-
tracellular spikes were acquired along local field potentials.
We used a custom manual clustering program for spike sort-
ing to obtain well-isolated single units. Putative interneurons
were identified based on the spike waveform width and aver-
age mean firing rate. Summary of hippocampal recordings is
shown in Table 1. All procedures were approved by the Insti-
tutional Animal Care and Use Committee and carried out in
accordance with the approved guidelines.

5.2. Result on Dataset 1

First, we apply the proposed HDP-HMM and HDP-HSMM
algorithms to a previously studied hippocampal neuronal en-
semble dataset [15], where the rat was freely foraging in an
open field environment (Fig. 2, left panel). One of the ob-
jectives in this study is to investigate if we can recover the
spatial topological representation of the two-dimensional en-
vironment from hippocampal population codes without using
their place receptive fields [4]. Note that although the ani-
mal’s location was recorded, we only use the ensemble spikes
alone in the modeling and inference; the animal’s location
was only used in post-hoc assessment. We test three different
hyperparameter optimization (EB/HMC/scale-gamma prior)
methods discussed in Section 3.3. We set rmax = 15 for
HDP-HSMM. We use 80% run-associated (speed filter > 15
cm/s) hippocampal ensemble spikes (temporal bin size: 250
ms) and compute the predictive log-likelihood on the held-out
20% test data. The predictive log-likelihood is further com-
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Fig. 3. Inferred state centers (each dot represents one state,
and the size is proportional to the state occupant) and duration
distributions for 7 representative states.

Fig. 4. Snapshots of the inferred state distribution (from
HDP-HSMM) of the instantaneous rat’s location during the
testing period. Two representative sequences show the evo-
lution of instantaneous distributions as the rat explores the
environment. The black dots show the rat’s trajectory over
the past second, with the largest, darkest dot showing the lo-
cation at time t and the smallest dot showing the location at
time t− 1.

pared to that of a set of independent Poisson processes and
normalized by the number of spikes in the test set [15].

We find that the HDP-HMM produced the best result in
predictive log-likelihood (Table 2). To explain why HDP-
HSMM did not yield improved predictive performance, we
examine the duration distributions of some inferred state
(Fig. 3). As seen, the first 4 dominant states have a scale
parameter r = 1, which implies that NegBin(1, p) is equiva-
lent to a geometric distribution Geom(1− p). In other words,
the posterior is concentrated around a special case where the
HSMM reduces to the HMM. However, in a general behav-
ioral setting, we expect that the HDP-HSMM would yield
better performance than the HDP-HMM. For illustrations, we
also show snapshots of the inferred state distribution (Fig. 4)
and decoded animal’s spatial trajectory (Fig. 5). Specifically,
the decoding accuracy of our unsupervised HDP-HSMM
method is significantly better than that of the supervised op-



Table 2. Comparison of predictive log-likelihood
(bits/spike) of test data in Dataset 1 (the best result is
marked in bold font).

model predictive log-likelihood
HDP-HMM (EB) 0.579±0.001
HDP-HMM (HMC) 0.647±0.002
HDP-HMM (scale-gamma) 0.722±0.000
HDP-HSMM (scale-gamma) 0.712±0.002
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Fig. 5. Decoded rat’s two-dimensional location (in polar coor-
dinate (ρ(t), θ(t))) during 2-min recording of test data. Black
curve: animal’s true position; red: decoded trajectory from
the HDP-HSMM; magenta: decoded trajectory from an opti-
mal linear decoder.

timal linear decoder method employing correlations between
spike trains [19].

5.3. Result on Dataset 2

Sleep is critical to hippocampus-dependent memory consol-
idation. Analyzing hippocampal ensemble spike data dur-
ing both slow-wake sleep (SWS) and rapid-eye-movement
(REM) sleep has been an important topic [14, 10]. Typically,
hippocampal place cells fire in sequences that span a few
seconds as animals run through location-dependent receptive
fields. During sleep, the same place cells fire in an orderly
manner at a faster timescale within the hippocampal sharp
wave (SPW)-ripples, lasting between 50 to 400 milliseconds.
Previous findings have suggested that many sequences reflect
temporally-compressed spatial sequences of previous experi-
ences. Here, we focus SWS epochs during sleep (sleep scor-
ing was done based on recorded EEG and EMG activities).
For screening the candidate events, we use hippocampal LFP
ripple band (150-300 Hz) power combined with hippocampal
multi-unit activity (threshold>mean+3SD). We also imposed
a minimum (>6) cell activation criterion. Upon examining
the hippocampal population, we find that the mean firing rates
of hippocampal neurons in SWS is significantly lower than in
awake state (P < 10−5, signed rank test), although the firing
rates across states are positively correlated (Pearson’s corre-
lation 0.26, P = 0.023; Fig. 6).

We apply the HDP-HMM (scale-gamma hyperparameter
optimization) to the run-associated (speed filter >10 m/s)
hippocampal ensemble spikes (temporal bin: 250 ms), from
which we infer the model parameters {P ,Λ} and state space
map (Fig. 7, leftmost panel). Next, we apply the estimated
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Fig. 6. Comparison of mean firing rates of rat hippocampal
neurons (Dataset 2) between wake and SWS.

model to a total of 1519 post-run SWS candidate events (tem-
poral bin: 20 ms; mean±SEM bins: 11.9 ± 0.2) and further
infer the unknown state sequences (see an example in Fig. 7).
For each detected event, we compute the weighted correlation
R and Z-score statistic: Z = R−mean ofRshuffle

SD ofRshuffle
, where Rshuffle

are derived from 1000 randomly shuffled spike data [9, 6].
A high absolute value (>0.5) of weighted correlation and a
high positive Z-score (>1.65) indicates a statistically signif-
icant replay event. Interestingly, the proposed unsupervised
method has a comparable or higher detection power than the
standard (receptive-field based) population decoding method
[7]. Detailed results have been reported elsewhere [6].

6. DISCUSSION AND CONCLUSION

Recently, several new parametric and nonparametric meth-
ods have been developed to decode rat hippocampal ensemble
spike activity [1, 2, 4, 13, 15]. By imposing informative priors
and constraints, Bayesian probabilistic modeling offers an ap-
pealing method for discovering latent structure in spatiotem-
poral neural data, and Bayesian nonparametrics allows us to
deal with model selection in a principled way. In our spe-
cific example, the HDP-HMM produces slightly better pre-
dictive log-likelihood than the HDP-HSMM (Table 2). This
can be explained by two possible reasons: first, the approx-
imate Markovian nature of the data (Fig. 3); second, the in-
creased model complexity of HDP-HSMM given a relatively
small size of training samples. In a general setup, the pro-
posed HDP-HSMM framework is more powerful in charac-
terizing population spike trains. Furthermore, the latent state
space analysis may be applied to virtual reality environment,
or to temporal dimension of episodic memory— hippocampal
“time cells” [8], where animals may engage in non-spatial yet
temporally structured task experiences.

Finally, it should be emphasized that although we have
used rat hippocampal ensemble spikes as examples for
demonstration, our proposed methodology and analysis
framework is general and applicable for a wide range of
hippocampal-cortical or thalamocortical ensemble spike data.
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