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Abstract 1 

 2 

Recent laboratory studies have found large, stable individual differences in the location people 3 

first fixate when identifying faces, ranging from the brows to the mouth. Importantly, this 4 

variation is strongly associated with differences in fixation-specific identification performance 5 

such that an individual’s recognition ability is maximized when looking at their preferred 6 

location (Mehoudar, Arizpe, Baker, & Yovel, 2014; Peterson & Eckstein, 2013). This finding 7 

suggests that face representations are retinotopic and individuals enact gaze strategies that 8 

optimize identification, yet the extent to which this behavior reflects real-world gaze behavior is 9 

unknown. Here, we used mobile eye-trackers to test whether individual differences in face-gaze 10 

generalize from lab to real-world vision. In-lab fixations were measured with a speeded face 11 

identification task, while real-world behavior was measured as subjects freely walked around the 12 

MIT campus. We found a strong correlation between the patterns of individual differences in 13 

face-gaze in the laboratory and real-world settings. Our findings support the hypothesis that 14 

individuals optimize real-world face identification by consistently fixating the same location and 15 

thus strongly constraining the space of retinotopic input. The methods developed for this study 16 

entailed collecting a large set of high-definition, wide field-of-view natural videos from head-17 

mounted cameras and the viewer’s fixation position, allowing us to characterize subject’s 18 

actually-experienced real-world retinotopic images. These images enable us to ask how vision is 19 

optimized not just for the statistics of the “natural images” found in web databases, but of the 20 

truly natural, retinotopic images that have landed on actual human retinae during real-world 21 

experience. 22 

  23 

Keywords: mobile eye tracking, eye movements, face recognition, natural systems, retinal image 24 

statistics25 
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Introduction 1 

The crux of the problem of visual recognition is the ability to appreciate that an object is 2 

the same across the very different images it casts on the retina due to changes in position, size, 3 

lighting, and viewing angle, to name a few (DiCarlo & Cox, 2007). Recent work suggests that 4 

for the case of face recognition, position invariance is achieved in part by behavior rather than by 5 

computation: people fixate a consistent and stereotyped position on the face, thus minimizing 6 

variability in the retinal position of face images (Gurler, Doyle, Walker, Magnotti, & 7 

Beauchamp, 2015; Mehoudar et al., 2014; Peterson & Eckstein, 2012). In particular, robust 8 

individual differences are found in the precise location where people make their first saccade into 9 

the face, with a continuous distribution ranging from the brows to the mouth. These differences 10 

are robust over time, task, face familiarity, and variation in low-level properties such as color, 11 

size, and contrast (Gurler et al., 2015; Mehoudar et al., 2014; Or, Peterson, & Eckstein, 2015; 12 

Peterson & Eckstein, 2012, 2013). Most importantly, face recognition performance drops by 13 

nearly 20% when faces are presented at another subject’s preferred looking position if it differs 14 

from one’s own (Or et al., 2015; Peterson & Eckstein, 2013). This work suggests that the 15 

representations that underlie face recognition are retinotopically specific, with position 16 

invariance largely attained not by cortical computations (Riesenhuber & Poggio, 1999; Serre, 17 

Wolf, Bileschi, Riesenhuber, & Poggio, 2007) but by looking behavior. However, all of this 18 

work has been conducted in laboratory settings, with eye movements monitored as subjects 19 

performed tightly controlled tasks in which photographs of faces are presented at a fixed distance 20 

while head and body movements are restricted by a chinrest. 21 

 The lab-testing situation differs from real-world face viewing in a number of respects, yet 22 

few studies have investigated  real-world gaze on faces in non-clinical populations (Einhäuser et 23 

al., 2009; Macdonald & Tatler, 2013, 2015). In the lab, visual stimulation is limited to a centrally 24 

presented computer screen, whereas real-world faces generate a wide array of retinal images of 25 

unpredictable sizes and positions anywhere in the visual field. In the world, unlike the lab, retinal 26 

stimulation is determined not only by eye movements, but also by head direction and body 27 

orientation. Further, real-world vision is dynamic and interactive, with goals shifting moment to 28 

moment, rather than fixed by task instructions. Perhaps most importantly, in the real world the 29 

face we are looking at is often looking back at us, engendering a social context associated with 30 

tasks, signals, actions, and behavioral consequences that are distinct from the lab. Given the 31 
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dramatic differences between these conditions, it is important to know whether the consistent 1 

individual differences in face-looking behavior documented in previous lab studies are also 2 

found in everyday real-world vision. Here we asked this question by measuring each subject’s 3 

preferred face fixation position in the lab with the same methods used previously, and then by 4 

sending them off for a walk around the MIT campus while wearing a mobile eye tracker. This 5 

design enabled us to monitor where individuals fixated on faces that came into view during 6 

naturalistic real-world vision. If position invariance for face recognition is indeed solved in large 7 

part by looking behavior (rather than computation), then individual differences in preferred face-8 

fixation positions measured in lab should generalize to real-world behavior. Failure to find this 9 

result would suggest that the prior results reflect a special case, and would cast doubt on the 10 

hypothesis that position invariance in face recognition is solved by eye movements. A failure to 11 

generalize would also call into question the extent to which face recognition behavior measured 12 

in the lab should be applied to our understanding of how the brain processes faces during normal 13 

operation. 14 

 Beyond answering whether face-fixation behavior observed in the lab generalizes to the 15 

world, the present study will enable us to make a first foray into a broader research program of 16 

characterizing what might be called “retinal image statistics”. Most prior studies of natural image 17 

statistics use photographs from the web that likely represent a biased sample of the images 18 

people actually see in everyday life. First, these photos reflect situations in which someone used 19 

a camera to select and frame a small portion of the visual world at a specific moment. The 20 

criteria for the photographer’s selection likely differ from the criteria viewers use to select 21 

saccade targets. Second, most photographs are thrown away, and the ones that survive and get 22 

posted on the web are a nonrandom sample, less likely to be marred by the occlusions, blur, bad 23 

lighting, or other factors that reduce the intelligibility or attractiveness of the image but are 24 

common in real-world contexts. Third, and perhaps most importantly, images on the web do not 25 

come with information about where viewers were fixating. Fixation position matters enormously, 26 

because acuity declines sharply from the fovea toward the periphery, meaning that only a few 27 

degrees of the world around fixation are seen with high resolution. For all these reasons the 28 

standard web-photo-based analyses of natural image statistics do not represent an unbiased 29 

sample of the visual information that reaches the brain. Because our mobile eye tracking study 30 

records both the image seen by the subject, and the subject’s eye position on that image, our 31 
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study provides a collection of experienced images with the fixation point on each, a necessary 1 

first step in a broader study of the statistics of experienced natural retinal images.2 
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Methods 1 

The study was run in two Stages. In Stage I, participants identified celebrity faces 2 

presented on a computer screen while their eye movements were monitored. Each subject was 3 

categorized into one of three groups according to where they tended to fixate on the faces. A 4 

subset of these subjects from each group were later recalled to participate in Stage II, in which 5 

they wore a mobile eye tracker to monitor their gaze while they walked around natural 6 

environments. 7 

 8 

9 
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Methods (Stage I: In Lab) 1 

Participants 2 

70 participants were recruited using flyers and departmental subject lists (40 MIT 3 

students and 30 from the Cambridge community; 48 female; age: mean=28.0, min=18, max=62). 4 

Subjects received $20 for participation, gave informed consent, and had normal or corrected to 5 

normal vision. The study was approved by the MIT Committee on the Use of Humans as 6 

Experimental Subjects. 7 

 8 

Eye tracking 9 

The right eye of each participant was tracked using an SR Research EyeLink 1000 10 

Desktop Mount sampling at 1,000 Hz. A nine-point calibration and validation were run at the 11 

beginning of the session and after every 40 trials with a mean error of no more than 0.5° visual 12 

angle. Saccades were classified as events where eye velocity was greater than 22°/sec and eye 13 

acceleration exceeded 4000°/sec2. 14 

 15 

Stimuli and display 16 

Stimuli were 160 frontal view images of 80 well-known Caucasian celebrities (e.g., Tom 17 

Cruise, Jennifer Lawrence) acquired using Google image search (two different images per 18 

celebrity, 40 male and 40 female). Images were converted to grayscale, rotated to an upright 19 

orientation, scaled so that the center of the eyes and center of the mouth were in the same 20 

position and separated by 6.0°, cropped from the top of the head to the chin (463 by 463 pixels or 21 

16.9°) and contrast energy normalized. All stimuli were presented on a 17-inch CRT monitor 22 

with a resolution of 1024 by 768 pixels and refresh rate of 85 Hz. Subjects sat 50 cm from the 23 

monitor, with each pixel subtending 0.036°. 24 

 25 

Procedure 26 

Participants saw each of the 160 images in random order. Following the procedure used 27 

in our earlier studies (Peterson & Eckstein, 2012, 2013), a trial began with a fixation cross 28 

located 10° from the center of the monitor at either the left, right, top, or bottom edge of the 29 

screen (location randomly selected). The subject fixated the center of the cross and pressed the 30 

spacebar when ready. After a random, uniformly distributed delay between 500 and 1500 ms, the 31 
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cross disappeared and the randomly sampled face image was displayed at the center of the 1 

monitor. Note that in an earlier control experiment we found that the pattern of individual 2 

differences in preferred fixation behavior on centrally presented faces were conserved when 3 

faces were presented at unpredictable locations (Peterson & Eckstein, 2013). During the delay 4 

period the subject was required to maintain fixation at the cross, with a deviation of more than 5 

1.0° resulting in an error message and restarting of the trial. The face image remained visible for 6 

500 ms, during which eye movements were allowed, and was then replaced with a 500 ms high 7 

contrast white noise mask. A response screen then appeared consisting of two columns of five 8 

names each (the correct name of the face they had just seen and nine randomly sampled foils of 9 

the same gender, positions randomized). The subject used the mouse to click on the name they 10 

thought was correct after which the correct answer was highlighted for 500 ms before 11 

commencing the next trial (Figure 1). 12 

 13 

 14 

 15 
Figure 1. In-lab famous face identification paradigm (Stage I). 16 
 17 
 18 

Analysis 19 

Identification performance was quantified as the proportion of trials with a correct 20 

identification (PC). Individual’s face fixation behavior was quantified by computing the mean 21 

location of the first into-face fixation (i.e., the location at the end of the first into-image saccade 22 
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as defined above Methods: Eye tracking) across the 160 image presentations. We then defined an 1 

individual’s Relative Fixation metric, γ, as the distance of their mean fixation upwards from the 2 

mouth relative to the total distance between the mouth and eyes: 3 

 γ =
yfixation − ymouth
yeyes − ymouth

  Eqn. 14 
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Methods (Stage II: Real World) 1 

Participants 2 

“Looking groups” were defined before the current study based on independent data from 3 

250 subjects who had participated in similar face identification studies at the University of 4 

California, Santa Barbara (Or et al., 2015; Peterson & Eckstein, 2012, 2013, 2014). As in the 5 

current study, the previous work measured the mean location of subjects’ first into-face fixation. 6 

Inter-individual variation was found to be large and consistent along the vertical dimension, 7 

ranging from the eyebrows to the mouth (Gurler et al., 2015; Mehoudar et al., 2014; Or et al., 8 

2015; Peterson & Eckstein, 2013). Using these data, we defined criteria to categorize people into 9 

three looking groups: Upper Lookers (UL) were the 15% of the sample who looked highest up 10 

on the face, Lower Lookers (LL) were the 15% who looked lowest, and Middle Lookers (ML) 11 

were everybody in between. We used these predefined criteria to categorize the original 70 12 

subjects from Stage I of the current study into looking groups based on the average location of 13 

their first into-face fixation from Stage I. The current sample yielded 11 ULs (15.7%), 45 MLS 14 

(64.3%), and 14 LLs (20.0%). For each looking group, we recalled the 10 subjects with the 15 

highest calibration scores, as measured by the EyeLink, to participate in Stage II (10 ULs, 10 16 

MLs, and 10 LLs; Figure 5). As with Stage I, subjects received $20 for participation, provided 17 

informed consent, and had normal or corrected to normal vision. The study was approved by the 18 

MIT Committee on the Use of Humans as Experimental Subjects. 19 

 20 

Procedure 21 

Subjects were told only that we were interested in assessing everyday, natural visual 22 

experience. Critically, we did not mention any specific interest in faces or people. Subjects were 23 

first fitted with the mobile eye tracker glasses and GoPro camera (Figure 2A) before initial 24 

calibration, validation, and registration (see below and Figure 2B). The experimenter then 25 

accompanied the subject for 8-12 minutes around the lab and nearby hallways of the Brain and 26 

Cognitive Sciences Building and the Stata Center across the street, engaging in conversation 27 

aimed toward making them feel comfortable with the apparatus. Subjects were then instructed to 28 

walk unaccompanied across campus walkways, courtyards, a long hallway, and a busy city street 29 

to a pre-designated location (12-15 minutes). The experimenter met the subjects at the location 30 

and accompanied them back to the calibration room (5 minutes), concluding the study (25-30 31 
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minutes total). Each subject followed a similar path that exposed them to a representative sample 1 

of environmental settings (indoor locations like hallways, rooms, corridors, etc., and outdoor 2 

locations like streets, yards, etc.) and social contexts (no people, engaged in one-on-one 3 

interaction, watching others interact, etc.; Figure 2C). Subjects were all run at a similar time of 4 

day to maximize the between-subject consistency of environmental and social conditions. 5 

 6 

 7 

 8 
Figure 2. Real world eye tracking paradigm (Stage II). (A) Subjects were fitted with a pair of Applied 9 
Science Laboratory (ASL) eye tracking glasses. A supplemental GoPro camera enhanced the quality and 10 
field of view of the recorded video of the subject’s visual environment. (B) Calibration (moving dot) and 11 
ASL-to-GoPro video synchronization and registration (checkerboard) were automated and standardized 12 
across participants. (C) Each subject walked a similar route through the uncontrolled environments 13 
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around the MIT campus. Routes and times were chosen to ensure that a variety of locations and social 1 
settings were sampled. 2 
 3 

 4 

Real world eye tracking: Overview 5 

Measuring and analyzing eye movements in unconstrained real world environments poses 6 

multiple challenges. Here, we detail a standardized framework that allows the experimenter to 7 

reliably collect and analyze accurate data. The framework focuses on standardized routines that 8 

maximize the consistency, precision, and retention of data, while avoiding possible subject-9 

specific and task-specific biases. It also allows for frequent validation across time, a critical 10 

aspect as data from mobile eye trackers can be marred by subject/apparatus motion and changing 11 

environmental (e.g., lighting) and eye (e.g., pupil size) states that can dramatically compromise 12 

initial calibration. Finally, the framework develops a combination of automatic algorithms and 13 

novel crowdsourcing techniques for analysis and interpretation. 14 

 15 

Apparatus 16 

Real world gaze direction was measured at 60 samples per second with a pair of Applied 17 

Science Laboratory (ASL) Mobile Eye-XG Eye Tracking Glasses. The ASL tracker uses two 18 

cameras to estimate fixation position relative to the central region of the visual world in front of 19 

the wearer (Figure 2A). The first camera, termed the scene camera, rests on the top rim of the 20 

glasses and records video at 60 frames per second (fps), with a field of view (FOV) spanning 64o 21 

horizontally and 48o vertically (640 by 480 pixels). The scene camera was adjusted to align the 22 

center of its FOV with that of the subject’s. The second camera, termed the eye camera, records 23 

an infrared (IR) image of the subject’s right eye reflected off a partially IR-reflective coated lens 24 

that protrudes from the main lens. This allows the eye camera to detect both the subject’s pupil 25 

and the corneal reflection of a pattern of three dots produced by an IR emitter (with one dot 26 

selected as the primary). The position and orientation of both the eye camera and the IR-27 

reflective lens were adjusted for each subject so that the pupil was centered in the eye camera’s 28 

FOV and the three IR dots were near the pupil center when the subject looked straight ahead. 29 

The eye camera lens was then focused to maximize pupil and IR dot sharpness. 30 
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To improve upon the scene camera’s FOV, resolution, and image sensor quality (contrast 1 

sensitivity, temporal properties, etc.), subjects wore a supplementary GoPro Hero4 Black camera 2 

(FOV spanning 110o horizontally and 90o vertically; 2704 by 2028 pixels; 30 fps). The GoPro 3 

was positioned just above the eye tracker glasses and adjusted so that its FOV center aligned 4 

with that of the ASL’s (Figure 2A). A substantial fisheye distortion was present at the extreme 5 

edges of the GoPro FOV. However, the fixations analyzed in the study were mainly restricted to 6 

the central region where distortion was minimized. 7 

 8 

Calibration 9 

The ASL estimates gaze position by learning the mapping between specific locations in 10 

the world (in x-y coordinates relative to the scene camera) and the displacement vector from the 11 

pupil center to the primary IR dot registered by the eye camera. To minimize head movements 12 

during calibration, subjects placed their heads on a chin rest located 42 cm from an 18” CRT 13 

monitor centered in the subject’s FOV with a resolution of 1024 by 768 pixels (spanning 50o 14 

horizontally and 37.5o vertically). To maximize calibration accuracy and reliability, subjects 15 

completed a standardized calibration task written in MATLAB and PsychToolbox 3.0.10 (a 16 

JavaScript version was also developed, see Supplementary Material). Subjects first fixated on a 17 

centrally presented black dot (outer radius 1.0°) with a small gray circular center (inner radius 18 

0.15°). When the subject was confident they were fixating steadily as close to the dot center as 19 

possible, they pressed the spacebar. The dot then relocated randomly to one of twelve positions 20 

arranged in a 4 x 3 grid, spaced 14.0o apart horizontally and 15.8o vertically (spanning 42.0° by 21 

31.6°; Figure 2B). The subject would then fixate the new dot location and again press the 22 

spacebar, proceeding through the 13 locations (12 grid plus initial central). After all dots were 23 

fixated, an image of the entire array appeared, during which s/he was instructed to look at the 24 

center of each dot, starting from the upper left and moving left to right and row by row for post 25 

hoc validation. 26 

This data was used after the testing session for manual calibration using ASL’s EyeXG 27 

software. Independent raters viewed the scene camera video in slow motion (8 fps) with an 28 

image of the pupil and displacement vector from the eye camera superimposed. For each 29 

calibration dot transition event, the raters waited for the subject’s eye to move and stabilize on 30 

the new location as ascertained by an abrupt shift in the overlaid pupil/displacement vector. The 31 
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rater used a mouse to manually select the location of the center of the current calibration dot on 1 

the scene camera image (Figure 3A). The ASL EyeXG software then computed a function that 2 

mapped the displacement vectors (eye camera) to the dot locations (scene camera) for the 13 3 

calibration dots for each subject. 4 

 5 

 6 

 7 
Figure 3. Post-processing of eye tracking and video data. (A) A subject-specific function that estimates 8 
gaze direction is learned by registering the location of each calibration dot (relative to the ASL scene 9 
camera) to the position of the pupil center and corneal reflection (from the eye camera). (B) The vertices 10 
of the post-calibration checkerboard pattern are automatically detected in both scene recordings, allowing 11 
for automatic synchronization and coordinate-registration between videos. (C) Data quality was validated 12 
every three minutes by having the subject fixate the corners of a checkerboard pattern. (D) Saccade and 13 
fixation events were automatically detected and their spatial coordinates mapped to the high-resolution, 14 
wide field of view GoPro video. 15 
 16 
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 1 

Gaze location and fixation event detection 2 

Subjects’ gaze location (in x-y coordinates) relative to the scene camera image for each 3 

valid frame was estimated by the ASL EyeXG software using the mapping function learned 4 

during calibration (Figure 3D). Frames were defined as invalid if the corneal reflection was lost 5 

during saccades, blinks, large eccentricity fixations, or extreme external IR illumination and 6 

were not included in the analysis. Across all subjects, 67.3±3.4% (mean±standard error of the 7 

mean) of frames were classified as valid, with no significant difference in the percentage of valid 8 

frames between looking groups (ULs: 69.3±5.5%, MLs: 67.3±7.3%, LLs: 65.4±5.4%; p = 0.91). 9 

Fixations were defined by the automated ASL algorithm as events where six or more 10 

consecutive samples (100 ms) were measured within 1° of the sample group centroid. Fixation 11 

events were terminated when three consecutive samples measured greater than 1° from the 12 

fixation centroid or when pupil data was lost for 12 or more samples (200 ms; Figure 3D). To 13 

check the accuracy of this automated algorithm, we re-analyzed the data using two well-14 

validated methods for categorizing fixation events in noisy eye tracking data with significant 15 

flicker (intermittent loss of pupil contact; Holmqvist et al., 2011; Wass, Smith, & Johnson, 16 

2012). 17 

First, we re-analyzed all data following a modified version of the fixation-detection 18 

algorithm for unreliable eye tracking data described in (Wass et al., 2012). The procedure was as 19 

follows: 1) Samples labeled as missing data, or with out-of-range coordinates (x more than 32° 20 

and/or y more than 24° from the scene camera center), were labeled as invalid; 2) Valid data was 21 

smoothed with a bilateral filter to reduce small within-fixation jitter while preserving large 22 

saccadic displacements (Durand & Dorsey, 2002; Frank, Vul, & Johnson, 2009; Stampe, 1993); 23 

3) The mean absolute deviation (MAD) in gaze position was calculated within a 6 sample (100 24 

ms) sliding window; 4) Windows with a MAD less than 50°/sec were classified as potential 25 

fixations, with consecutive qualifying windows concatenated into longer potential fixations; 5) 26 

Potential fixations separated by less than 9 consecutive invalid samples (150 ms) were 27 

concatenated if they were displaced by less than 1°, with invalid samples assigned the mean 28 

position of the preceding potential fixation;  6) Potential fixations were labeled as valid fixations 29 

if they were immediately preceded and followed by a likely saccade event (MAD of 3 30 
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preceding/succeeding samples greater than 100°/sec) and displaced from the mean of the 1 

preceding and succeeding potential fixations by at least 1°. 2 

Second, the authors hand-coded fixation events for a random sample of data through 3 

visual inspection of gaze-position vs time plots (Holmqvist et al., 2011; Wass, Smith, & Johnson, 4 

2012) and fixation-overlaid scene camera video (Figure 6). Fixations were defined as epochs of 5 

relatively stable gaze position preceded and succeeded by abrupt shifts in gaze. 6 

The two validation procedures were in good agreement with the automatic ASL 7 

algorithm (see Supplementary Figure S1 for an example of fixations detected by each 8 

procedure). Both of the validation procedures detected fewer, and longer, fixations than the ASL, 9 

largely due to the merging of shorter fixations interrupted by brief false saccade events into 10 

longer fixations (Supplementary Figure S1). Fixation position did not differ across procedures, 11 

and, critically, the positions of on-face fixations were unaffected, with strong across subject 12 

correlations between the ASL procedure's γ values and both the filtering procedure (r = .95, p < 13 

.01; Supplementary Figure S2) and hand-coding (r = .89, p < .01). 14 

 15 

Synchronization and registration 16 

The ASL EyeXG software outputs an estimated gaze location for each frame in x-y 17 

coordinates relative to the ASL native scene camera, but ultimately we wanted to map these 18 

fixation coordinates to the higher resolution, larger FOV GoPro video. To do this, we presented a 19 

16 by 12 checkerboard pattern on the monitor immediately after validation (Figure 3B). After the 20 

fact, we implemented an automatic routine in Matlab that searched for the first frame in the 21 

native scene camera video in which a 16 by 12 checkerboard pattern could be detected. The time 22 

in the video was recorded and the coordinates of the checkerboard vertices (192 points) 23 

automatically detected (Figure 3B). The same was done with the GoPro video. The video streams 24 

were then synchronized by aligning the checkerboard onset times. Then, we computed the 25 

projective linear transform matrix, T, that mapped the 192 vertex points from ASL to GoPro 26 

coordinates with the minimum mean-square error. The transform matrix was then used to map 27 

gaze coordinates for each frame and each fixation event from the ASL video to the GoPro 28 

(Figure 3D). 29 

 30 

Recalibration and reregistration 31 



MOBILE EYE TRACKING                                                        17 

To ensure data validity over the course of the study, subjects regularly performed a 1 

recalibration and reregistration routine. Every three minutes, the subject was instructed to stop 2 

and hold at arm’s distance a calibration/registration checkerboard pattern centered at eye level. 3 

While keeping the head steady, the subject would fixate, in turn, the extreme upper-left, upper-4 

right, lower-left, and lower-right corners of the checkerboard for two seconds each before 5 

resuming their walk (Figure 3C). Similar to the initial calibration, independent raters viewed 6 

each recalibration at 8 frames per second. For each of the four corner fixations, the raters waited 7 

until the subject’s eye moved and stabilized on the new location indicated by a sudden shift and 8 

stabilization of the overlaid pupil/displacement vector. The rater selected the location of the 9 

center of the current recalibration target on the scene camera image (Figure 3C), which the ASL 10 

EyeXG software used to augment the displacement vector to gaze location mapping function. 11 

Similarly, the 16 by 12 checkerboard pattern and its corresponding vertices were automatically 12 

detected in both videos and any necessary adjustments to the transform matrix were applied. 13 

 14 

Analysis: automatic fixation event filtering 15 

On average, we obtained 24.2 minutes (87,165 frames) of data per subject (Figure 4A). 16 

For this study, we were interested only in the fixation location targeted by saccades. This 17 

information is contained completely in the image and gaze position corresponding to the first 18 

frame of each detected fixation event. This allowed us to greatly reduce our data set by 19 

automatically selecting, for each fixation, a single video frame and eye position for further 20 

analysis (average of 3,023 frames/subject; Figure 4B). 21 

 22 
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 1 
Figure 4. Analysis and interpretation of fixation data. The current study is concerned only with the 2 
locations of distinct fixation events, greatly reducing the amount of data to be analyzed (from 60 to 3 
around 2 samples/second). Since only on-face fixations were relevant here, data was further refined with 4 
the help of human raters on Mechanical Turk. Finally, human raters were again enlisted to determine the 5 
location of the on-face fixations relative to the eyes and mouth. 6 
 7 

Analysis: crowdsourcing face-fixation events 8 

One of the primary difficulties with studies conducted outside traditional laboratory 9 

environments is the decreased ability to control subjects’ sensory input. In the lab, the 10 

experimenter precisely determines the spatial and temporal characteristics of visual stimulation. 11 

Thus, the position (x, y) of gaze at some time (t) unambiguously maps to known stimulus 12 

properties. Unconstrained environments do not provide this level of control, as the 13 

spatiotemporal properties of the visual stimulus are not known a priori. This situation makes 14 

measurements of gaze timing and position necessary but not sufficient for mapping to 15 

meaningful stimulus properties. The difficulty of this mapping is determined by the stimulus 16 

properties the experimenter is interested in, the quality of the visual recording, and the 17 

complexity of the visual environment. 18 
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 In this study we are interested in how people look at faces. This goal requires the ability 1 

to reliably determine whether a fixation is on a face given only the recorded video image and the 2 

associated x-y gaze position. While advances in algorithms and computing resources have led to 3 

impressive gains in automatic face detection within complex images (Phillips & O’Toole, 2014; 4 

Taigman, Yang, Ranzato, & Wolf, 2014), the combination of high resolution video and 5 

unconstrained environmental uncertainty poses a serious challenge to even the most advanced 6 

computer face detection systems. In this type of scenario, humans remain the gold standard for 7 

face detection accuracy. However, this advantage comes at a cost of processing capacity: an 8 

individual can accurately detect faces only up to a certain speed. 9 

To maximize accuracy and throughput, we developed a simple crowdsourcing algorithm 10 

using Amazon Mechanical Turk. By drawing on the judgments of many individuals in parallel, 11 

crowdsourcing greatly increases the bandwidth of human-based face recognition. Turk raters 12 

were shown a series of randomly sampled single video frames corresponding to fixation onsets 13 

as described in the previous section. For each image (trial), a bright green dot was overlaid at the 14 

measured fixation location, and the rater responded whether any portion of the green dot was 15 

touching a face (Figure 4C). To ensure raters were real humans who understood and were 16 

actively attending to the task, each image was rated by multiple people. If the first two raters 17 

agreed, the response was taken as truth and the image was removed from the rating pool. If the 18 

first two raters did not agree, the image was shown to a third tie-breaking rater. Individual raters’ 19 

performance was monitored by calculating their miss (responding No Face when two separate 20 

raters responded Face) and false alarm rates (responding Face when two other raters responded 21 

No Face). For online quality assurance, each trial had a 1 in 30 chance of being a probe. The 22 

probe set was a mixture of 80 author-verified images and an expanding set of images that had 23 

already been successfully rated by two other raters (who had not themselves been excluded 24 

because of low concordance with other raters), with author-verified images more likely to be 25 

sampled on earlier trials. If the rater disagreed with the consensus, they would be given a 26 

warning message. Raters were allowed two mistakes; a third disqualified them from further 27 

participation and all of their rating data was discarded from final analyses. Post hoc manual 28 

verification by the authors of a random sample of rated images revealed no false positives or 29 

negatives. 30 

 31 
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Analysis: crowdsourcing face-fixation location 1 

To quantitatively compare within face fixation location between the laboratory and the 2 

real world, we need to compute the Relative Fixation metric, γ (see Equation 1 in the Analysis 3 

section of Methods for Stage I). In the lab, this calculation is simple, as the position of the eyes 4 

and mouth are set and known by the experimenter. For the mobile section, we need to estimate 5 

these locations on the video frames where faces could be present at any combination of location, 6 

pose and size. We again turned to crowdsourcing with a second Mechanical Turk task. Raters 7 

were shown random frames that were determined from the first Turk task to have on-face 8 

fixations (again signified by a green dot). If the rater determined that the image was originally 9 

misclassified as face-present in the first Turk task, a No Face option was available that recycled 10 

the image back to the previous Turk task pool. Otherwise, raters were first asked to rotate the 11 

image until the face with the dot on it was upright and then clicked on the center of one of the 12 

visible eyes and the center of the upper lip (the upper lip was chosen so as to minimize the 13 

variability in estimated mouth position due to plastic changes arising from talking, expressions, 14 

etc.; Figure 4D). γ was then computed as before (Equation 1). Each image was scored by two 15 

raters. If the raters disagreed by more than ten degrees of rotation and/or more than 10% of the 16 

eye-to-mouth distance, a third rater scored the image and the two most similar ratings were 17 

averaged. After the fact, manual verification of a random sample of rated images showed good 18 

agreement by the raters and no systematic biases.19 
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Results 1 

In lab initial face fixation behavior 2 

Across subjects, the initial into-face saccade landed on average below the eyes 3 

(mean±standard error of the mean: γ = .757±.025, t(69) = 9.86, p < .001) and left of the midline 4 

(χ = .041±.014, t(69) = 3.02, p = .0035; Figure 5). Consistent with past literature, individuals 5 

varied greatly and consistently in the their preferred face-fixation behavior along the vertical 6 

dimension, ranging from the eye brows (max(γ) = 1.11±.061) to just above the mouth (min(γ) = 7 

0.17±.065; Figure 5; Gurler et al., 2015; Mehoudar et al., 2014; Peterson & Eckstein, 2013). 8 

 9 

 10 
Figure 5. Stage I (in-lab) initial-fixation behavior for face identification. On the left, each dot represents 11 
the mean location, across trials, of the initial on-face fixation for one subject. Subjects were categorized 12 
as Upper (orange), Middle (white), or Lower (teal) Lookers according to pre-determined criteria based on 13 
previous work. On the right, fixations for each trial (small dots) and the mean across trials (large dots) for 14 
one UL (orange) and one LL (teal). 15 
 16 

 An existing independent sample of face-looking behavior (n = 275) was used to pre-17 

define criteria to categorize the current subject sample into three groups. Upper Lookers (UL) 18 

fixate higher on the face than 85% of the total previously-sampled population (γUL = .93), Lower 19 

Lookers (LL) fixate lower than 85% (γLL = .55), with Middle Lookers (ML) constituting 20 

everybody else. Using this criteria, 11 of 70 subjects were categorized as ULs (15.7%), 14 as 21 
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LLs (20.0%), and 45 as MLs (64.3%; Figure 5). The 10 subjects with the best Stage I EyeLink 1 

calibration scores from each group were recalled for the mobile condition, resulting in the 2 

following gamma values (mean±standard deviation) for each group: ULs: γUL = .995±.098, MLs: 3 

γML = .815±.133, LLs: γLL = .326±.183 (Figure 7A). 4 

 5 

Real world face fixation behavior 6 

Subjects’ distinctive preferred face fixation behavior can be appreciated in the example 7 

subject videos from each looking group (Figure 6A): Individuals fixated predominantly at their 8 

preferred region, with occasional fixations on other face regions quickly followed by a return to 9 

the preferred region. Most importantly, individuals’ preferred real world fixation regions were 10 

consistent with their laboratory fixations (Figure 6B). Grouping subjects according to their in-lab 11 

behavior, the data from real-world viewing showed that ULs (γUL = .921±.040) looked 12 

significantly higher than MLs (γML = .735±.056, t(18) = 2.91, p = .005) who looked significantly 13 

higher than LLs (γLL = .267±.066, t(18) = 5.69, p < .001; Figures 6C, 7A). 14 

 15 

 16 



MOBILE EYE TRACKING                                                        23 

Figure 6. Real world face fixation behavior for lab-defined Upper, Middle and Lower Lookers. (A) Each 1 
video is from one representative subject from each group, with the white dot denoting gaze position. (B) 2 
Dots represent individual on-face fixation events for the same subjects as (A). (C) Each dot represents the 3 
mean location across all on-face fixations for a single subject. 4 
 5 

Relationship between in lab and real world face fixation behavior 6 

A repeated measures two-way ANOVA found significant main effects of looking group 7 

(F(2,27) = 65.45, p < .001) and modality (laboratory vs. real world; F(2,27) = 9.62, p = .004) on 8 

fixation behavior (γ), but not a significant interaction (F(2,27) = 0.28, p = .76; Figure 7A). 9 

 10 

 11 
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Figure 7. Relationship between real-world and in-lab face fixation behavior. (A) The laboratory-measured 1 
group differences in the mean location of the initial on-face fixation, from 0 (center of the mouth) to 1 2 
(center of the eyes), are also observed under real-world conditions. (B) The conservation of face-gaze 3 
patterns between the lab and the world is consistent at the individual level across the range of observed 4 
behavior. 5 
 6 

Across the sample, correlational analysis showed that an individual’s real-world fixations 7 

were strongly predictive of their laboratory behavior (r(28) = .914, p < .001; Figure 7B). This 8 

relationship was near ceiling given the reliability of the each modality’s measurements. For each 9 

of 1,000 bootstrap samples, we randomly split each subject’s data in half, computed γ for each 10 

half, and calculated the correlation between the two halves. The average split-half reliabilities 11 

were r = .996 and r = .909 for the in-lab and real-world measurements, respectively, with an 12 

average split-half correlation of r = .905 between them (correlation value lower than for the full 13 

data set due to smaller sample sizes).14 
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Discussion 1 

Here we tested whether individual differences in face-looking behavior, observed 2 

previously only in restricted lab conditions, generalize to the real world. To answer this question, 3 

we measured subjects’ fixation positions on faces both under controlled laboratory conditions 4 

and while they walked around the MIT campus. Our main finding is that face-fixation patterns 5 

are remarkably similar in the two situations, with an individual’s laboratory fixation behavior 6 

strongly predicting their real-world gaze, nearly as well as possible given measurement 7 

reliability (Fig. 7). These results demonstrate that the prior lab-based finding of individual 8 

differences in face fixation behavior generalizes to real-world vision. They further imply that the 9 

superior face recognition performance when an individual fixates their preferred location 10 

(Peterson & Eckstein, 2013) both reflects, and optimizes, that person’s real-world face 11 

recognition behavior. Taken together, these results suggest that real-world face recognition 12 

entails two qualitatively distinct stages: face detection in the periphery, and face recognition at 13 

the fovea. Finally, the methods developed here provide a rich dataset of  images that humans 14 

have actually experienced during real-world viewing, including the viewer’s fixation position on 15 

each image, opening up important new avenues for investigation of the statistics of the images 16 

landing on peoples’ retinas during natural behavior (Retinal Image Statistics; RIS), and the 17 

tuning of human behavior and neural representations to those statistics. 18 

 19 

Comparing Real-World and In-Lab Eye Movements 20 

 The work presented here builds on previous studies that have sought to characterize how 21 

people move their eyes in naturalistic real-world environments and how these eye movements 22 

relate to those observed under controlled laboratory conditions. Most mobile eye tracking studies 23 

have assessed fixation behavior while subjects execute specific tasks, generally within a single 24 

location (making tea or sandwiches: Hayhoe, 2000; Hayhoe & Ballard, 2005; Land, Mennie, & 25 

Rusted, 1999; driving: Land, 1992; Land & Lee, 1994; visual search: Foulsham, Chapman, 26 

Nasiopoulos, & Kingstone, 2014; Mack & Eckstein, 2011; gaze-cueing: Macdonald & Tatler, 27 

2013, 2015; social: Einhäuser et al., 2009; Laidlaw, Foulsham, Kuhn, & Kingstone, 2011; Risko, 28 

Laidlaw, Freeth, Foulsham, & Kingstone, 2012). A smaller number of studies have assessed eye 29 

movements in unconstrained natural environments and behavior (Cristino & Baddeley, 2009; 30 

Foulsham, Walker, & Kingstone, 2011; Hart et al., 2009). In general, these studies have assessed 31 
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coarse statistical trends across groups of subjects (e.g., tendency to fixate the image center in the 1 

lab versus a “world-center”, the horizon, outside the lab; ). The improved reliability of data 2 

collection and efficiency of data analysis provided by the techniques developed here allow for a 3 

significant expansion of the type and scope of real-world eye tracking studies (Figs. 2-4). 4 

 5 

Peripheral Detection and Foveal Recognition as Distinct Stages of Face Perception 6 

 The evidence presented here suggests that real-world face recognition entails a systematic 7 

sequence of processing steps in which detection operates in the periphery in parallel with 8 

recognition at the fovea (Fig. 8). According to this hypothesis, the detection mechanism 9 

continuously monitors for the presence of faces in the visual periphery (Step 1: Detect). Relevant 10 

features of peripheral faces that can be computed with adequate precision (e.g., location, size, 11 

pose, motion) are then combined to form a retinotopic “face priority map”, which is integrated 12 

with other social and non-social priority calculations to form a general attention-guiding priority 13 

map (Step 2: Prioritize; Bisley & Goldberg, 2010; Fecteau & Munoz, 2006; Itti, Koch, & Niebur, 14 

1998; Koehler, Guo, Zhang, & Eckstein, 2014). Next, the highest priority location is selected for 15 

subsequent fixation (Step 3: Select). When a face is selected for the next fixation, the eye 16 

movement system exploits the stereotyped T-shaped configuration of facial features to precisely 17 

target saccades to the individual’s specific preferred face-fixation position (Step 4: Saccade). 18 

This brings the face image to a reliable position on the fovea, where it is processed by 19 

specialized recognition mechanisms, shown previously to be highly retinotopically specific (Step 20 

5: Recognize; Peterson & Eckstein, 2012). According to this model, face detection and face 21 

recognition are fundamentally different processes, with detection occurring for faces in the 22 

periphery at a wide range of eccentricities and positions, and recognition proceeding at the fovea 23 

on faces that are usually centered at a single stereotyped retinal location. Note that steps 1-4 24 

(detection, prioritization, selection, and saccadic targeting of peripheral faces) likely proceed in 25 

parallel with Step 5 (recognition of the currently-foveated face). 26 

 27 
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 1 
Figure 8. Schematic of a parallel peripheral-detection/foveal-recognition model. At any given time, t, the 2 
foveal (red) and peripheral (blue) retinal images are determined by the position of the body, head, and 3 
eyes. Peripheral mechanisms are tuned to image properties that support face detection. Faces likely to 4 
contain important visual information are selected and targeted with eye movements, providing powerful 5 
foveal resources for detailed recognition tasks. The eye movement is precise and individual-specific, 6 
eliminating image translation variance and possibly matching retinotopic face representations. 7 
 8 

 The model of face perception just sketched can be tested using the methods developed in 9 

the current study. In particular, we can use our growing database of natural images our observers 10 

experienced (including their fixation position on those images) to ask: 1) Where do faces land on 11 

the retina in real-world viewing? 2) What are the features of peripherally-viewed faces that guide 12 

selection for saccadic targeting? 3) Is human size invariance for face recognition tuned to the 13 

statistics of retinal face sizes that occur during natural viewing? The general hypothesis, that we 14 

can now test in detail, is that the face detection and face recognition systems are each specifically 15 

tuned for task-specific statistics of experienced natural images. 16 

 17 

Retinal Image Statistics 18 
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 More broadly, this work makes possible a richer and more ecologically valid dataset with 1 

which to test the core ideas of Natural Systems Analysis (Geisler, 2008): that the computations 2 

employed by the visual system are the product of evolutionary optimization for the sensory 3 

evidence (i.e., images) and tasks critical for survival. A deep understanding of these systems 4 

requires knowledge of the properties of the visual environment in which they operate (i.e., 5 

natural image statistics; Botvinick, Weinstein, Solway, & Barto, 2015; Olshausen & Field, 1996; 6 

Simoncelli & Olshausen, 2001; Torralba & Oliva, 2003). While the study of natural image 7 

statistics has provided crucial insights into the computations carried out by the visual system, the 8 

degree to which these images faithfully represent real-world visual experience is unclear. Prior 9 

studies have typically analyzed sets of narrow field-of-view static photographs that have not 10 

been selected to reflect everyday visual experience. Critically, these images do not have fixation 11 

data, a critical missing element given the radically lower visual acuity in the visual periphery. 12 

The framework presented here simultaneously collects high resolution, wide field-of-view video 13 

of the visual environment and corresponding eye movements, allowing us to directly measure the 14 

retinotopic images people experience in everyday life, which we term Retinal Image Statistics 15 

(RIS). This new database should be applicable to myriad problems of vision beyond face 16 

perception. 17 

 18 

Real-world face fixations in impaired populations 19 

 Finally, the methods developed here enable us to rigorously measure real-world gaze 20 

behavior in populations that may have deficits in face recognition. Fixation behavior may be a 21 

prime determinant of successful face recognition, yet how those with possible recognition 22 

deficits look at faces in the real world is largely unknown. 23 

 For example, a deficit in the recognition of faces is frequently reported in Autism 24 

Spectrum Disorder (ASD). While the findings in the literature are conflicting, most evidence 25 

suggests that face recognition impairments in ASDs are greater under natural viewing conditions 26 

(e.g., static vs. dynamic, computer images vs. real faces; Jemel, Mottron, & Dawson, 2006; 27 

Weigelt, Koldewyn, & Kanwisher, 2012). The literature is also conflicting on the question of 28 

whether ASDs and TDs differ in the way they look at faces, but avoidance of faces in general 29 

and eyes in particular apparently becomes more pronounced with increasing naturalism (Gharib, 30 

Adolphs, & Shimojo, 2014; Klin, Jones, Schultz, Volkmar, & Cohen, 2002; Speer, Cook, 31 



MOBILE EYE TRACKING                                                        29 

McMahon, & Clark, 2007). Most importantly, few studies have measured gaze behavior on faces 1 

in natural viewing in ASD (Magrelli et al., 2013; Vabalas & Freeth, 2015), and none have done 2 

so on a large scale during normal behavior in unconstrained environments. Overall, the evidence 3 

suggests that any differences in face perception between ASDs and TDs should be greatest under 4 

these conditions, which we can test in the future using the methods developed here. 5 

 Another disorder that may be informed by tests of real-world gaze behavior is 6 

developmental prosopagnosia (DP), a lifelong deficit in face recognition in the absence of known 7 

neurological damage (Behrmann & Avidan, 2005; Duchaine & Nakayama, 2006; Zhang, Liu, & 8 

Xu, 2015). The few studies that have examined face-looking behavior in DPs have incorporated 9 

small sample sizes (often a single patient) and laboratory viewing conditions (Barton, Radcliffe, 10 

Cherkasova, & Edelman, 2007; Bate, Haslam, Tree, & Hodgson, 2008; Pizzamiglio et al., 2015; 11 

Schmalzl, Palermo, Green, Brunsdon, & Coltheart, 2008; Schwarzer et al., 2006). A natural 12 

hypothesis is that some or all of the deficits in face recognition in DPs result from suboptimal 13 

and/or inconsistent looking behavior on faces, which could disrupt the normal development of 14 

face representations and/or the ability to enact eye movement strategies that reliably constrain 15 

retinotopic input. 16 

Finally, it is of great interest to understand how, why, and when individuals acquire their 17 

distinct face gaze behavior. One possibility is that retinotopic tuning of face representations is 18 

present at birth, with location tuning varying across the population. This account holds that 19 

individuals learn fixation strategies that are optimized for their specific tuning. A second, more 20 

likely, possibility is that face representations are not strongly tuned to position at birth. Rather, 21 

individuals vary, for whatever reasons, in where they look on faces. This early, retinotopic visual 22 

experience might then guide the learning and development of the basic structure of face 23 

representations. This situation could create a positive feedback scenario, such that the 24 

performance advantage for fixating a specific region provides an incentive to maintain this 25 

looking behavior. On this hypothesis, any early disruption of face-looking behavior could lock in 26 

a self-reinforcing cycle of suboptimal face representations and suboptimal face-looking behavior, 27 

providing a possible account of developmental prosopagnosia and/or face deficits in ASD. This 28 

hypothesis could also account for the lifelong face perception deficits in individuals treated early 29 

in life for bilateral or left (but not right) lateralized congenital cataracts that deprive face-30 

selective regions in the right hemisphere of patterned visual input for a brief period after birth 31 
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(Le Grand, Mondloch, Maurer, & Brent, 2001, 2003). A final possibility is that although face 1 

representations are retinotopically specific, the general ability to encode new faces is not itself 2 

tuned to an individual's particular fixation preference. Rather, consistently fixating the same 3 

position causes most face memories to be encoded relative to the individual's specific preferred 4 

gaze location. According to this hypothesis, the stability of an individual's specific face-fixation 5 

behavior optimizes recognition by matching the retinotopic position of the current face to the 6 

retinotopic positions of previously encoded faces. This matching hypothesis predicts that 7 

individuals should identify new faces best when they are trained and tested at the same fixation 8 

position. Critically, there should be no correlation between individual differences in preferred 9 

fixation position and the fixation position during learning that leads to maximum recognition 10 

performance during test.11 
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Conclusion 1 

In sum, we found that individual differences in face fixation behavior reported previously 2 

in the lab generalize to real-world viewing. These findings suggest a distinction between two 3 

components of face perception: detection of faces in the periphery, and recognition of faces in 4 

the fovea. These findings also suggest possible causes of lifelong deficits in face perception in 5 

developmental prosopagnosia, autism, and congenital cataracts. Finally, the methods developed 6 

here make possible the large-scale collection natural images as seen by humans, including the 7 

critical information of fixation position on each image, a dataset that may open up important new 8 

constraints on natural systems analysis (Geisler, 2008). 9 

 10 

11 
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Supplementary Figures 1 

 2 

 3 
Figure S1. Example of fixation validation for a six second segment from one subject’s data. Thin black 4 
lines in the top and middle plots are the raw x and y gaze coordinates, respectively, with thin red lines 5 
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denoting the gaze position after bilateral filtering and interpolation. Above the traces, bars represent the 1 
times of individual fixation events detected by the ASL algorithm (black), by the new filtering procedure 2 
(red), and by hand (blue). The bottom plot shows instantaneous velocity for the raw (black) and filtered 3 
(red) data, with the dotted grey line denoting the threshold used for saccade detection. 4 
 5 
 6 

 7 
Figure S2. Correspondence between each subject’s mean face-fixation location (γ) according to fixations 8 
detected by the ASL algorithm (x-axis, γASL) and the new filtering procedure (y-axis, γfiltered). 9 


