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Robust image representations make recognition easy (and cheap)

Learning in small sample regimes is a remarkable feature of human perception.

Low-sample complexity learning is related (computationally and statistically) to robustness to

transformations.

Transformation-robust visual representations have been linked in neuroscience with modes of
visual experience equivalent to weak- or self-supervision.

(e.g. spatial proximity or sequential presentation)

We explore systems that rely on representations of images learned throughweak supervision

prior to downstream supervised tasks (face/image recognition, one-shot learning).

Our image representation are neural network embeddings learned using unlabeled image sets

and video sequences.

Main idea: Orbit sets for weak supervision

TOPROW: Images of an orbit sequence from the ``Late Night'' video face dataset.MIDDLE ROW: random samples

from distinct orbits. BOTTOMROW: their detected canonical, frontal view.

Generic orbit associated to x ∈ X is given by the equivalence relation: Ox = {x′ ∈ X |x ∼ x′} ⊂
X , c : X → C such that x ∼ x′ ⇔ c(x) = c(x′).

TL;DR (summary)

Humans can recognize someone in a crowd after seeing a single image; artificial perception sys-

tems on the other hand require thousands of examples to achieve satisfactory levels of accuracy.

However, this comparison is not fair: humans bring to bear years of perceptual experience when

learning new visual tasks.

We explore the idea of having systems learn generic and robust representations from uncon-

strained visual experience and show that these make new, low-sample visual recognition easy.

Main contributions:

1. Building on prior theoretical work, we define generic orbits: sets of images that are generated

by some unknown transformation acting on a canonical image (e.g. 3D face rotation).

2. We introduce a new loss function that combines a discriminative and a generative term and use

it to learn representations from data-sets partitioned by orbit sets rather than class-label sets.

3. We empirically demonstrate the existence of a trade off betweenweakly supervised and

supervised learning. That is, for a fixed recognition accuracy one can reduce the size of the

supervised dataset by increasing the size of the representation dataset.

Results Learning representations using our loss function improves performance on downstream,

low-sample tasks compared to other, state-of-the-art, weakly supervisedmethods.

Discriminate-and-Rectify loss

Triplets from sets of orbits:

positive example xp (in-orbit), i.e. xi ∼ xp ⇔ xi, xp ∈ Oxi

negative example xq (out-of-orbit), i.e. Oxq ∩ Oxi = ∅.

T ⊂ {(xi, xp, xq) | xi ∈ Xn, xp ∈ Oxi, xq ∈ Oxq; Oxi ∩ Oxp = ∅} (1)

Representation learning (OJ):
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Le(xi, xc)
)

, (2)

1. Discriminative term (OT): based on triplet loss, uses distances on the feature space.
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2. Reconstruction error (OE): distance on input space between decoder output and orbit canonical

Le(xi, xc) =
∥∥xc − Φ̃ ◦ Φ(xi)

∥∥2
Rd , xc ∈ Oxi. (4)

(  )
Experimental set-up (embedding, train, test)

1. Use a large embedding set, partitioned into generic orbits to learnΦ using loss (3) and baselines.

2. Note that instances of the same class can appear in separate orbits!

3. Use a very small supervised set to train a simple classifier on a recognition task.

4. Assess performance on large test set.

5. There is no overlap between the embedding, training and test set at the level of orbits!

"Late Night" face dataset: Automatic orbit extraction

Trade-off between weak and exact, full supervision
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(LEFT PLOT) Sample complexity: Accuracy (across 10 re-samples) vs. training set size on the Late Night face dataset.

Task is a 28-way face discrimination (linear SVM), with embeddings learned on a separate set (500 orbits).

(RIGHT PLOT) Embedding and sample complexity trade-off: Accuracy map (mean across 10 train/test re-splits of the

validation set) of OJ for 1-20 labeled examples per class for classifier learning and 10-500 orbits for embedding learning.

One-shot learning on standard image benchmarks
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Even/OddMNIST
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Distances in embedding spaces.
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2D t-SNE projections of face image embeddings inMulti-PIE (10 random classes, coded by different colors).
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