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SUMMARY

Distributed neural population spiking patterns in macaque inferior temporal (IT) cortex that support core ob-
ject recognition require additional time to develop for specific, ‘‘late-solved’’ images. This suggests the ne-
cessity of recurrent processing in these computations. Which brain circuits are responsible for computing
and transmitting these putative recurrent signals to IT? To test whether the ventrolateral prefrontal cortex
(vlPFC) is a critical recurrent node in this system, here, we pharmacologically inactivated parts of vlPFC
and simultaneously measured IT activity while monkeys performed object discrimination tasks. vlPFC inac-
tivation deteriorated the quality of late-phase (>150 ms from image onset) IT population code and produced
commensurate behavioral deficits for late-solved images. Finally, silencing vlPFC caused themonkeys’ IT ac-
tivity and behavior to become more like those produced by feedforward-only ventral stream models.
Together with prior work, these results implicate fast recurrent processing through vlPFC as critical to pro-
ducing behaviorally sufficient object representations in IT.

INTRODUCTION

A goal of visual neuroscience is to identify and model the brain

circuitry that seamlessly solves the challenging computational

problem of rapid visual object categorization (DiCarlo and Cox,

2007; Riesenhuber and Poggio, 2000; Yamins and DiCarlo,

2016). Previous studies (Freiwald et al., 2009; Hung et al.,

2005; Kar et al., 2019; Logothetis and Sheinberg, 1996; Majaj

et al., 2015) show that the pattern of neural activity in primate

inferior temporal (IT) cortex can explicitly represent visual object

identities. However, current models of core object recognition

fall short of fully explaining both primates’ behavioral image-

by-image difficulty patterns (Geirhos et al., 2017; Rajalingham

et al., 2018) and the distributed population activity patterns of

IT neurons (Kar et al., 2019).

These models primarily belong to the family of deep convolu-

tional neural networks (DCNNs) with predominantly feedforward

architectures. More recent models are beginning to implement

recurrent architectures (Kubilius et al., 2019; Nayebi et al.,

2018; Spoerer et al., 2017), but experimental data to guide their

development are needed. Toward that goal, we have recently

demonstrated (Kar et al., 2019) the critical role of putative recur-

rent signals available at the late phases of the image-evoked IT

responses in enabling accurate core object recognition, at least

for some images. That study also speculated that the lack of

recurrent computations in the feedforward DCNN models might

have led to its poor behavioral accuracy and poorer prediction of

the late-phase IT responses. Nevertheless, which recurrent cir-

cuit motifs in the primate brain aremost critical: within the ventral

stream, within IT, top-down from regions downstream of IT (e.g.,

prefrontal cortex [PFC] and amygdala), or all of the above? Iden-

tifying these circuits and inferring their computational functions

is critical in developing the next generation of models of the pri-

mate visual intelligence and behaviors such as core object

recognition.

Kar et al. (2019) determined, for each tested image, the time

when response patterns of the IT neuronal population could suf-

ficiently account for the monkey’s object recognition perfor-

mance on that image, referred to as the object solution time

(OST; one OST computed per image; Figure 1A). They also iden-

tified hundreds of images that critically relied on the early (90–

120 ms) and late (150–180 ms) phases of the IT responses after

image onset (Figure 1B). These results point to a targeted disrup-

tion strategy to test the aforementioned critical recurrent circuits.

Specifically, if a particular recurrent circuit motif is critical for

core object recognition, then its disengagement should (1) pre-

vent the emergence of linearly decodable object identity infor-

mation in the late phases of the IT responses, with little or no ef-

fect on the early phase, and (2) result in a reduction in behavioral

performance for the ‘‘late-solved’’ images, with little or no effect
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on behavior performance for the ‘‘early-solved’’ images. In this

study, we tested those two predictions for a circuit motif that is

recurrently connected to the ventral visual stream, ventrolateral

prefrontal cortex (vlPFC).

Among the multiple downstream targets of IT, we chose to

first test vlPFC because (1) it is downstream of IT but has

strong recurrent anatomical connections to IT (Borra et al.,

2010; Webster et al., 1994; Yeterian et al., 2012); (2) following

object-category learning, it has been shown to contain ob-

ject-category selective neurons (Freedman et al., 2001, 2003)

that maintain the category-related signals beyond the stimulus

presentation, while these signals transiently disappear after the

feedforward pass and then reappear later at the level of IT (sug-

gesting a top-down feedback from vlPFC); (3) previous studies

have demonstrated changes in IT resulting from lesion-based

(Tomita et al., 1999), pharmacological (Monosov et al., 2011),

and thermal perturbation (Fuster et al., 1985) of PFC; and (4)

methods to silence vlPFC are experimentally straightforward,

because vlPFC is downstream of IT. Specifically, we pharma-

cologically silenced (via muscimol, a GABAA agonist)

�0.4 cm3 of vlPFC in each of two monkeys and measured

changes in IT population activity at the multi-unit level (with

chronically implanted Utah arrays ipsilateral to the targeted

vlPFC; see Figure 3A) and the corresponding changes in core

object recognition performance.

Our results show that the inactivation of vlPFC reduced the

quality of the late-phase IT population activity, as assessed by

the linear decodability of object identities.We also observed cor-

responding behavioral deficits in core object recognition tasks;

the deficits were significantly higher for late-solved images.

Interestingly, the inactivation of vlPFC caused the late-phase IT

neural activity to become better explained by feedforward-only

DCNN models of the ventral stream. These results argue that

fast recurrent processing through vlPFC is critical to the produc-

tion of fully robust object representation in IT and the core object

recognition behavior that it supports and that current, feedfor-

ward-only computational models of the ventral stream lack these

computations.

RESULTS

As outlined above, we reasoned that, if recurrent processing via

vlPFC to the primate ventral stream is critical for robust core ob-

ject recognition, then inactivating parts of the vlPFC should pro-

duce specific changes in the IT population activity patterns and

specific behavioral deficits. In particular, the neural and

A B

Figure 1. Motivation

(A) Estimation of object solution time (OST). For each image presentation (an example image of a bear is shown; 100 ms), we counted the number of multi-unit

spike events (see STAR Methods for details) per site in nonoverlapping 10-ms windows after stimulus onset to construct a single population activity vector per

time bin. These population vectors (image-evoked neural features) were then used to train and test cross-validated linear support vector machine decoders (D)

separately per time bin. The decoder outputs per image (over time) were then used to perform a binary match to sample task (see STAR Methods) and obtain

neural decode accuracies at each time bin. The time at which the neural decodes equal the primates’ (pooled monkey) performance was then computed as the

OST for that specific image.

(B) Temporal evolution of linearly decodable object identity information in IT on an image-by-image basis. For each tested image, we measured (Kar et al., 2019)

the IT population response vector (n = 424 neural sites) across time (10ms resolution). For each time point, we estimated the linear decodable information (cross-

validated across images). Each image achieved a solution goodness (linear decode accuracy for object identity; d0) that matches the monkey’s behavioral

accuracy (average of d0 = 2.5 for the example images, shown as a gray shaded line) after different amounts of processing time (OST; gray histogram over; 1,320

tested images). Using a range of controls, Kar et al. (2019) concluded that images that exhibit longer OSTs (late solved; red curves show two examples) likely

require more recurrent processing (relative to images that exhibit shorter OSTs, or early-solved images; blue curves show two examples).
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behavioral deficits should be higher for late-solved images,

which do not produce a fully formed IT population representation

until 150–180 ms after stimulus onset (Kar et al., 2019; see

Introduction).

To test the role of vlPFC, we used pharmacological inactiva-

tion of subregions of vlPFC, as previously anatomically land-

marked (Freedman et al., 2003; McKee et al., 2014; Tomita

et al., 1999), and identified in this study by structural MRI (Fig-

ure 2A; see STAR Methods). Based on the expected locations

of object-category-selective vlPFC neurons (Freedman et al.,

2001, 2003), we first performed a single electrode measure-

ment survey to locate vlPFC subregions that exhibited strong

visual drive and coarse category selectivity (Figures 2B–2D;

see STAR Methods). We then performed a second structural

MRI (now with markers inserted at these locations) to ensure

that the localized object-category selective vlPFC sites were

anatomically consistent with previous reports (Freedman

et al., 2001, 2003). We divided the data collection into two

types of sessions: days with and without muscimol injections

(Figure 3A). These two session types were repeated in an

alternating sequence with at least 1 day of recovery after

each muscimol session (Figure 3B; experimental timeline).

This design may confound animal satiety and motivation

with the effects of muscimol. However, the visual hemifield

bias of our reported effects (see below) argues against that.

In each session (day), monkeys performed the following tasks

sequentially: a passive fixation task, a binary object discrimi-

nation task, and a second passive fixation task (see STAR

Methods). On the second session (day), after the initial pas-

sive fixation task (included in the no-muscimol condition dur-

ing all the analyses), we injected a total of 10 mL muscimol at

five depths (2 mL each) separated by 0.5 mm in the previously

localized vlPFC area (see STAR Methods for details). We in-

jected in the left hemisphere of monkey B and right hemi-

sphere of monkey N.

An Assay for Recurrence-Dependent Computation:
Early-Solved versus Late-Solved Images
Previous studies (Hung et al., 2005; Majaj et al., 2015) have

demonstrated that object identity is linearly expressed in the

pattern of IT neural activity. Using linear decoders, we have pre-

viously estimated the precise time it takes for the macaque IT

population to temporally evolve to this linearly explicit pattern

for each of 1,320 images (Kar et al., 2019; briefly illustrated in Fig-

ures 1A and 1B). We refer to this time as the OST. OST is an es-

timate (done per image) of the amount of time needed to

compute a behaviorally sufficient neural population solution in

IT. Longer OSTs, therefore, suggest additional, putatively recur-

rent computations, beyond what could be achieved by the early,

feedforward IT responses. In this study, our analyses primarily

focus on comparing the neural and behavioral effects of vlPFC

inactivation on the images that are solved quickly (early-solved

images; OST range, 90–120 ms) with the effects on images

that are solved slightly later (late-solved images; OST range,

150–180 ms).

As outlined in the Introduction, we hypothesized that if the

inactivation of vlPFC (Figure 3A) disrupted behaviorally critical

recurrent computations, then we should expect to see specific

changes in IT population codes, and we should also see spe-

cific changes in behavior. In particular, we should observe a

more significant muscimol-induced IT decode and behavioral

performance deficit for images with late OSTs (H2; Figure 3C,

bottom panel). The other possibilities are that we observe no

change (H0; Figure 3C, top panel) in behavioral performance

across images or an overall shift in the behavioral perfor-

mance consistently across images with varied OSTs that

A

B C D

Figure 2. Approximate Location and Func-

tional Properties of Injection Targets in

vlPFC

(A) The left panel shows the approximate anterior-

posterior (AP) boundaries (black dashed lines) of

the chamber that was placed over vlPFC. The

green line denotes the location of the coronal

section displayed on the right. The arrow refers to

more anterior locationsmatching the other coronal

MRI images. The right panels show structural MRI

images of the approximate targets of the musci-

mol injections (SAR, superior arcuate sulcus; PS,

principal sulcus; IAR, inferior arcuate sulcus). In-

jections were made lateral and ventral to the

principal sulcus (indicated by the green patch).

(B) Sample neural responses from a vlPFC site

(averaged across 10 repetitions and 80 images)

exhibiting visual drive. Error bars denote SEM

across images.

(C) Coarse category selectivity of an example

vlPFC neural site. Each curve is the average

response per object category (8 images per

category, 10 repetitions per image).

(D) Distribution of onset latencies of 15 neural sites

in vlPFC (7 in monkey B, 8 in monkey N).

ll
OPEN ACCESSArticle

Neuron 109, 1–13, January 6, 2021 3

Please cite this article in press as: Kar and DiCarlo, Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral
Stream for Robust Core Visual Object Recognition, Neuron (2020), https://doi.org/10.1016/j.neuron.2020.09.035



might indicate a global shift in arousal (H1; Figure 3C, mid-

dle panel).

vlPFC Inactivation Reduces IT Late-Phase Population
Activity
We first explored the effect of vlPFC inactivation on the quality of

the IT neural population patterns evoked by each image. Upon

visual inspection (Figure 4B), we observed that vlPFC inactiva-

tion did not produce a reduction in the mean initial (90–120ms)

image-driven activity. However, vlPFC inactivation appeared to

moderately reduce the later portion of the IT responses (i.e.,

starting �140 ms after image onset). To look more closely, we

compared IT responses at two specific time bins, early phase

(90–120 ms; Figure 4C) and late phase (150–180 ms; Figure 4D).

We found that across the entire recorded IT population (n = 153

sites), vlPFC inactivation produced no significant difference in

the mean response (averaged over all images) in the early phase

(DRearly = �18% ± 46.4%, mean ± SEM; paired t test; t(152) =

0.5885, p = 0.5571). However, vlPFC inactivation produced a

significant reduction in mean late-phase IT responses (averaged

across images; DRlate =�31.83% ± 10.4%, mean ± SEM; paired

t test; t(152) = 8.5906, p < 0.0001). Also, we noted that the time of

the emergence of a drop in the mean IT response (black versus

green line in Figure 4B) coincided with the latencies of the vlPFC

neurons that we recorded at the targeted injection sites (refer

Figure 2D) as well as previously measured latencies of neurons

in this area (Freedman et al., 2001, 2003). We note that these

mean firing rate effects are also consistent with prior causal

perturbation studies in other pairs of visually driven cortical areas

(see Discussion).

vlPFC Inactivation Selectively Disrupts the Late-Phase
IT Population Code
The neural representations that enable robust object recognition

are more subtle than the mean firing rates analyzed above.

Indeed, we previously reported that while many images evoke

high mean firing rates in IT cortex, a linearly readable solution

of the foreground object in those images is not present in that ac-

tivity and emerges only later after subtle changes in the neuron-

by-neuron distributed population code (Kar et al., 2019). Thus,

we next aimed to examine the temporal evolution of the quality

of the IT population code for early-solved versus late-solved im-

ages. Here, we assessed ‘‘quality’’ as the ability of the population

code to support a linear readout of object identity for held-out

test images (i.e., via cross-validation; see STAR Methods). As

outlined before, we sought to specifically test the hypothesis

(H2; Figure 3C, left column) that vlPFC feedback to the ventral

stream, is particularly critical to the development of late-phase

IT object solutions. This hypothesis predicts that vlPFC inactiva-

tion should induce more significant disruptions in the quality of

the IT population code for late-solved images compared to the

early-solved images at their corresponding OSTs. To control

for the behavioral accuracy levels across images, we sub-

selected images (out of the total 1,320 tested images) for two

Δ IT Population 
Decode

H1

H2

H0
no change

global deficit

more deficit for 
“late-solved” images

0

0

0

Δ Behavior
(e.g. accuracy)

Hypotheses

0

0

0

utah arrays in IT

feedback projections 
from PFC to IT

pharmacological
 inactivation
(muscimol)

muscimol
Experimental timeline

Days 1 2 3 4 5 6 7 8 9 10 11 12
no-muscimol

“early-solved” images
“late-solved” images

A C

B

Figure 3. Experimental Setup and Hypotheses

(A) Pharmacological inactivation of vlPFC (ipsilateral to the IT recording location) with simultaneous IT population recordings.

(B)We divided the experiments into two different sessions, without (gray boxes) andwith (green boxes)muscimol injections, conducted on consecutive days, with

the exception of a passive viewing session before injections on the days with muscimol injections (see STAR Methods). We repeated each session in the same

order after a minimum gap of 1 day (empty boxes). We completed at least 10 sessions for each condition type.

(C) Hypothesized effects of vlPFC inactivation. One hypothesis (H0) is that the robustness of the IT object codes for core object recognition (~200 ms of pro-

cessing) does not rely at all on vlPFC, which predicts no change in IT responses or behavior for both early- (blue bar) and late-solved (red bar) images. Another

hypothesis (H1) is that vlPFC plays an overall modulatory role in ventral stream computations, which predicts deficits in IT population solution goodness and

behavior that are equal for both groups of images. Finally, a third hypothesis (H2) is that vlPFC as a critical recurrence node in the brain circuitry for core objection,

which predicts larger IT population solution deficits and larger behavioral deficits for late-solved images. A mixture of H1 and H2 is also possible (see open blue

bars; see Discussion for alternative interpretations).
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groups, early solved (209 images) and late solved (234 images),

that all had a (pre-muscimol) d0 between 2 and 4 (as measured in

an earlier study; Kar et al., 2019).

First, we observed that the quality of IT neural population co-

des (as estimated by linear decode accuracies of object identity)

were significantly less accurate at later time points after vlPFC

inactivation (>150 ms after image onset; median reduction =

�2.44%, t test, t(441) = 5.11, p < 0.001; Figure S1A). Further-

more, to estimate whether the muscimol-induced change in IT

linear decodability of objects was dependent on the previously

estimated OST values (Kar et al., 2019), we compared the IT

decode accuracies for the early-solved and late-solved images

at each time point (10-ms nonoverlapping bins) after the onset

of the test image stimulus (Figure 4E, left panel). We observed

that although there is a small but significant drop in the late-

phase IT decodes for early-solved images (blue curve), this

drop is significantly less than that for the late-solved images

(comparison of blue and red curves between 150 and 180 ms;

t test, t(441) = 7.3; p < 0.0001). To directly test the effects of

vlPFC inactivation at the most behaviorally relevant IT response

times, we focused primarily on the corresponding OSTs per im-

age for future analysis (Figure 4E, right panel). We refer to the

A

E F G

B C D

Figure 4. Neural Experiments and Results

(A) Wemeasured neural responses from 153 sites in the IT cortex across two monkeys while they performed a battery of core recognition tasks, with and without

muscimol injections in vlPFC.

(B) Normalized mean IT firing rate in the two conditions (black, no-muscimol control condition; green, after muscimol injections in vlPFC). The shades indicate

SEM across images.

(C) We observed no significant differences across neurons at the early phase (90–120 ms) of the IT responses (DRearly = �18% ± 46.4%, mean ± SEM; paired t

test; t(152) = 0.5885, p = 0.5571).

(D) We observed a small but significant reduction in firing rates at the late phase (150–180 ms) of the IT responses (DRlate = �31.83% ± 10.4%, mean ± SEM;

paired t test; t(152) = 8.5906, p < 0.0001). Error bars for (C) and (D) denote the standard deviation of responses across images per neuron.

(E) Images (n = 234) with late OST (in red) showed a significantly higher drop in IT population decode accuracy across time (left panel) and at their corresponding

OST (right panel) upon vlPFC inactivation compared to the images (n = 209) with early OST (in blue). This comparison was made with all images that had a

measured (behavioral) d0 between 2 and 4, asmeasured in separate animals (Kar et al., 2019). Error bars denote SEMacross images.We quantified the strength of

this interaction as the difference in the muscimol-induced change (right panel), and we refer to that measure as dIT.

(F) Themean dIT was consistently less than 0 for images selected in different ranges of behavioral accuracies. We also observed a negative trend for most, but not

all, recognition sub-tasks (t test, t(9) = 1.9718, p = 0.0401). Error bars denote bootstrap confidence interval (CI) (95%).

(G) Interaction strength was significantly stronger when we restricted the measurements to images where the object center was in the contralateral visual field

(monkey N, ipsilateral dIT: �2%, contralateral dIT: �5.8%, permutation test of difference, p < 0.001; monkey B, ipsilateral dIT: 0.1%, contralateral dIT: �2%,

permutation test of difference, p < 0.001). Error bars denote bootstrap CI (95%).

See also Figure S1.
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difference (early minus late) in the muscimol-induced deficits as

dIT (as shown in Figure 4E). We observed that vlPFC inactivation

disrupts the formation of IT solutions for the late-solved images

more than it disrupts the formation of IT solutions for the early-

solved images (DIT population decodeaccuracy
early = 0.16% ±

0.53% ; DIT population decodeaccuracy
late = �2% ± 0.61%,

median ± SEM ; t test, t(441) = 2.4084, p = 0.0165; Figure 2E).

Moreover, we found that this effect persisted even with different

behavioral accuracy level choices (behavioral levels considered

in d0: < 2, 2–2.5, 2.5–3, > 3; corresponding dIT values were

�1.63%, �5.63%, �1.57%, and �1.9%; Figure 4F). Also, dIT

was significantly less than zero considering each of the 10 tested

objects (10 tasks, t test, t(9) = 1.9718, p = 0.0401; Figure 4F). We

observed that the dIT values, whenmeasured separately for each

monkey, were significantly more negative for images where the

object center was present in the contralateral hemifield (monkey

N, ipsilateral dIT: �2.01%, contralateral dIT: �5.8%, permutation

test of difference, p < 0.001; monkey B, ipsilateral dIT: 0.1%,

contralateral dIT: �2%, permutation test of difference, p <

0.001; yellow bars; Figure 4G) compared to those in the ipsilat-

eral hemifield (purple bars; Figure 4G). We also observed that if

we grouped images based on the latency of IT decodes esti-

mated in the current study, images that take longer to reach a

specific threshold (accuracy of 0.6) showed higher decoding

deficits upon vlPFC inactivation (see STAR Methods for details).

Taken together, our results demonstrate that vlPFC inactivation

disrupts the formation of IT neural population solutions more

strongly for images for which those solutions take longer to

develop, consistent with the hypothesis that vlPFC is part of

the critical recurrent circuitry.

vlPFC Inactivation Produces Larger Behavioral Deficits
for Late-Solved Images
To further test how vlPFC inactivation affects behavior across

late-solved and early-solved images, we measured the mon-

keys’ behavioral performance during an array of binary object

discrimination tasks (Figure 5B). Identical to Kar et al. (2019), in

each image, the primary visible object belonged to one of 10

different object categories (Figure 5A). First, we observed that

there was a significant overall reduction (Dperformance =

6.03% ± 0.3% [mean ± SEM], paired t test; t(859) = 17.13, p <

0.0001; Figure S3A) in performance for a binary object discrimi-

nation task (Figure 5B) across all sessions after the muscimol in-

jections. Consistent with hypotheses H2 (Figure 3C), vlPFC inac-

tivation caused a significantly higher reduction in performance

for late-solved images compared with early-solved images

(Dperformanceearly = �4.76% ± 0.45%; Dperformancelate =

�7.4% ± 0.5% [median ± SEM]; t test, t(441) = 2.3978, p =

0.0085) . We refer to the difference in the behavioral deficits for

the early versus the late-solved images as dB (as shown in Fig-

ure 5C). We observed that dB was consistently negative (i.e.,

greater behavioral deficits for late-solved images compared to

early-solved images) across images grouped according to

different behavioral accuracy level choices (behavioral levels

considered in d0: < 2, 2–2.5, 2.5–3, > 3; corresponding dB values

were�4.24%,�1.9%,�2.23%, and�1.9%; Figure 5D). Also, dB

was significantly less than zero considering each of the ten

tested objects (10 tasks, t test, t(9) = 2.6245, p = 0.0276). We

observed that the dB values when measured separately for

each monkey were significantly higher for images in which the

object center was in the contralateral hemifield (monkey N, ipsi-

lateral dB:�2%, contralateral dB:�4.8%, permutation test of dif-

ference, p < 0.001; monkey B, ipsilateral dB: 0.1%, contralateral

dB: �3.3%, permutation test of difference, p < 0.001; Figure 5E,

yellow bars), compared to those in the ipsilateral hemifield (Fig-

ure 5E, purple bars). We also observed an overall increase in re-

action times after muscimol injections (DRT = 46.3 ± 2.1 ms; t

test; t(858) = 16.3729, p < 0.001). Similar to the behavioral accu-

racy results, we observed that vlPFC inactivation increased re-

action times, and that this increase was significantly higher for

late-solved images than for early-solved images (DRTearly =

�34 ± 4.19 ms ; DRTlate = 55 ± 3.9 ms, median ± SEM ; t test,

t(441) = 2.0488, p = 0.04; Figure S3C).

These results show that core object discrimination behavior in

macaques is disrupted by the inactivation of vlPFC, establishing

this area as a critical component of the brain circuitry that is

involved in core object recognition. Furthermore, the perfor-

mance changes (deficits in task accuracy and reaction time) de-

pended on the image being processed; the deficits were more

severe for images that more likely depend on recurrent process-

ing (as indexed by each image’s IT OST; Kar et al., 2019). These

behavioral results are qualitatively consistent with the IT neural

results (Figure 4) under the assumption that the behavior is the

consequence of mechanisms that are approximated by linear

readouts from IT (Majaj et al., 2015). The latter assumption is

further strengthened by our observation that the capability of

the current best decoding model (Majaj et al., 2015; see STAR

Methods) linking IT population activity to trial by trial monkey

behavior (see Figure S5) did not change significantly after the

inactivation of vlPFC.

Inactivation of vlPFC Causes the Ventral Stream to
Operate More Similarly to Feedforward Computational
Models
We have previously shown (Kar et al., 2019) that some feedfor-

ward DCNNs (specific DCNNs) predict the early feedforward re-

sponses of the IT neurons quite well but are far worse at predict-

ing the late-phase IT responses. These prior results (and other

work; see Discussion) suggest that the early-phase IT responses

are primarily the product of feedforward computations but that

the late-phase IT responses are a more balanced mixture of

feedforward and recurrent computation (e.g., through vlPFC,

as suggested by the results above). Under this hypothesis, the

relatively weak ability of these DCNN ventral stream models to

explain the late-phase IT responses is due to the lack of the

appropriate recurrent computations. If we assume that vlPFC

inactivation removes those additional recurrent computations

(or blocks the transmission of the results of those computations

to IT), vlPFC inactivation should make the late-phase IT repre-

sentations revert to a more feedforward-only mode of operation.

vlPFC inactivation should, therefore, make the top of the ventral

stream operate more like a feedforward-only network.

To test this, we used a set of existing feedforward DCNN

models (refer Table S1), and we asked whether vlPFC inactivation

causes the late-phase IT response (recorded during a passive fix-

ation task) to become better explained (predicted) by these
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feedforward models (Figure 6A). We used standard measures of

mapping the components of feedforward models onto the re-

sponses of individual IT neural sites (Kar et al., 2019; Schrimpf

et al., 2018; Yamins et al., 2014; see STAR Methods), and we

took the goodness of fit to be themedian predictivity across all re-

corded neural sites. Remarkably, we observed that vlPFC inacti-

vation significantly improved the match of the late-phase (150–

180 ms) IT responses to the feedforward DCNN (AlexNet ‘‘fc7’’)

predictions (median late-phase %EV: without muscimol =

21.98%, with muscimol = 28.28%; paired t test across neurons;

t(152) = 8.55, p < 0.0001; Figure 6B, top panel; also see Fig-

ure S4B). Consistent with this, we also found that the vlPFC inac-

tivation caused the late-phase IT responses to be more similar to

the early-phase IT responses, as measured by correlation of im-

age response rank order (early versus late) compared across

the muscimol and no-muscimol conditions (paired t test;

t(152) = 7.24; p < 0.001, see STAR Methods). These results

were also consistent acrossmultiple feedforwardmodels (see Fig-

ure S5C) and across the neural data measured during the object

discrimination task (median DIT predictivity was 5.21% ± 1.8%).

We also know from previous work (Rajalingham et al., 2018)

that the DCNN models of core object recognition fail to explain

A

C D E

B

Figure 5. Behavioral Experiments and Results

(A) We tested behavioral performance on ten object categories, where performance was derived from the corresponding 45 binary object discrimination tasks

with those 10 categories.

(B) Two example trials of the binary object discrimination task showing the timeline of events. Monkeys fixate on a central dot, and then the test image at 8�

containing 1 of 10 possible objects is shown for 100ms (shown is a car [left trial] and a zebra [right trial]). After a 100-ms delay, a canonical view of the target object

and a distractor object (one of the other nine objects) appears (randomly assigned on each trial to the left and right positions), and the monkey indicates which

object was present in the test image by making a saccade to one of the two choices. We compared performance on sessions with and without muscimol in-

jections in vlPFC.

(C) vlPFC inactivation resulted in a larger performance drop among images (n = 234) with late OST (red bar), compared to the images (n = 209) with early OST (see

Results for statistics). This comparison was made with all images that had a measured d0 between 2 and 4. Error bars denote SEM across images. We quantified

the strength of this interaction as the difference in the muscimol-induced change, and we refer to that measure as dB.

(D)We observed that themean dBwas consistently less than 0 for images selected in different ranges of behavioral accuracies.We also observed a negative trend

for most, but not all recognition sub-tasks (t test, t(9) = 2.6245, p = 0.0276). Error bars denotes bootstrap CI (95%).

(E) We found that the interaction strength was significantly stronger when we restricted the measurements to images where the object center was in the

contralateral visual field (monkey N, ipsilateral dB: �2%, contralateral dB: �4.8%, permutation test of difference, p < 0.001; monkey B, ipsilateral dB: 0.1%,

contralateral dB: �3.3%, permutation test of difference, p < 0.001). Error bars denotes bootstrap CI (95%).

See also Figure S3.
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primate behavior at an image-by-image level fully; that is, those

models do not fully explain and predict which images primates

perform well on and which images they perform poorly on. Our

results show that vlPFC inactivation changed the late-phase IT

population patterns such that they became better matched to

the ‘‘IT’’ (penultimate) layers of feedforward DCNNs. Taken

together with prior work that tightly linked primate object recog-

nition behavior to patterns of IT population activity (Majaj et al.,

2015), we asked whether the vlPFC inactivation also changed

the monkey image-by-image behavior patterns. Indeed, we

observed that vlPFC inactivation significantly, improved the im-

age-by-image consistency (normalized correlation, see STAR

Methods) between the monkeys’ object recognition behavior

and the object recognition behavior of the feedforward models.

(behavioral predictivity without vlPFC inactivation = 0.43, behav-

ioral predictivity after vlPFC inactivation = 0.56; permutation test

of difference; p < 0.0001; Figure 6B, bottom panel).

We have previously developed a state-of-the-art neural

network model of the ventral stream named CORnet-S that con-

tains some recurrence (Kubilius et al., 2019). Thatmodel includes

areas V1, V2, V4, and IT, but it does not include vlPFC, and all of

its modeled recurrences are local to each cortical area. We

compared the similarity of its IT and behavioral layers with the

primate IT and behavioral data (similar to the metrics used for

the feedforward DCNNs) to ask how this model is related to

the current experimental results. We found that as with the feed-

forward-only models, vlPFC inactivation caused the primate IT

and behavior to increase (%DEV = 2.41%± 0.47%,D behavioral

predictivity = 0.14) its match to CORnet-S, suggesting that

CORnet-S also does not contain all the normally functioning

vlPFC recurrent processing. However, we also found that this in-

crease was lower than that observed for shallower feedforward

models and was similar in magnitude to the much deeper

DCNNs (Figure S5B). This similarity in brain matching between

very deep DCNNs and shallower recurrent networks like

CORnet-S was previously reported (Kar et al., 2019) and fol-

lowed from earlier theoretical work (Liao and Poggio, 2016).

These model comparison results suggest that CORnet-S is

A B

Figure 6. Comparison with Computational Models: vlPFC Inactivation Causes the Ventral Stream to Behave More Like Feedforward Models

(A) We showed 683 images to the monkey (fixated passive viewing) while recording simultaneously from their IT cortex, with and without vlPFC inactivation (top

panel). The dashed red line denotes the recurrent pathway between vlPFC and the primate ventral stream.We compared the IT responseswith andwithout vlPFC

inactivation to those of the penultimate (‘‘IT’’) layers of a feedforward DCNNmodel of the ventral stream (bottom panel) using previously establishedmethods (see

STARMethods).We also compared the pattern ofmonkeys’ behavioral responses (pattern of difficulty over images, see Rajalinghamet al., 2018) with andwithout

vlPFC inactivation to the model’s behavioral pattern. In both types of comparisons, the key measure is referred to as predictivity, as it assesses the goodness of

model predictions on new images.

(B) Top: comparison of IT predictivity (%EV) of AlexNet (fc7) for early (90–120 ms) and late (150–180 ms) responses, without (black) and with (green) vlPFC

inactivation. We observed that vlPFC inactivation resulted in a significant increase in the match of the late phase of the IT population pattern to the feedforward

DCNN ‘‘IT’’ population pattern. No significant changes were observed for early responses. Error bars denote SEM across 153 neural sites. Bottom: vlPFC

inactivation resulted in a slight but significant increase in the match of the monkeys’ object recognition behavior to the object recognition behavior of the

feedforward models (match assessed as the correlation (model versus monkey) of the image-by-image pattern of difficulty).

See also Figures S4 and S5 and Table S1.
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more like the ventral visual stream than feedforward-only models

(as previously described in Kubilius et al., 2019), but the inactiva-

tion results presented here demonstrate the need to further

improve the CORnet family of recurrent models by incorporating

a recurrently connected vlPFC node.

In sum, these results suggest that vlPFC is a critical circuit

node that is recurrently modulating the population dynamics of

IT. Partially inactivating that node restricts the IT population

pattern from correctly evolving away from its initial feedforward

response pattern, leaving both the early (especially) and the

late IT population patterns reasonably well approximated by cur-

rent feedforward DCNN models of the ventral stream.

DISCUSSION

In this work, we investigated whether the recurrent circuit con-

necting macaque vlPFC to the ventral visual pathway is critical

for executing robust core object recognition. We reasoned that

if this bidirectional circuitry is indeed critical, then silencing parts

of it should produce deficits in the quality of population activity

recorded in the IT cortex that is responsible for accurate core

recognition behavioral performance. More specifically, based

on our prior work (Kar et al., 2019), we hypothesized that we

should observe larger deficits for images that take slightly longer

to solve and thus their solutions are more likely dependent on

recurrent computations (late-solved images; benchmarked

earlier in Kar et al., 2019).

Consistent with this hypothesis, we observed that vlPFC inac-

tivation produced deteriorations in the quality of the IT popula-

tion code and deteriorations in behavioral performance that

were significantly higher for the late-solved images than for the

early-solved images. Furthermore, we found that vlPFC inactiva-

tion caused the late phase of the IT population response and the

monkey behavior to more closely match the ‘‘IT’’ and behavioral

responses of some of the leading feedforward models of the

ventral stream. These results suggest that vlPFC is part of a

recurrent circuit that boosts the performance of the ventral

stream (relative to shallow feedforward DCNNs) by reshaping

the initial (early-phase, putatively feedforward-only) neural repre-

sentations in the IT cortex, resulting in corresponding behavioral

gains. Consistent with this, removal of vlPFC made the ventral

stream operate more like a shallow feedforward system. When

considered alongside prior work (Kar et al., 2019), this vlPFC cir-

cuitry is most critical for images that are challenging for shallow

feedforward computer vision systems.

Experimental Guidance on Developing New Scientific
Hypotheses of Ventral Stream Function
Our current best understanding of neural processing along the

ventral stream is carried by specific models in the class of feed-

forward deep artificial neural networks. These models are the

current best scientific hypotheses of the ventral stream, because

they have the highest overall prediction accuracy (a primary test

of a scientific hypothesis: Hempel, 1966; Popper, 1959) for im-

age-evoked responses at all levels of the ventral stream (mean

accuracy in V1, V2, V4, and IT; Schrimpf et al., 2018). However,

because these models do not perfectly predict the image-

evoked neural responses of these different areas of the ventral

stream (for comparison across different models, see Schrimpf

et al., 2018), multiple groups are working to develop even more

accurate scientific hypotheses (e.g., Kubilius et al., 2019; Nayebi

et al., 2018; Spoerer et al., 2017). What components do these

current models lack? Clearly, the models are missing many

things at the single-‘‘neuron’’ level, such as voltage-gated chan-

nels to generate spikes, dendritic trees, and synaptic compo-

nents. We motivated this study by first asking what critical

network-level components are missing from these models.

Many studies and reviews have suggested the importance of

including recurrent circuits to improve such models (Kar et al.,

2019; Kietzmann et al., 2019; Lehky and Tanaka, 2016; Tang

et al., 2018). This idea is motivated on both anatomical and func-

tional grounds. For example, previous reports (Sugase et al.,

1999) have demonstrated that different forms of information

can be decoded from early and late responses in IT, suggesting

a potential role of intra-areal recurrent inputs to shaping IT pop-

ulation response dynamics. Consistent with the hypothesis that

recurrent signalsmodify late-phase IT population responses, Kar

et al. (2019) showed that the ability of feedforward DCNNs to pre-

dict the IT population pattern significantly worsened as the IT

response pattern evolved. They also showed that this latter

portion of the IT population response pattern carries the linearly

available object identity information for many specific images

that enable primates to successfully solve them, vastly outper-

forming shallow feedforward DCNN computer vision models. In

sum, the late phase of the IT population response is likely impor-

tant for robust core recognition behavior, likely depends on

recurrent circuits, and is largely missing from the current best

models of the ventral stream. Thus, to produce models of the

ventral stream that more closely mimic the mechanisms of the

primate brain, a proper form of recurrent network-level process-

ing is needed.

What type of recurrent processing is needed? To begin to

answer that question, we started with an even more basic ques-

tion: what circuit nodes in the brain are computing and carrying

the recurrent signals that we see manifesting as a temporal evo-

lution of the IT late-phase responses? Prior work suggests many

potential sources of such signals, including within ventral stream

bidirectional pathways, as well as top-down feedback frommul-

tiple downstream areas, including vlPFC, peri-rhinal cortex,

amygdala, and striatum (for review, see Kravitz et al., 2013).

For reasons outlined in the Introduction, in this study, we have

specifically focused on vlPFC.

To test the functional importance of a downstream node that is

recurrently connected to a target region of interest, many previ-

ous studies in the visual system (Bullier et al., 2001; Hupé et al.,

1998; Sandell and Schiller, 1982;Wang et al., 2000) have used an

inactivation method similar the one deployed here. In general,

those studies report that this downstream manipulation results

in a decrease in responses of neurons in earlier cortical areas,

which is analogous to the reduction (�30%) in IT activity level

that we have observed here (Figure 4B). For instance, inactiva-

tion of area MT (feedback node) via cooling led to a �20%–

40% decrease in V1 and V2 responses (refer to Figures 1 and

2 in Hupé et al., 1998). Focusing specifically on vlPFC and IT,

prior studies have confirmed that IT responses, similar to other

visual areas are modulated by feedback from downstream
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areas. For example, Fuster et al. (1985) showed that temporary

lesions produced by cooling in dorsolateral PFC affected color

selectivity in IT neurons. Tomita et al. (1999) performed anterior

and posterior commissurectomies and observed that the re-

sponses of IT cortical neurons are modulated by input from the

prefrontal cortices, especially for visual information in the contra-

lateral visual field.

Our work is consistent with those studies in that IT responses

can be altered by vlPFC. However, unlike the work presented

here, those earlier studies did not specifically investigate the

changes in the distributed IT population code or primate

behavior with respect to object recognition, which can guide

the development of new models of primate vision. Specifically,

that prior work did not engage on questions of the quality of in-

formation for recognition behavior at an image-by-image resolu-

tion or the differential importance of recurrent signals from vlPFC

as measured in the early versus late responses of the IT popula-

tion. Because of this, prior work could not distinguish between

an overall modulatory role (H1) and a specific set of recurrent

computations (similar to H2). To our knowledge, the current

study is the first to causally test the necessity of the vlPFC to

ventral stream recurrent circuit at such fast (<200 ms) but natural

timescales, with simultaneous large-scale neural and behavioral

measurements. Here, we have leveraged our previous findings

(as reported in Kar et al., 2019) to employ a targeted disruption

strategy for identifying critical recurrent circuits using predefined

challenge images (that take additional solution times in IT).

Therefore, our results provide evidence that feedback from

vlPFC does not simply modulate IT (e.g., gain); it specifically im-

proves the format of the distributed IT population code, and

those improvements are specific to the late phase of this code.

However, the results reported here do not identify the exact

circuitry involved in the reentry of information from vlPFC into

the ventral stream. Previous anatomical studies have shown

that the feedforward projections that connect the ventral stream

to the prefrontal cortices originate in the anterior portions of the

lower ventral bank and fundus of the STS (for a review, see Kra-

vitz et al., 2013) and mainly target areas 45A/B, 46v, and 12r/l in

vlPFC. On the other hand, feedback projections from these same

areas in the PFC are distributed across the IT cortical areas TEO

and TE (Gerbella et al., 2010). There is not much evidence of

direct connections between these areas in the PFC and earlier vi-

sual areas (V1, V2, and V4), but we cannot rule out the possibility

of indirect connections to the lower visual areas via the frontal

eye fields and other regions.

Each of these possible circuit motifs is a hypothesis that must

be, in the future, implemented as a set of neural network models

for future experimental testing. Our neural measurements (with

and without vlPFC inactivation, as reported here) can be used

to select among such models. For instance, we can estimate

the weights of the feedback connections between vlPFC and

the ventral stream nodes such that the model approximates

the neural firing rates at its IT layer (as measured here) upon

random (�0.4 cm3) lesions of the vlPFC module.

Many studies (Ganis et al., 2007; Harth et al., 1987; Tang et al.,

2018) propose a cognitive role of the prefrontal feedback, the

idea that these recurrent connections carry an expectation signal

that augments the representation of object identity in the IT cor-

tex. In a study conducted by Martin et al. (2019), they provided

behavioral and electroencephalogram (EEG)-based evidence

that rapid top-down feedback from frontal areas, following a

feedforward pass, reshapes the bottom-up responses in lower

(occipitotemporal) areas. Our results are consistent with these

and other similar conceptual theories. However, those ideas

are not specific enough to be tested for individual images. That

is, they do not specify how to build an accurate image-comput-

able neural network model of the IT-to-PFC-to-IT circuit. While

the results presented in this study do not provide a precise blue-

print for such a model, the temporal and image-level specificity

that they build on is already useful for guiding the development

of new recurrent, image-computable models (Kubilius et al.,

2019), and the current results can further guide the placement

and simulation testing of a vlPFC node in such models (see

more below).

Role of vlPFC in Core Object Recognition Behavior
Previous work (Freiwald et al., 2009; Hung et al., 2005; Kar et al.,

2019; Logothetis and Sheinberg, 1996; Majaj et al., 2015) has

linked neuronal responses in the IT cortex to primate core object

recognition behavior. For instance,Majaj et al. (2015) experimen-

tally rejected a large number of alternative models that link

ventral stream population activity to core object recognition

behavior (aka ‘‘decodingmodels’’ or ‘‘linkingmodels’’) in support

of a simple linear weighted sum of IT response model. These

models posit that the mechanisms of core object recognition

beyond IT are approximately linear sums of the activity levels

of individual IT neurons computed by neurons in PFC, perirhinal

cortex, or the caudate. Using various combinations of model pa-

rameters (e.g., numbers of neurons, amount of experience with

each object category, and brain location of the downstream

linear summing), multiple linking hypotheses can be con-

structed. Our results do not narrow the space of hypotheses to

a single linking model. However, these experiments provide

two architectural constraints for new models, and our data can

be used to falsify or support each such model. First, based on

the behavioral deficits observed upon its inactivation, we infer

that vlPFC is required to support core object recognition

behavior and therefore needs to be integrated into any future

model of such behavior. Second, based on both the OST spec-

ificity of the behavioral deficits and deterioration of IT decodes,

we infer that feedback signals conveyed via the recurrent con-

nections between vlPFC and the ventral stream (most likely the

IT cortex) are likely necessary to support this behavior at its

normal level of performance. Below, we speculate and discuss

candidate linking models that can be further developed and

tested using our results.

One possibility is that the downstream summing nodes (as

posited by previous studies) are vlPFC neurons and that those

vlPFC neurons drive the monkey’s behavior. According to this

hypothesis, vlPFC is an additional, bidirectionally connected

node of processing that intervenes between IT and behavior.

This idea is conceptually simple, and it is motivated by previous

data from vlPFC, including results showing that category training

inmonkeys causes PFC neuronal responses to become categor-

ical-like (Freedman et al., 2001), which is what would be ex-

pected if vlPFC was the location of those learned sums of IT
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neuronal responses described above. This hypothesis predicts

that vlPFC inactivation should lead to an equal decrease in

behavioral performance for every image. An alternate possibility,

however, is that vlPFC neurons do not drive behavior directly but

instead transmit the product of their computations to support

recurrently connected efferent targets, such as the IT cortex,

which then drives behavior via other brain nodes such as

caudate. This second possibility is also consistent with the prior

work that demonstrated category selectivity in vlPFC neurons

(Freedman et al., 2001). Our data do not unequivocally resolve

among these two possibilities. Our results—that vlPFC inactiva-

tion leads to larger deficits for late-solved images (Figure 5C)—

are consistent with the second possibility. However, the fact

that vlPFC inactivation also led to lower but significant deficits

for early-solved images argues for some element of the first pos-

sibility. Indeed, our results overall seem to suggest that both

ideas may be partially correct.

Interestingly, Minamimoto et al. (2010) showed that monkeys

with bilateral removal of lateral PFC seamlessly learn and gener-

alize perceptual categories. Our data, as presented here, are not

necessarily in direct contradiction to these prior results. First, it is

essential to note key differences in the two approaches (for a dis-

cussion, see Jazayeri and Afraz, 2017), a much smaller, unilat-

eral, reversible inactivation protocol in our case versus a large

bilateral permanent lesion in Minamimoto et al. (2010). Second,

upon visual inspection, the images used in the Minamimoto

et al. (2010) study resemble our early-solved images with canon-

ical views of the objects around the fixation point (without varia-

tion in size, position, and other factors) and without any image

background (which they explicitly removed in their study). They

also showed the images for much longer durations (0.5–1.5 s)

along with a pre-cue. Our data confirm that inactivation of vlPFC

indeed produces significantly weak behavioral deficits, for early-

solved images (see Figure S3B for more details). We do not claim

that top-down influence from vlPFC is equally critical for learning

and generalization across all object categories and images.

Instead, our data suggest that feedback from vlPFC preferen-

tially boosts the IT population code and subsequent behavioral

accuracy in specific late-solved images during a rapid categori-

zation task.

Experimentally, we speculate that large-scale neural measure-

ments in brain-regions like vlPFC, collected simultaneously in

behaving monkeys (solving a wide variety of recognition tasks),

will be required to gain further insights. Furthermore, feedback

projection-specific causal perturbation experiments (similar to

Oguchi et al., 2015) will be necessary to identify and functionally

characterize some of these circuit motifs. Our results suggest

that if we are able to specifically inactivate vlPFC to ventral stream

recurrent pathways, it will not completely disrupt the core recog-

nition behavior, but it will reduce the primates’ performance for

certain specific images. To drive further progress, we now also

need to incorporate the hypothesized circuit motifs (including a

recurrently connected vlPFC node) and build specific artificial

neural network models motivated by these experimental results,

test their image-by-image predictions (Bashivan et al., 2019;

Schrimpf et al., 2018), eliminate models that do not match the

experimental data, and build new models. We can use the

measured IT neural responses and behavioral accuracies per im-

age (reported in this study; both with and without the inactivation

of vlPFC) to constrain as well as validate these new recurrent neu-

ral network models of core recognition. That iterative cycle will ul-

timately lead to a complete, neurally mechanistic understanding

of visual object recognition, from images to behavior.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Kohitij Kar (kohitij@

mit.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
At the time of publishing, the behavioral, neural, andmodeling data will be available upon reasonable request from the lead contact. In

addition, we will also host the images, primate behavioral and neural benchmarks, and the modeling results at http://www.brain-

score.org. For additional code to produce DCNN model fits for neural data refer to https://github.com/kohitij-kar/prediction_demo.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The nonhuman primate subjects in our experiments were two adult (Monkey N: age 9 years, andmonkey B: age 5 years) male rhesus

monkeys (Macaca mulatta).

METHOD DETAILS

Visual stimuli: generation
All stimuli used in this study were previously used in the Kar et al. (2019) study and can be accessed at https://github.com/kohitij-kar/

image_metrics. For a brief description of the stimuli, please refer below.

Generation of synthetic (‘‘naturalistic’’) images
High-quality images of single objects were generated using free ray-tracing software (http://www.povray.org), similar to Majaj et al.

(2015). Each image consisted of a 2D projection of a 3D model (purchased from Dosch Design and TurboSquid) added to a random

background. The ten objects chosen were bear, elephant, face, apple, car, dog, chair, plane, bird and zebra (Figure 5A). By varying

six viewing parameters, we explored three types of identity while preserving object variation, position (x and y), rotation (x, y, and z),

and size. All images were achromatic with a native resolution of 256 3 256 pixels.

Generation of natural images (photographs)
Images pertaining to the ten nouns, was download fromhttps://cocodataset.org/. Each imagewas resized to 2563 2563 3 pixel size

and presented within the central 8�. We used the same images while testing the feedforward DCNNs.

Primate behavioral testing
Active binary object discrimination task

Wemeasuredmonkey behavior from twomale rhesusmacaques. Images were presented on a 24-inch LCDmonitor (19203 1080 at

60 Hz) positioned 42.5 cm in front of the animal. Monkeys were head fixed. Monkeys fixated a white dot (0.2�) for 300 ms to initiate a

trial. The trial started with the presentation of a sample image (from a set of 1320 images) for 100 ms. This was followed by a blank

gray screen for 100ms, after which the choice screenwas shown containing a standard image of the target object (the correct choice)

and a standard image of the distractor object. The monkey was allowed to view the choice objects freely for up to 1500 ms and indi-

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus monkeys California National Primate Research

Center

https://cnprc.ucdavis.edu/

Software and Algorithms

MATLAB The Mathworks Inc. 9.8.0.1359463 (R2020a) Update 1
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cated its final choice by holding fixation over the selected object for 400ms. Trials were aborted if gaze was not held within ± 2� of the
central fixation dot during any point until the choice screen was shown We have presented our results after the data was pooled

across both monkeys.

Passive Fixation Task

During the passive viewing task, monkeys fixated a white dot (0.2�) for 300 ms to initiate a trial. We then presented a sequence of 5 to

10 images, each ON for 100 ms followed by a 100 ms gray (background) blank screen. This was followed by fluid reward and an inter

trial interval of 500 ms, followed by the next sequence. Trials were aborted if the gaze was not held within ± 2� of the central fixation

dot during any point.

Data collection

Wedivided the data collection into two different sessions (days with and without muscimol injections; Figure 3A). These two sessions

were repeated in the same order with a minimum gap of one day post the muscimol session (Figure 3B; experimental timeline). On

each session (day), monkeys performed the following tasks sequentially: a passive fixation task, a binary object discrimination task, a

second passive fixation task. On the second session (day), after the initial passive fixation task (which was included in the no-mus-

cimol condition during all the analyses), we injected a total of 10ml of muscimol at 5 depths (2 ml each) separated by 0.5 mm in the

previously localized vlPFC area (for details see below).

Large scale multi-electrode recordings and simultaneous pharmacological inactivation
Surgical implant of chronic micro-electrode arrays

We surgically implanted each monkey with a head post under aseptic conditions. After behavioral training, we recorded neural ac-

tivity using 103 10micro-electrode arrays (Utah arrays; BlackrockMicrosystems). A total of 96 electrodes were connected per array.

Each electrode was 1.5 mm long and the distance between adjacent electrodes was 400 mm. Before recording, we implanted each

monkey multiple Utah arrays in the IT cortex (monkey B: 2 arrays in left hemisphere); monkey N: 2 arrays in the right hemisphere;

shown schematically in Figure 4A). Array placements were guided by the sulcus pattern, which was visible during surgery. The elec-

trodes were accessed through a percutaneous connector that allowed simultaneous recording from all 96 electrodes from each

array. Behavioral testing was performed using standard operant conditioning (fluid reward), head stabilization, and real-time video

eye tracking. All surgical and animal procedures were performed in accordance with National Institutes of Health guidelines and

the Massachusetts Institute of Technology Committee on Animal Care.

Surgical implant of vlPFC injection chamber

During the same surgery, as the chronic array implant, we also placed a semi-cylindrical chamber (Crist Instruments) over a crani-

otomy targeting the prefrontal cortex, around the principal sulcus. We placed the chambers in the left and right hemispheres of mon-

key B andmonkey N respectively. The chambers were held in place by dental acrylic (methyl methacrylate) applied around the cham-

ber. We used previously reported anatomical landmarks (Freedman et al., 2003; McKee et al., 2014; Tomita et al., 1999), identified by

an initial MRI, to guide the vlPFC chamber placements (approximate AP extent shown in Figure 2A). The target injection locations are

also consistent with previous reports of visually responsive neurons in vlPFC (Hwang and Romanski, 2015).

vlPFC injection protocol

During the sessions with muscimol injections, we first carefully scraped the dura for maximal visibility and minimum resistance in the

path of injection. Then, we used an in-house set up to lower the injection needles (30-32 gauge, small Hub RNNeedle; Hamilton Com-

pany) using a micro-syringe pump and controller (Micro4TMWorld Precision Instruments). We started approximately 3 mm below the

estimated surface of the dura. We injected 0.5 uL of muscimol (5mg/mL, Sigma Aldrich) at that depth at a speed of 1000 nL/min and,

waited for 3 mins and pulled the needle up by�0.5 mm. This was repeated for 5 depths in total. After the end of the final injection, we

waited for 30 mins before the start data collection. Previous works (Arikan et al., 2002; Partsalis et al., 1995) suggest that each of our

injections should approximately affect �2mm diameter of spherical volume of tissue around the injection site.

Eye Tracking

Wemonitored eye movements using video eye tracking (SR Research EyeLink 1000). Using operant conditioning and water reward,

our 2 subjects were trained to fixate a central white dot (0.2�) within a square fixation window that ranged from ± 2�. At the start of

each behavioral session, monkeys performed an eye-tracking calibration task by making a saccade to a range of spatial targets and

maintaining fixation for 500 ms. Calibration was repeated if drift was noticed over the course of the session.

Electrophysiological Recording

During each recording session, band-pass filtered (0.1 Hz to 10 kHz) neural activity was recorded continuously at a sampling rate of

20 kHz using Intan Recording Controller (Intan Technologies, LLC). The majority of the data presented here were based on multi-unit

activity. We detected the multi-unit spikes after the raw data was collected. A multi-unit spike event was defined as the threshold

crossing when voltage (falling edge) deviated by more than three times the standard deviation of the raw voltage values. Of 384 im-

planted electrodes, 2 arrays (left and right hemispheres for monkey B and N respectively) 3 96 electrodes 3 two monkeys, we

focused on the 153 most visually driven, and reliable neural sites. Our array placements allowed us to sample neural sites from

different parts of IT, along the posterior to anterior axis. However, for all the analyses, we did not consider the specific spatial location

of the site, and treated each site as a random sample from a pooled IT population.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral Metrics
We have used a one-versus-all image level behavioral performance metric (similar to the one used in Kar et al., 2019) to quantify the

behavioral performance of the monkeys as well as DCNNs (described below). This metric estimates the overall discriminability of

each image containing a specific target object from all other objects (pooling across all 9 possible distractor choices).

Given an image of object ‘i’, and all nine distractor objects (jsi) we computed the average performance per image as,

Performancei
image =

P10
j = 1Pc

i;jsi
image

9
;

where Pc refers to the fraction of correct responses for the binary task between objects ‘i’ and ‘j’.

To compute the reliability of this vector, we split the trials per image into two equal halves by resampling without substitution. The

median of the Spearman-Brown corrected correlation of the two corresponding vectors (one from each split half), across 1000 rep-

etitions of the resampling was then used as the reliability score (i.e., internal consistency).

Estimation of neural onset latency per vlPFC site
We first normalized (z-scored) the average neural responses (across 80 images and 10 repetitions per image) per site. The onset la-

tencies were then determined as the earliest time from image onset when the firing rates of neurons were higher than one-tenth of the

peak of its response. These values have been reported in Figure 2D.

Neural recording quality metrics per IT site
Visual drive per IT neuron (d0

visual)

We estimated the overall visual drive for each electrode. Thismetric was estimated by comparing the image responses of each site to

a blank (gray screen) response.

d0
visual =

avg
�
Rimages

�� avg
�
Rgray

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
s2
Rimages

+ s2
Rgray

�r

Image rank-order response reliability per neural site (rIROsite )

To estimate the reliability of the responses per site, we computed a Spearman-Brown corrected, split half (trial-based) correlation

between the rank order of the image responses (all images).

Inclusion criterion for IT neural sites

For our analyses, we only included the neural recording sites that had an overall significant visual drive (d0
visual), and an image rank

order response reliability (rIROsite ) that was greater than 0.6. Given that most of our neural metrics are corrected by the estimated noise

at each neural site, the criterion for selection of neural sites is not that critical. It was mostly done to reduce computation time and

eliminate noisy recordings.

Estimation of IT population decode accuracies at OST
To estimatewhat information downstream neurons could easily ‘‘read’’ from a given IT neural population, we used a simple, biologically

plausible linear decoder (i.e., linear classifiers), that has been previously shown to link IT population activity and primate behavior (Majaj

et al., 2015). Such decoders are simple in that they can perform binary classifications by computing weighted sums (each weight is

analogous to the strength of synapse) of input features and separate the outputs based ona decision boundary (analogous to a neuron’s

spiking threshold). Herewe have used a support vectormachine (SVM) algorithmwith linear kernels. The SVM learningmodel generates

a decoder with a decision boundary that is optimized to best separate images of the target object from images of the distractor objects.

The optimization is done under a regularization constraint that limits the complexity of the boundary. We used L2 (ridge) regularization,

where the objective function for the minimization comprises of an additional term (to reduce model complexity),

L2ðpenaltyÞ = l

2

Xp
j =1

b2
j

where b and p are the classifier weights associated with ‘p’ predictors (neurons). A stochastic gradient descent solver was used to

estimate 10 (one for each object) one-versus-all classifiers. After training each of these classifiers with a set of 100 training images per

object, we generated a class score (sc) per classifier for all held out test images given by,

sc = Rb+bias;

where R is the population response vector and the bias is estimated by the SVM solver. The train and test sets were pseudo-randomly

chosen multiple times until we every image of our image set was part of the held-out test set. Only the responses from the no-mus-

cimol conditions were treated as training signal. All predictions were made either on held-out responses from no-muscimol or
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muscimol conditions. We then converted the class scores into probabilities by passing them through a softmax (normalized expo-

nential) function.

Pi
image =

esciP10
i =1e

sci

In our previous study (Kar et al., 2019), object solution time per image,OSTimage was defined as the time it takes for linear IT population

decodes to reach within the error margins of the pooled monkey behavioral accuracy for that image. Given that we have used the

exact same images in this study, we have used our previously estimated OST per image as the time point of comparison of IT decode

accuracy, Pi
image (with and without muscimol) per image. All reported values of IT population decode accuracies are estimates of how

well the population decode accuracy was at the specific OST estimated for the specific image.

Estimation and comparison of IT decodes at specific thresholds per image
We estimated how quickly the IT decodes (based on the pooled IT neurons in the monkeys used in the current study; n = 153 sites)

evolve to a specific threshold (mean percent correct values of 0.6) per image. This is another way of approximating which images

evolve faster to their identity solutions (in IT) compared to others. The IT decode accuracies per 10ms time bins were estimated iden-

tical to the method discussed above. Based on these estimates, we then divided the images into two groups; ‘‘fast decoded’’ (180

images requiring < 120 ms to reach accuracy of 0.6) and ‘‘slow decoded’’ (210 images; requiring > 150 ms to reach accuracy of 0.6).

These images were also screened such that the overall behavioral performance of the monkey was not significantly different across

the two groups. We observed that the ‘‘slow-decoded’’ images showed significantly larger deficits (unpaired t test; t(388) = 3.1; p <

0.001) upon vlPFC inactivation, supporting our primary results.

Changes in trial by trial IT decodes upon vlPFC inactivation
First, we tested howwell IT neurons can predict image by image behavioral accuracy patterns (one-versus-all image level behavioral

performancemetric explained above). Tomodel how downstream neuronsmight ‘‘read’’ IT population responses to infer object iden-

tities, we constructed multiple candidate linking models that convert neural responses into a prediction of behavioral choice. Each of

the 205 tested linking models was built using neural response data from Kar et al. (2019). We used similar linear SVMs (as mentioned

above) with L2 regularization, that differed only in the temporal integration windows (e.g., 70 to 170 ms post image onset, 150 to

200 ms post image onset etc.). We observed that decoders that relied on responses summed from 180 to 220 ms post image onset

were most consistent with the pattern of monkey behavioral accuracies (large red dot; Figure S2A). We then used this decoding

model to estimate how well such a decoder might predict trial by trial behavioral responses across the two monkeys tested here.

Once we estimated the probability of a response per trial, we then performed a ROC analysis to estimate the area under the ROC

(AUROC), by taking into account the decoder accuracies for the correct and the incorrect trials. We observed that there was a

(slightly) above chance probability of such IT decodes to predict trial by trial monkey choices. However, we found no significant dif-

ference between the AUROC while comparing the muscimol and no-muscimol conditions (Figure S2C). For the statistical test, we

performed a permutation test by combining data across the two conditions, generating a null distribution of differences in AUROC

and comparing it against the true measured difference.

Estimating change in image-driven IT response rank order (early versus late)
For each neuron, we estimated the image response vector ( ri

!
) at two specific time bins (early: 90-120ms, and late: 150-180ms; post

image onset). To estimate the change in this vector across time, we computed the noise corrected correlation between the ri
!
vectors

estimated at the early and late time bins respectively, as follows

rðearly; lateÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðearlyÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðy; yÞp
Where r(early, late) is the correlation between the ri

!
vectors estimated at the early and late time bins, and r(early) and r(late) are the

split-half (across trial) reliability of these vectors estimated independently at the corresponding time bins. We computed these noise-

corrected correlation values per neuron for both the no-muscimol and muscimol conditions.

Binary object discrimination tasks with DCNNs
We have used the same linear decoding scheme mentioned above (for the IT neurons) to estimate the object identity solution

strengths per image for the DCNNs. Briefly, we first obtained an imagenet pre-trained DCNN (e.g., AlexNet). We then replaced

the last three layers (i.e., anything beyond ‘fc7’) of this network with a fully connected layer containing 10 nodes (each representing

one of the 10 objects we have used in this study). We then trained this last layer with a back-end classifier (L2 regularized linear clas-

sifier; similar to the one mentioned for IT) on a subset of images from our image-set. These images were selected randomly from our

imageset and used as the train-set. The remaining images were then used for the testing (such that there is no overlap between the

train and test images). Repeating this procedure multiple times allowed us to use all images as test images providing us with the per-

formance of the model for each image.
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To compute the behavioral predictivity score, we correlated (Pearson correlation) the averaged performance estimated per image

across the pooled monkey data and that estimated from the DCNN. The correlation scores were further corrected by the trial-level

split half reliability of the monkey data and DCNN behavioral scores (split half reliability for DCNN = 1, since estimates are noiseless).

Prediction of IT neural responses from Deep Convolutional Neural Networks (DCNN) features
Wemodeled each IT neural site as a linear combination of the DCNNmodel features. We first extracted the features per image, from

the DCNNs’ penultimate layers. Using a 10-fold train/test split of the images, we then estimated the regression weights (i.e., how we

can linearly combine themodel features to predict the neural site’s responses) using a partial least square (MATLAB command: plsre-

gress) regression procedure, using 20 retained components. For each set of regression weights estimated on a train imageset, we

generated the output of that ‘synthetic neuron’ for the held-out test set. The percentage of explained variance, IT predictivity (formore

details refer Yamins et al., 2014) for that neural site, was then computed by normalizing the r2 prediction value for that site by the self-

consistency of the image responses for that site and the self-consistency of the regression weights for that site (estimated by a

Spearman Brown corrected trial-split correlation score). Table S1 lists all the models we have tested and the corresponding evalu-

ated layers.
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