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Abstract

We overview several properties – old and new – of training overparametrized deep homogeneous RELU net-
works under the square loss. We study the convergence to a solution with minimum ρ, which is the product of
the Frobenius norms of each layer weight matrix, when normalization by a Lagrange multiplier (LM) is used to-
gether with Weight Decay (WD) under forms of gradient descent. In the absence of LM + WD, good solutions
for classification may still be achieved because of the implicit bias towards small norm solutions in the gradient
dynamics introduced by close-to-zero initial conditions on the norms of the weights. Classical bounds show that
for a specific network, the quasi-interpolating solutions with smaller ρ have better margin and better bounds on
the expected classification error. Furthermore, we derive theoretically novel norm-based bounds for convolutional
layers: despite overparametrization, they turn out to be still loose but almost non-vacuous, at least in some of our
experiments. This result is new, as far as we know, and is especially interesting because similar bounds for dense
networks are orders of magnitude worse. Next we prove that quasi-interpolating solutions obtained by SGD in the
presence of WD have a bias towards low rank weight matrices. The same analysis predicts the existence of an
inherent SGD noise for deep networks under the same conditions. In both cases, we verify our predictions exper-
imentally. We also prove that our model have the recently discovered behavior of Neural Collapse and predict its
properties without any specific assumption – unlike other published proofs. Our analysis supports the idea that
the advantage of deep networks relative to other standard classifiers is greater for the problems to which sparse
deep architectures such as CNNs can be applied. The deep reason is that CNNs reflect the function graph of
certain compositionally sparse target functions and thus can be approximated well by "sparse" networks without
incurring in the curse of dimensionality.
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Abstract

We overview several properties – old and new – of training overparametrized deep networks
under the square loss. We first consider a model of the dynamics of gradient flow under the square
loss in deep homogeneous ReLU networks. We study the convergence to a solution with the absolute
minimum ρ, which is the product of the Frobenius norms of each layer weight matrix, when nor-
malization by Lagrange multipliers (LM) is used together with Weight Decay (WD) under different
forms of gradient descent. A main property of the minimizers that bounds their expected error for a
specific network architecture is ρ. In particular, we derive novel norm-based bounds for convolutional
layers that are orders of magnitude better than classical bounds for dense networks. Next we prove
that quasi-interpolating solutions obtained by Stochastic Gradient Descent (SGD) in the presence
of WD have a bias towards low rank weight matrices – that, as we also explain, should improve
generalization. The same analysis predicts the existence of an inherent SGD noise for deep networks.
In both cases, we verify our predictions experimentally. We then predict Neural Collapse and its
properties without any specific assumption – unlike other published proofs. Our analysis supports
the idea that the advantage of deep networks relative to other classifiers is greater for the problems
that are appropriate for sparse deep architectures such as CNNs. The deep reason compositionally
sparse target functions can be approximated well by “sparse” deep networks without incurring in the
curse of dimensionality.

1 Introduction
A widely held belief in the last few years has been that the cross-entropy loss is superior to the square
loss when training deep networks for classification problems. As such, the attempts at understanding
the theory of deep learning has been largely focused on exponential-type losses (1; 2), like the cross-
entropy. For these losses, the predictive ability of deep networks depends on the implicit complexity
control of Gradient Descent algorithms that leads to asymptotic maximization of the classification
margin on the training set (3; 1; 4). Recently however, (5) has empirically demonstrated that it is
possible to achieve a similar level of performance, if not better, using the square loss, paralleling older
results for Support Vector Machines (SVMs) (6). Can a theoretical analysis explain when and why
regression should work well for classification? This question was the original motivation for this paper
and preliminary versions of it (7; 8).
In deep learning binary classification, unlike the case of linear networks, we expect from previous
results (in the absence of regularization) several global minima with zero square loss, thus correspond-
ing to interpolating solutions (in general degenerate, see (9; 10) and reference therein), because of
overparametrization. Although all the interpolating solutions are optimal solutions to the regression
problem, they will in general correspond to different (normalized) margins and to different expected
classification performance. In other words, zero square loss does not imply by itself neither large
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margin nor good classification on a test set. When can we expect the solutions to the regression problem
obtained by Gradient Descent (GD) to have a large margin?
We introduce a simplified model of the training procedure that uses square loss, binary classification,
gradient flow and Lagrange multipliers (LM) for normalizing the weights. With this model we show
that obtaining large margin interpolating solutions depends on the scale of initialization of the weights
close to zero, in the absence of regularization (also called weight decay). Assuming convergence, we
describe the qualitative dynamics of the deep network’s parameters and show that ρ, which is the
product of the Frobenius norms of the weight matrices, grows non-monotonically until a large margin,
that is small ρ solution is found reached. Assuming that local minima and saddle points can be avoided,
this analysis suggests that with weight decay (or sometimes with just small initialization), gradient
descent techniques may yield convergence to a minimum with a ρ biased to be small.
In the presence of weight decay, perfect interpolation of all data points cannot occur and is replaced
by quasi-interpolation of the labels. In the special case of binary classification case in which yn = ±1,
quasi-interpolation is defined as ∀ n : |f(xn) − yn| ≤ ϵ, where ϵ > 0 is small. Our experiments and
analysis of the dynamics show that, in the presence of regularization, there is a weaker dependence on
initial conditions, as has been observed in (5). We show that weight decay helps stabilize normalization
of the weights, in addition to its role in the dynamics of the norm.
We then apply basic bounds on expected error to the solutions provided by SGD (for weight decay
λ > 0), which have locally minimum ρ. For normal training set sizes, the bounds are still vacuous but
much closer1 to the test error than previous estimates. This is encouraging because in our setup large
overparametrization, corresponding to interpolation of the training data (11), coexists with a relatively
small Rademacher complexity because of the sparsity induced by the locality of the convolutional kernel.
We then turn to show that the quasi-interpolating solutions satisfy the recently discovered Neural
Collapse (NC) phenomenon (12), assuming SGD with minibatches. According to Neural Collapse, a
dramatic simplification of deep network dynamics takes place – not only do all the margins become
very similar to each other, but the last layer classifiers and the penultimate layer features form the
geometrical structure of a simplex equiangular tight frame (ETF). Here we prove the emergence of
Neural Collapse for the square loss for the networks we study — without any additional assumption
(such as unconstrained features).
Finally, the study of SGD reveals surprising differences relative to GD. In particular, in the presence of
regularization, SGD does not converge to a perfect equilibrium: there is always, at least generically, SGD
noise.The underlying reason is a rank constraint that depends on the size of the minibatches. This also
implies an SGD bias towards small rank solutions that reinforces a similar bias due to maximization of
the margin under normalization (that can be inferred from (13)).

Contributions The main original contributions in this paper are
• We analyze the dynamics of deep network parameters, their norm, and the margins under

gradient flow on the square loss, using Lagrange normalization (LN). We describe the evolution
of ρ, and the role of Weight Decay and normalization in the training dynamics. The analysis in
terms of Lagrange multipliers of the dynamics in the “polar” coordinates ρ, Vk is new. Many of
the observed properties are not. Arguably, our analysis of the bias towards minimum ρ and its
dynamics with and without weight decay is an original contribution.

• Our norm-based generalization bounds for CNNs are new. We outline in this paper a derivation
for the case of non-overlapping convolutional patches. The extension to the general case follows
naturally and will be described in a forthcoming paper. The bounds show that generalization
for CNNs can be orders of magnitude better than for dense networks. In the experiments we
describe, the bounds turn out to be loose but close to non-vacuous. They appear to be much
better than the other empirical tests of generalization bounds – all for dense networks – that we
know of. The main reason for this, in addition to the relatively simple task (binary classification
in CIFAR) is the sparsity of the convolutional network, that is the low dimensionality (or locality)
of the kernel.

• We prove that convergence of gradient descent optimization with weight decay and normalization
yields Neural Collapse for deep networks trained with square loss in the binary as well as in

1by several orders of magnitude!
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the multiclass classification case. Experiments verify the predictions. Our proof is free of any
assumption – unlike other recent papers that depend on the “unconstrained feature assumption”.

• We prove that training the network using SGDwith weight decay induces a bias towards low-rank
weight matrices. As we will describe in a separate paper low rank can yield better generalization
bounds.

• The same theoretical observation that predicts a low-rank-bias also predicts the existence of an
intrinsic SGD noise in the weight matrices and in the margins.

2 Related Work
There has been much recent work on the analysis of deep networks and linear models trained using
exponential-type losses for classification. The implicit bias of Gradient Descent towards margin
maximizing solutions under exponential type losses was shown for linear models with separable data
in (14) and for deep networks in (1; 2; 15; 16). Recent interest in using the square loss for classification
has been spurred by the experiments in (5), though the practice of using the square loss is much older
(6). Muthukumar et. al. (17) recently showed for linear models that interpolating solutions for the
square loss are equivalent to the solutions to the hard margin SVM problem (see also (7)). Recent
work also studied interpolating kernel machines (18; 19) which use the square loss for classification.
In the recent past, there have been a number of papers analyzing deep networks trained with the square
loss. These include (20; 21) that show how to recover the parameters of a neural network by training
on data sampled from it. The square loss has also been used in analyzing convergence of training in
the Neural Tangent Kernel (NTK) regime (22; 23; 24). Detailed analyses of two-layer neural networks
such as (25; 26; 27) typically use the square loss as an objective function. However these papers do not
specifically consider the task of classification.
A large effort has been spent in understanding generalization in deep networks. The main focus has
been solving the puzzle of how overparametrized deep networks (with more parameters than data) are
able to generalize. An influential paper (11) showed that overparametrized deep network that usually
fit randomly labeled data also generalize well when they trained on correctly labeled data. Thus the
training error does not give any information about test error: there is no uniform convergence of training
error to test error. This is related to another property of overparametrization: standard VC bounds
are always vacuous when the number of parameters is larger than the number of data. Though often
forgotten, it is however well known that another type of bounds – on the norm of parameters– may
provide generalization even if there are more parameters than data. This point was made convincingly
in (28) which provides norm-based bounds for deep networks2. Bartlett bounds and related ones
(29; 30) in practice turn out to be very loose. Empirical studies such as (31) found little evidence so far
that norms and margins correlate well with generalization.
Neural Collapse (NC) (12) is a recently discovered empirical phenomenon that occurs when training
deep classifiers using the cross-entropy loss. Since its discovery, there have been a few papers analyti-
cally proving its emergence when training deep networks. Mixon et. al. (32) show NC in the regime
of “unconstrained features”. Recent results in (33) perform a more comprehensive analysis of NC
in the unconstrained features paradigm. There have been a series of papers analytically showing the
emergence of NC when using the cross-entropy loss (34; 35; 36). In the study of the emergence of NC
when training using the square loss, Ergen and Pilanci (37) (see also (38)) derived it through a convex
dual formulation of deep networks. In addition to that, (39) and (40) show the emergence of NC in
the unconstrained features regime. Our independent derivation is different from these approaches,
and shows that NC emerges in the presence of normalization and weight decay.
Several papers in recent years have studied the relationship between implicit regularization in linear
neural networks and rank minimization. A main focus was on the matrix factorization problem, which
corresponds to training a depth-2 linear neural network with multiple outputs w.r.t. the square loss
(see references in (13)). Beyond factorization problems, it was shown that in linear networks of output
dimension 1, gradient flow w.r.t. exponential-type loss functions converges to networks where the
weight matrix of every layer is of rank 1. However, for nonlinear neural networks things are less
clear. Empirically, several studies (see references in (13)) showed that replacing the weight matrices

2The focus of this paper on ρ is directly related
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by low-rank approximations results in only a small drop in accuracy. This suggests that the weight
matrices in practice are not too far from being low-rank.

3 Problem Setup
In this section, we describe the training settings considered in our work. We study training deep neural
network with ReLU non-linearity using square loss minimization for classification problems. In the pro-
posed analysis, we apply a specific normalization technique: Weight Normalization, which is equivalent
to Lagrange multiplier, as well as regularization (also called Weight Decay), since such mechanisms
seem commonly used for reliably training deep networks using gradient descent techniques (41; 5).

3.1 Assumptions
Throughout the theoretical analysis we make in some places simplifying assumptions relative to
standard practice in deep neural networks. We mostly consider the case of binary classification though
our analysis of Neural Collapse includes multiclass classification. We restrict ourselves to the square
loss. We consider gradient descent techniques but we assume different forms of them in various
sections of the paper. In the first part, we assume continuous Gradient Flow (GF) instead of GD or
SGD. Gradient flow is the limit of discrete Gradient Descent algorithm with the learning rate being
infinitesimally small (we describe an approximation of Gradient Descent within a Gradient Flow
approach in (8)). SGD is specifically considered and shown to bias rank and induce asymptotic noise
that is unique to it. The analysis of Neural Collapse is carried out using SGD with small learning
rates. Furthermore, we assume weight normalization by a Lagrange multiplier term added to the loss
function, that normalizes the weight matrices. This is equivalent to Weight Normalization but is not
equivalent to the more commonly used Batch Normalization.
We also assume throughout that the network is overparametrized and so that there is convergence to
global minima with appropriate initialization, parameter values and data.

3.2 Classification with Square Loss Minimization
In this work we consider a square loss minimization for classification along with regularization and
weight normalization. We consider a binary classification problem given a training dataset S =
{(xn, yn)}Nn=1, where xn ∈ Rd are the inputs (normalized such that ∥xn∥ ≤ 1) and yn ∈ {±1} are the
labels. We use deep rectified homogeneous networks with L layers to solve this problem. For simplicity,
we consider networks fW : Rd → Rp of the following form fW (x) = WLσ (WL−1 . . . σ (W1x) . . .), where
x ∈ Rd is the input to the network and σ : R→ R, σ(x) = max(0, x) is the rectified linear unit (ReLU)
activation function that is applied coordinate-wise at each layer. The last layer of the network is linear
(see Figure 1).
Due to the positive homogeneity of ReLU (i.e., σ(αx) = ασ(x) for all x ∈ R and α > 0), one
can reparametrize fW (x) by considering normalized3 weight matrices Vk = Wk

∥Wk∥ and define ρk =

∥Wk∥ obtaining fW (x) = ρLVLσ (ρL−1 . . . σ (ρ1V1x) . . .). Because of homogeneity of the ReLU it is
possible to pull out the product of the layer norms as ρ =

∏
k ρk and write fW (x) = ρfV (x) =

ρVLσ (VL−1 . . . σ (V1x) . . .). Notice that the two networks – fW (x) and ρfV (x) – are equivalent repa-
rameterizations of the same function (if ρ =

∏
k ρk) but their optimization generally differ. We define

fn := fV (xn).
We adopt in our definition the convention that the norm ρj of the convolutional layers is the norm of
their filters and not the norm of their associated Toeplitz matrices. The reason is that this what our novel
bounds for CNNs state (see also section 3.3 in (42) and (43)). The total ρ calculated in this way is the
quantity that enters the generalization bounds of section 4.
In practice, certain normalization techniques are used in order to train neural networks. This is usually
performed using either batch normalization (BN) or, less frequently, weight normalization (WN). BN
consists of standardizing the output of the units in each layer to have zero mean and unit variance
wrt training set. WN normalizes the weight matrices (section 10 in (4)). In our analysis, we model
normalization by normalizing the weight matrices, using a Lagrange multiplier (LM) term added to the
loss function. This approach is equivalent to WN.

3We choose the Frobenius norm here.
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In the presence of normalization, we assume that all layers are normalized, except for the last one, via
the added Lagrange multiplier. Thus, the weight matrices {Vk}Lk=1 are constrained by the Lagrange
multiplier term to be close to, and eventually converge to, unit norm matrices (in fact to fixed norm
matrices); notice that normalizing VL and then multiplying the output by ρ, is equivalent to letting
WL = ρVL be unnormalized. Thus, fV is the network that at convergence has L− 1 normalized layers
(see Figure 1).
We can write the Lagrangian corresponding to the minimization of the regularized loss function under
the constraint ∥Vk∥2 = 1 in the following manner

LS(ρ, {Vk}Lk=1) : =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N

∑
n

(1− ρf̄n)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2,

(1)

where νk are the Lagrange multipliers and λ > 0 is a predefined parameter.

Separability and Margins. Two important aspects of classification are separability and margins. For
a given sample (x, y) (train or test sample) and model fW , we say that fW correctly classifies x, if
f̄n = ynfn > 0. In addition, for a given dataset S = {(xn, yn)}Nn=1, separability is defined as the
condition in which all training samples are classified correctly, ∀ n ∈ [N ] : f̄n > 0. Furthermore, when∑N

n=1 f̄n > 0, we say that average separability is satisfied. The minimum of LS for λ = 0 is usually zero
under our assumption of overparametrization. This corresponds to separability.
Notice that if fW is a zero loss solution of the regression problem, then ∀ n : fW (xn) = yn, which is
also equivalent to ρfn = yn, where we call ynfn = f̄n the margin4 for xn. By multiplying both sides of
this equation by yn, and summing both sides over n ∈ [N ], we obtain that ρ∑n f̄n = N . Thus, the
norm ρ of a minimizer is inversely proportional to its average margin µ in the limit of λ = 0, with
µ = 1

N

∑
n f̄n. It is also useful to define the margin variance σ2 = M − µ2 with M = 1

N

∑
n f̄

2
n. Notice

that M = 1
N

∑
n f̄

2
n = σ2 + µ2 and that both M and σ2 are not negative.

Interpolation and Quasi-interpolation. Assume that the weights Vk are normalized at convergence.
Then
Lemma 1 For λ = 0 there are solutions that interpolate all data points with the same margin and achieve zero
loss. For λ > 0 there are no solutions that have the same margins and interpolate. However there are solutions
with the same margins that quasi-interpolate and are critical points of the gradient.

Proof Consider the lossLS = 1
N

∑
n(1−ρf̄n)2+λρ2 = 1−2ρµ+ρ2M+λρ2. For λ = 0, a zero of the loss

LS = 0 implies ∀ n ∈ [N ] : µ = f̄n and µ = 1
ρ . However, for λ > 0 the assumption that all f̄n are equal

yieldsM = µ2 and thus LS = ρ2µ2 − 2ρµ+ (1 + λρ2). Setting LS = 0 gives a second order equation in
ρwhich does not have real-valued solutions for λ > 0. Thus in the presence of regularization, there
exist no solutions that have the same margin for all points and reach zero empirical loss. However,
solutions that have the same margin for all points and correspond to zero gradient w.r.t. ρ exist. To see
this, assume σ = 0, setting the gradient of LS w.r.t. ρ equal to zero, yielding ρµ2 − µ+ λρ = 0. This
gives ρ = µ

µ2+λ . This solution yields ρµ < 1, which corresponds to non-interpolating solutions.

Figure 11 shows that themargins (which are never interpolating; interpolation is quivalent to ρynf(xn) <
1, ∀n) tend to become equal to each other as predicted from the lemma during convergence.

Experiments Weperformedbinary classification experiments using the standardCIFAR10dataset (44).
Image samples with class labels 1 and 2 were extracted for the binary classification task. The total
number of training and test data points are 10000 and 2000, respectively. The model architecture
in Fig. 1b contains four convolutional layers, two fully connected layers with hidden sizes 1024 and
2. The number of channels for the four convolutional layers are 32, 64, 128 and 128, the filter size is

4Notice that the term “margin” is usually defined asminn∈[N ] f̄n. Instead, we use the term “margin for xn” to distinguish
our definition from the usual one.
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3× 3. The first fully connected layer has 3200× 1024 = 3, 276, 800weights and the very last layer has
1024× 2 = 2048weights. At the top layer of our model, there is a learnable parameter ρ (Fig. 1b). In-
stead of using Lagrange multipliers we could have used the equivalent (see (2)) Weight Normalization
(WN), freezing the weights of the WN parameter “g” (45) in the Weight Normalization algorithm and
normalizing the {Vk}L−1

k=1 matrices at each layer w.r.t. their Frobenius norm, while the top layer’s norm
is denoted by ρ.

3.3 Landscape of the empirical risk
As a next step, we establish key properties of the loss landscape. The landscape of the empirical loss
contains a set of degenerate zero-loss global minima (for λ = 0) that under certain overparametrization
assumptions may be connected in a single zero-loss degenerate valley for ρ ≥ ρ0. Figure 2 shows a
landscape which has a saddle for ρ = 0 and then goes to zero loss (zero crossing level, that is the
coastline) for different values of ρ (look at the boundary of the mountain). As we will see in our
analysis of the gradient flow, the descent from ρ = 0 can encounter local minima and saddles with
non-zero loss. Furthermore, even though the valley of zero loss may be connected, the point of absolute
minimum ρ may be unreachable by gradient flow from another point of zero loss even in the presence
of λ > 0, because of the possible non-convex profile of the coastline (see inset of Figure 2).
If we assume overparametrized networks with d ≫ n, where d is the number of parameters and N
is the number of data points (10) proved that the global minima of the unregularized loss function
LS =

∑N
i=1(fW (xi)− yi)

2 are highly degenerate5 with dimension d−N .

Theorem 1 ((46), informal) We assume an overparametrized neural network fW with smooth ReLU acti-
vation functions and square loss. Then the minimizers W ∗ achieve zero loss and are highly degenerate with
dimension d−N .

Furthermore, for “large” overparametrization, all the global minima – associated to interpolating
solutions – are connected within a unique, large valley. The argument is based on Theorem 5.1 of (47):
Theorem 2 ((47), informal) If the first layer of the network has at least 2N neurons, where N is the number
of training data and if the number of neurons in each subsequent layer decreases, then every sublevel set of the
loss is connected.

In particular, the theorem implies that zero-square-loss minima with different values of ρ are connected. A
connected single valley of zero loss does not however guarantee that SGD with WD will converge to the
global minimum which is now > 0, independently of initial conditions.
For large ρ we expect many solutions. The existence of several solutions for large ρ is based on the
following intuition: the last linear layer is enough – if the layer before the linear classifier has more
units than the number of training points – to provide solutions for a given set of random weights in the
previous layers (for large ρ and small fi). This also means that the intermediate layers do not need
to change much under GD in the iterations immediately after initialization. The emerging picture is
a landscape in which there are no zero-loss minima for ρ smaller than a certain minimum ρ, which
is network and data-dependent. With increasing ρ from ρ = 0 there will be a continuous set of zero
square-loss degenerate minima with the minimizer representing an interpolating (for λ = 0) or almost
interpolating solution (for λ > 0). We expect that λ > 0 results in a “pull” towards the minimum ρ0
within the local degenerate minimum of the loss.

Landscape for λ > 0 In the case of λρ2 > 0 the landscape may become become a Morse-Bott or Morse
function with shallow almost zero-loss minima. The question is open because the regularizer is not
sum of squares (Yaim Cooper, personal communication).

5This result is also what one expects from Bezout theorem for a deep polynomial network. As mentioned in Terry Tao’s blog
“from the general “soft” theory of algebraic geometry, we know that the algebraic set V is a union of finitely many algebraic
varieties, each of dimension at least d−N , with none of these components contained in any other. In particular, in the under-
determined case N < d, there are no zero-dimensional components of V , and thus V is either empty or infinite”(see references
in (46)).
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3.4 Gradient Dynamics
3.4.1 Gradient Flow Equations

The gradient flow equations are as follows (see also (8))

ρ̇ = −∂LS(ρ, {Vk}Lk=1)

∂ρ
=

2

N

∑
n

(1− ρf̄n)f̄n − 2λρ

V̇k = −∂LS(ρ, {Vk}Lk=1)

∂Vk
=

2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2νkVk.

(2)

In the second equation we can use the unit norm constraint on the ∥Vk∥ to determine the Lagrange
multipliers νk, using the following structural property of the gradient:

Lemma 2 (Lemma 2.1 of (48)) Let fW (x) be a ReLU neural network, fW (x) = WLσ(WL−1 . . . σ(W1x)) :
Rd → R. Then, we can write:

∀x ∈ Rd :
∑
i,j

∂fW (x)

∂W i,j
k

W i,j
k =

〈
Wk,

∂fW (x)

∂Wk

〉
= fW (x). (3)

The constraint ∥Vk∥2 = 1 implies using the lemma above ∂∥Vk∥2

∂t = V T
k V̇k = 0, which gives

νk =
1

N

∑
n

(ρf̄n − ρ2f2
n) =

1

N

∑
n

ρf̄n(1− ρfn). (4)

Thus the gradient flow is the following dynamical system

ρ̇ =
2

N

[∑
n

f̄n −
∑
n

ρ(f̄n)
2

]
− 2λρ and V̇k =

2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (5)

In particular, we can also write
ρ̇ = 2(µ− ρ(M + λ)), (6)

hence, at critical points (when ρ̇ = 0 and V̇k = 0), we have

ρ = ρeq :=
1
N

∑
n f̄n

λ+ 1
N

∑
n f̄

2
n

=

∑
n f̄n

λ+
∑

n f̄
2
n

=
µ

M + λ
. (7)

Thus the gap to interpolation due to λ > 0 is ϵ = (ρλ=0 − ρλ)µ = 1− µ
M+λµwhich gives

ϵ = 1− µ2

µ2 + σ2 + λ
=

σ2 + λ

µ2 + σ2 + λ
. (8)

Notice that since the Vk are bounded functions they must take their maximum and minimum values
on their compact domain – the sphere – because of the extremum value theorem. Also notice that for
normalized Vk, V T

k V̇k = 0 always, that is for normalized Vk the change in Vk is always orthogonal to
Vk, that is Vk can only rotate. If V̇k = 0 then the weights Vk are given by6

Vk =

∑
n ℓn

∂fn
∂Vk∑

ℓnfn
, (9)

where ℓn = 1− ρf̄n.
6This overdetermined system of equations – with as many equations as weights – can also be used to reconstruct the training

set from the Vk , the yn and the fn.
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Convergence. A favorable property of optimization of the square loss is the convergence of the
relevant parameters. With gradient descent, the loss function cannot increase, while the trainable
parameters may potentially diverge. A typical scenario of this kind happens with cross-entropy
minimization, where the weights typically tend to infinity. In light of the theorems in Section 3.3,
we could hypothetically think of training dynamics in which the loss function’s value L(ρ, {Vk}Lk=1)
decreases while ρ oscillates periodically within some interval. As we show next, this is impossible
when the loss function’s value converges to zero.
Lemma 3 Let fW (x) = ρfV (x) be a neural network and λ = 0. Assume that during training time, we have
limt→∞ L(ρ, {Vk}Lk=1) = 0 and ∀ k ∈ [L] : ∥Vk∥ = 1. Then, ρ and Vk converge (i.e., ρ̇→ 0 and V̇k → 0).

Proof Note that if limt→∞ L(ρ, {Vk}Lk=1) = 0, then, for all n ∈ [N ], we have: (ρfn − yn)
2 → 0. In

particular, ρfn → yn and ρf̄n → 1. Hence, we conclude that µρ→ 1. Therefore, by Lemma 4, ρρ̇→ 0.
We note that ρ→ 0 would imply ρfn → 0 which contradicts L(ρ, {Vk}Lk=1)→ 0, since the labels yn are
non-zero. Therefore, we conclude that ρ̇→ 0. To see why V̇k → 0, we recall that

V̇k =
2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
.

We note that ∥Vk∥ = 1, |f̄n| = 1 and ∂f̄n
∂Vk

is bounded (assuming that ∀ n ∈ [N ] : ∥xn∥ ≤ 1 and
∀ k ∈ [L] : ∥Vk∥ = 1). Hence, since ρ converges, ρf̄n → 1, implying (for λ = 0) V̇k → 0.

So far, we have assumed convergence of GF, or GD or SGD to zero loss. Convergence does not seem
too far fetched given overparametrization and the associated high degeneracy of the global minima
(see 3.3 and theorems there). Proofs of convergence of descent methods have been however lacking
until a recent paper (49) presented a new criterion for convergence of gradient descent and used to
show that gradient descent with proper initialization converges to a global minimum. The result has
technical limitations that are likely to be lifted in the future: it assumes that the activation function is
smooth, that the input dimension is greater than or equal to the number of data points and that the
descent method is GF or GD.

3.5 Qualitative Dynamics
We consider the dynamics of model b) in Figure 1. During training the norm of each layer weight matrix
is kept constant by the Lagrange multiplier constraint which is applied to all layers but the last one,
Thus leaving ρ at the top to change depending on the dynamics. Recall that ∀ n ∈ [N ] : 0 ≤ |f̄n| ≤ 1
because the assumption ∥x∥ ≤ 1, yields ∥f(x)∥ ≤ 1 by taking into account the definition of ReLUs and
the fact that matrix norms are sub-multiplicative. Depending on the number of layers, the maximum
margin that the network can achieve for a given dataset is usually much smaller than the upper bound
1, because the weight matrices have unit norm and the bound ≤ 1 is conservative. Thus, in order to
guarantee interpolation, namely, ρfnyn = 1, ρmust be significantly larger than 1. For instance, in the
experiments plotted in this paper, the maximal f̄n is ≈ 0.002 and thus the ρ needed for interpolation
(for λ = 0) is in the order of 500. We assume then that for a given dataset there is a maximal value
of ynfn that allows interpolation. Correspondingly, there is a minimum value of ρ that we call, as
mentioned earlier, ρ0.
We now provide some intuition for the dynamics of the model. Notice that ρ(t) = 0 and fV (x) = 0 (if
all weights are zero) is a critical unstable point. A small perturbation will either result in ρ̇ < 0 with ρ
going back to zero or in ρ growing if the average margin is just positive, that is µ > λρ > 0.

Small ρ initialization. First, we consider the case where the neural network is initialized with a
smallish ρ, that is ρ < ρ0. Assume then that at some time t, µ > 0, that is average separability holds.
Notice that if the fn were zero-mean, random variables, there would be a 50% chance for average
separability to hold. Then Equation (5) shows that ρ̇ > 0. If full separability takes place, that is
∀ n : fn > 0, then ρ̇ remains positive at least until ρ = 1. This is because Equation (5) implies that
ρ̇ ≥ 2(µ−ρµ) sinceM ≤ µ. In general, assuming eventual convergence, ρmay grow non-monotonically,
that is there may oscillations in ρ for “short” intervals, until it converges to ρ0.
To see this, consider the following lemma that gives a representation of the loss function in terms of ρ,
ρ̇ and µ.
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Lemma 4 Let fW (x) = ρfV (x) be a neural network, with ∀ k ∈ [L] : ∥Vk∥ = 1. The square loss can be
written as LS(ρ, {Vk}Lk=1) = 1− ρ( 12 ρ̇+ µ).

Proof First, we consider that

LS(ρ, {Vk}Lk=1) =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N
(ρ2f2

n − 2ynρfn + y2n) + λρ2

= 1− 2ρµ+ ρ2M + λρ2,

(10)

where the second equations follows from ∀ k ∈ [L] : ∥Vk∥ = 1 and the third from y2n = 1, µ =
∑

n ynfn
and M =

∑
n f

2
n. On the other hand, by Equation (6), ρ̇ = 2µ − 2ρM − 2λρ which gives 2ρM =

2µ−2λρ− ρ̇. Therefore, we conclude that LS(ρ, {Vk}Lk=1) = 1− 1
2ρρ̇−ρµ = 1−ρ( 12 ρ̇+µ) as desired.

Following this lemma, if ρ̇ becomes negative during training, then, the average margin µ must increase
since GD cannot increase but only decrease L. In particular, this implies that ρ̇ cannot be negative
for long periods of time. Notice that short periods of decreasing ρ are “good” since they increase the
average margin!
If ρ̇ turns negative, it means that it has crossed ρ̇ = 0. This may be a critical point for the system if the
values of Vk corresponding to V̇k = 0 are compatible (since the matrices {Vk}Lk=1 determine the value
of f̄n). We assume that this critical point – either a local minimum or a saddle – can be avoided by the
randomness of SGD or by an algorithm that restarts optimization when a critical point is reached for
which L > 0.
Thus, ρ grows (non-monotonically) until it reaches an equilibrium value, close to ρ0. Recall that for
λ = 0 this corresponds to a degenerate global minimum L = 0, usually resulting in a large attractive
basin in the loss landscape. For λ = 0, a zero value of the loss (L = 0) implies interpolation: thus all
the fn have the same value, that is all the margins are the same.

Large ρ initialization. If we initialize a network with large norm ρ > ρ0, Equation (1) shows that
ρ̇ < 0. This implies that the norm of the network will decreases until eventually an equilibrium is
reached. In fact since ρ≫ 1 it is likely that there exists an interpolating (or near interpolating) solution
with ρ that is very close to the initialization. In fact, for large ρ it is usually empirically possible to find a
set of weights VL such that ρf̄n ≈ 1. To understand why this may be true, recall that if there are at least
N units in the top layer of the network (layer L) with given activities and ρ≫ ρ0 there exist values of
VL that yield interpolation due to Theorem 2. In other words, it is easy for the network to interpolate
with small values f̄n. These large ρ, small f̄n solutions are reminiscent of the Neural Tangent Kernel
(NTK) solutions (24), where the parameters do not move too far from their initialization. A formal
version of the same argument is based on the following result.
We now assume that the network in the absence of weight decay has converged to an interpolating
solution
Lemma 5 Let fV be a neural network with weights {Vk}Lk=1, such that, ∀ n ∈ [N ] : ρf̄n = ρµ∗ = 1. Further
assume that the classifier VL and the last layer features h are aligned, ie, yn⟨VL, h(xn)⟩ = ||h(xn)||2, where the
vector h denotes the activities of the units in the last layer. Then, perturbing VL into another unit-norm vector
V ′
L ∈ Rp, such that, V T

L V ′
L = α ∈ (0, 1) yields a neural network f̂(x) = ⟨V ′

L, h(x)⟩ with the property that
ρ
α f̂

is an interpolating solution, corresponding to a critical point of the gradient but with a larger ρ.

Proof Consider the margins of the network f̂(x) = ⟨V ′
L, h(x)⟩, we have that ¯̂

fn = yn⟨V ′
L, h(xn)⟩. Since

the classifier weights and the last layer features are aligned (as it may happen for λ→ 0), we have that
ynh(xn) = ||h(xn)|| × VL. This means ¯̂

fn = ||h(xn)|| × ⟨V ′
L, VL⟩. We also have from the interpolating

condition that ρf̄n = ρµ∗ = 1, which means ||h(xn)|| = 1
ρ . Putting all this together, we have ρ

α
¯̂
fn = 1,

which concludes the proof.

Thus if a network exists providing an interpolating solution with a minimum ρ and VL ∝ h, there
exist networks, that differ only in the last VL layer, that are also interpolating but with larger ρ. As a
consequence there is a continuum of solutions that differ only in the weights VL of the last layer.
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Of course there may be interpolating solutions corresponding to different sets of weights in layers
below L, to which the above statement does not apply. These observations suggest that there is a valley
of minimizers for increasing ρ, starting from a zero-loss minimizer which have the Neural Collapse
property (see section 5).
In Figure 4 we show the dynamics of ρ alongside train loss and test error. We show results with
and without Weight Decay in the top and bottom rows of Figure 4 respectively. LS decreases with µ
increasing and σ decreasing. The figures show that in our experiments the large margins of some of the
data points decrease during GD, contributing to a decrease in σ. Furthermore Equation (10) suggests
that for small ρ, the termdominating the decrease inLS is−2ρµ. For larger ρ, the term ρ2M = ρ2(σ2+µ2)
becomes important: eventually LS decreases because σ2 decreases. The regularization term, for
standard small values of λ, is relevant only in the final phase, when ρ is in the order of ρ0. For λ = 0
the loss at the global equilibrium (which happens at ρ = ρ0) is LS = 0 (since µ = 1

ρ0
,M = µ2, σ2 = 0).

To sum up, starting from small initialization, gradient techniques will explore critical points with ρ
growing from zero. Thus quasi-interpolating solutions with small ρ (corresponding to large margin
solutions) may be found before the many large ρ quasi-interpolating solutions which have worse
margins (see Figure 4, upper and lower row). This dynamics can take place even in the absence of
regularization; however, λ > 0 makes the process more robust and bias it towards small ρ.

4 Generalization: Rademacher complexity of convolutional layers
4.1 Classical Rademacher bounds
In this section we analyze the test performance of the learned neural network. Following the standard
learning setting, we assume that there is some underlying distribution P of labeled samples (x, y) and
the training data S = {(xi, yi)}Ni=1 consists of N i.i.d. samples from P . The model fW is assumed to
perfectly fit the training samples, i.e., fW (xi) = yi = ±1.
We would like to upper bound the classification error err(fW ) := E(x,y)∼P [I[sign(fW (x)) ̸= y]] of the
learned function fW in terms of the number of samples N and the norm ρ of fW .
This analysis is based on the following data-dependent measure of the complexity of a class of functions.

Definition 3 (Rademacher Complexity) Let H be a set of real-valued functions h : X → R defined over a
set X . Given a fixed sample S ∈ Xm, the empirical Rademacher complexity of H is defined as follows:

RS(H) :=
2

m
Eσ

[
sup
h∈H

∣∣∣ m∑
i=1

σih(xi)
∣∣∣] .

The expectation is taken over σ = (σ1, . . . , σm), where, σi ∈ {±1} are i.i.d. and uniformly distributed samples.

The Rademacher complexity measures the ability of a class of functions to fit noise. The empirical
Rademacher complexity has the added advantage that it is data-dependent and can be measured from
finite samples.

Theorem 4 Let P be a distribution over Rd × {±1}. Let F = {fW |
∏L

i=1 ∥Wi∥ ≤ 1}. Let S = {(xi, yi)}Ni=1

be a dataset of i.i.d. samples selected from P . Then, with probability at least 1− δ over the selection of S , for any
fW that perfectly fits the data (i.e., fW (xi) = yi), we have

errP (fW ) ≤ 2(ρ+ 1) · RS(F) + 3

√
log(2(ρ+ 1)2/δ)

2N
(11)

Proof Let t ∈ N ∪ {0} and Gt = {fW |
∏L

i=1 ∥Wi∥2 ∈ [t, t+ 1]}. We consider the ramp loss function

ℓramp(y, y
′) =


1, if yy′ ≤ 0,

1− yy′, if 0 ≤ yy′ ≤ 1,

0, if yy′ ≥ 1.
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By (cf. (50), Theorem 3.3), for any t ∈ N ∪ {0}, with probability at least 1 − δ
t(t+1) , for any function

fW ∈ Gt, we have

E(x,y)[ℓramp(fW (x), y)] ≤ 1

N

N∑
i=1

ℓramp(fW (xi), yi) + 2RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N
. (12)

We note that for any function fW for which fW (xi) = yi = ±1, we have ℓramp(fW (xi), yi) = 0. In
addition, for any function fW and pair (x, y), we have ℓramp(fW (x), y) ≥ I[sign(fW (x)) ̸= y]. Therefore,
we conclude that with probability at least 1− δ

t(t+1) , for any function fW ∈ Gt, we have

errP (fW ) ≤ 2RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N
. (13)

We notice that by the homogeneity of ReLU neural networks, we haveRS(Gt) ≤ (t+ 1) · RS(F). By
union bound over all t ∈ N∪{0}, (13) holds uniformly for all t ∈ N∪{0} and fW ∈ Gt with probability
at least 1− δ. For each fW with∏L

i=1 ∥Wi∥2 = ρwe can apply the bound with t = ⌊ρ⌋ since fW ∈ Gt,
and obtain the desired bound,

errP (fW ) ≤ 2(t+ 1) · RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N

≤ 2(ρ+ 1) · RS(F) + 3

√
log(2(ρ+ 1)2/δ)

2N

(14)

The above theorem provides an upper bound on the classification error of the trained network fW that
perfectly fits the training samples. The upper bound is decomposed into two main terms. The first
term is proportional to the norm of the trained model ρ and the Rademacher complexity of F which is
the set of the normalized neural networks and the second term scales as

√
log(ρ/δ)/N . As shown in

Theorem 1 in (51), this term is upper bounded by RS(F) ≤ (
√

2 log(2)L+ 1)/
√

(N), assuming that
the samples are taken from the d-dimensional ball Bd of radius 1. The overall bound is then (assuming
zero training error)

errP (fW ) ≤
2(ρ+ 1)(

√
2 log(2)L+ 1)√
N

+ 3

√
log(2(log(ρ) + 1)2/δ)

2N
. (15)

We note that while the mentioned bound on RN (F) depends on the architecture of the network it
does not depend in an explicit way on the training set. However, as shown in Equation 6 in (51),
the bound may be improved further if the matrices’ stable rank is low, which happens with small
rank of the weight matrices. In practice, the value of RN (F) depends on the network architecture (e.g.
convolutional) but also on the underlying optimization (e.g. L2 vs L1) and on the data (e.g. rank).

4.2 Relative Generalization
We now consider two solutions with zero empirical loss of the square loss regression problem obtained
with the same ReLU deep network and corresponding to two different minima with two different ρ. Let
us call them ga(x) = ρaf

a(x) and gb(x) = ρbf
b(x). Using the notation of this paper, the functions fa

and fb correspond to networks with normalized weight matrices at each layer.
Let us assume that ρa < ρb.
We now use Equation 15 and the fact that the empirical L̂γ for both functions is the same to write
L0(f

a) = L0(F
a) ≤ c1ρaRN (F̃) + c2

√
ln( 1

δ )

2N and L0(f
b) = L0(F

b) ≤ c1ρbRN (F̃) + c2

√
ln( 1

δ )

2N . The
bounds have the form

L0(f
a) ≤ Aρa + ϵ (16)

and
L0(f

b) ≤ Aρb + ϵ (17)
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Thus the upper bound for the expected error L0(f
a) is better than the bound for L0(f

b). Of course this
is just an upper bound. As a consequence this result does not guarantee that a solution with smaller ρ
will always have a smaller expected error than a solution with larger ρ.
Notice that the this generalization claim is just a relative claim about different solutions obtained with
the same network trained on the same training set.
Figure 5 shows clearly that increasing the percentage of random labels increases the ρ that is needed to
maintain interpolation – thus decreasing the margin – and that at the same time the test error increases,
as expected. This monotonic relation between margin and accuracy at test seems to break down for
small differences in margin as shown in Figure 6, though the significance of the effect is unclear. Of
course this kind of behavior is not inconsistent with an upper bound.

4.3 Novel bounds for Sparse Networks
old versionThe bounds in section 4.1 are for generic deep networks. In such a general case, ρ in those
bounds is the product of the Frobenius norms of all the weight matrices. For convolutional networks
the weight matrices are Toeplitz matrices. Thus a direct application of Equation 15 gives large bounds –
though not as large as in the case of dense networks (because of the sparsity of the Toeplitz matrices).
Here we show that the bound on the Rademacher complexity can be reduced by exploiting two typical
properties of CNNs: a) the locality of the convolutional kernels and b) shared weights. They allow us
to use only the norm of the kernels in the calculation of ρk instead of the norm of the corresponding
Toeplitz matrix. In this section we give an outline of the results with more precise statements and
proofs to be published later.
We start by considering the simple situation of non-overlapping convolutional patches. In other words,
the stride of the convolution is equal to the size of the kernel in each layer. This means that in the
associated Toeplitz matrix the non-zero components in each row do not overlap with the non-zero
components of the row above or the one below. In other words, if K is the number of patches, ℓ is
the size of each patch and x ∈ Rd, then d = Kℓ. Notice that the standard bounds give a Rademacher
complexity proportional to the product of the Frobenius norms of each weight matrix ∥W∥ time the
norm of ∥x∥, where ∥W∥ ∝

√
kM , where M is the norm of the kernel. In section 4.1 we describe

generic bounds on the Rademacher complexity of deep neural networks. In these cases, ρmeasures
the product of the Frobenius norms of the network’s weight matrices in each layer. For convolutional
networks, however, the operation in each layer is computed with a kernel, described by the vector w,
that acts on each patch of the input separately. Therefore, a convolutional layer is represented by a
Toeplitz matrix W , whose blocks are each given by w. A naive application of (15) to convolutional
networks give a large bound, where the Frobenius norm of the Toeplitz matrix is equivalent to norm of
the kernel multiplied by the number of patches.
In this section we provide an informal analysis of the Rademacher complexity, showing that it can
be reduced by exploiting maonly the first one of the two properties of convolutional layers: (a) the
locality of the convolutional kernels and (b) weight sharing. These properties allow us to bound the
Rademacher complexity by taking the products of the norms of the kernel w instead of the norm of the
associated Toeplitz matrix W . Here we outline the results with more precise statements and proofs to
be published separately.
We consider the case of 1-dimensional convolutional networks with non-overlapping patches and one
channel per layer. For simplicity, we assume that the input of the network lies in Rd, with d = 2L

and the stride and the kernel of each layer are 2. The analysis can be easily extended to kernels
of different sizes. This means that the network h(x) can be represented as a binary tree, where
the output neuron is computed as WL · σ(vL1 (x), vL2 (x)), vL1 (x) = WL−1 · σ(vL−1

1 (x), vL−1
2 (x)) and

vL2 (x) = WL−1 · σ(vL−1
3 (x), vL−1

4 (x)) and so on. This means that we can write the i’th row of the
Toeplitz matrix of the l’th layer (0, . . . , 0,−W l−, 0 . . . , 0), where W l appears on the 2i − 1 and 2i

coordinates. We define a setH of neural networks of this form, where each layer is followed by a ReLU
activation function and∏L

l=1 W
l ≤ ρ.

Theorem 5 LetH be the set of binary-tree structured neural networks over Rd, with d = 2L for some natural
number L. Let X = {x1, . . . , xm} ⊂ Rd be a set of samples. Then,

RX(H) ≤
2Lρ

√∑m
i=1 ∥xi∥2
m

(18)
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Proof [Proof sketch] First we rewrite the Rademacher complexity in the following manner:

RX (H) = Eϵ sup
h∈H
| 1
m

m∑
i=1

ϵi · h(xi)|

= Eϵ sup
h∈H

1

m
|

m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|

= Eϵ sup
h∈H

1

m

√√√√| m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|2

(19)

Next, by the proof of Lem. 1 in (51), we obtain that

RX (H) ≤ 2Eϵ sup
h∈H

1

m

√√√√∥WL∥2 · ∥
m∑
i=1

ϵi(v1(x), v2(x))∥2

= Eϵ sup
h∈H

1

m

√√√√∥WL∥2 ·
2∑

j=1

∥
m∑
i=1

ϵivj(xi)∥2

(20)

By applying this peeling process L times, we obtain the following inequality:

RX (H) ≤ 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 ·
d∑

j=1

∥
m∑
i=1

ϵixij∥2

= 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 · ∥
m∑
i=1

ϵixi∥2

≤
2L−1ρEϵ∥

∑m
i=1 ϵixi∥

m

≤
2L−1ρ

√∑m
i=1 ∥xi∥2

m

(21)

where the factor 2L−1 is obtained because the last layer is linear (see (52)). We note that a better bound
can achieved when using the reduction introduced in (51) which would give a factor of

√
2 log(2)L+1

instead of 2L−1.

One-layer convolutional classifier Consider a ReLU convolutional classifier with k patches. R̂m, in
the standard bounds would be

R̂m ≤ BX

where B is the Frobenius norm of the Toeplitz matrix with k rows, each row consisting of the kernel w.
Thus B =

√
K∥w∥ and X = ∥x∥.

Our calculation gives with x1 representing the first patch of x and xK the last one:

R̂m ≤
√
∥w∥2∥x1 + · · ·+ xK∥2 =

√
∥w∥2∥x∥2 = ∥w∥∥x∥.

instead of the general bound usually referred which is

R̂m ≤ ∥W∥∥x∥ =
√
k∥w∥∥x∥

Multi-layer convolutional classifier The Rademacher complexity of a feed-forward neural network
can be bounded recursively by considering each layer at a time. A bound that can be used for the recur-
sion is given by the following proposition (see (52; 51)), that expresses the Rademacher complexities
at the outputs of one layer in terms of the outputs at the previous layers.
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Lemma 6 Let H be a class of functions from Rd to R. Let σ : R → R be the ReLU function which is 1-
Lipschitz and define H′ :=

{
x ∈ Rd → σ

(∑k
j=1 wjhj(x)

)
∈ R : ∥w∥2 ≤M,h1, . . . , hk ∈ H

}
. Then, for

any x1, . . . , xm ∈ Rd

R (H′ ◦ {x1, . . . , xm}) ≤ 2MR (H ◦ {x1, . . . , xm}) .

We apply now the Lemma to the class of L-depth ReLU real-valued CNN, with each layer’s kernel wd

with norm at most Md.
Theorem 6 (informal) The Rademacher complexity of a convolutional deep net with ReLUs in all d layers but
the last linear one and with non-overlapping convolutional patches can be bounded as

ˆ

Rm(Hd) ≤ (
√

2 log(2)L+ 1)

L∏
j=1

Mj∥x∥ (22)

Proof [Proof sketch] Each hd
k ∈ H⌈ (k = 1, · · · , Q is a ReLU classifier inputs from patch j of the layer be-

low. Patch k in layer d−1 can bewritten as a vector vk consisting of ℓ classifiers vk = hd−1
k·1 , hd−1

k·2 , · · · , hd−1
k·ℓ .

Then hd
k = σ(w · vk. Notice that because of our assumption of non-overlapping patches there number

of units in layer d− 1 is ℓ times the number of units in layer d. Then

R̂m (Hd) = Eϵ sup
hi∈Hd

1

m

m∑
i=1

ϵihi = Eϵ sup
hi∈Hd−1w:∥w∥≤M

1

m

m∑
i=1

ϵiw · (
∑
k

vk), (23)

can be upper bounded as follows

R̂m (Hd) ≤ 2MdEϵ sup
h∈Hd

∥ 1
m

m∑
i=1

ϵi(
∑
k

(vk)i)∥ ≤
1

m

√
(w · (

∑
k

vk)2 =
1

m

√
(w · (

∑
k

vk)2 = 2MdR̂m (Hd−1) ,

(24)
because (∑k vk)

2 =
∑

k v
2
k since the various patches are zero-mean and uncorrelated.

Continuing the peeling we obtain
ˆRm(HL) ≤ 2L−1ML ·ML−1 · · ·M1∥x∥, (25)

where the factor 2L−1 is obtained because the last layer is linear (see (52)). To this result we can further
apply the reduction used by (51) to finally obtain the result.

One ends up with a bound scaling as the product of the norms of the kernel at each layer. The constants
may change depending on the architecture, the number of patches, the size of the patches and their
overlap.
Thus one ends up with a bound scaling as the product of the norms of the kernel at each layer. The
constants may change depending on the architecture, the number of patches, the size of the patches
and their overlap.
This special non-overlapping case can be extended to the general convolutional case. In fact a proof of
the following conjecture will be provided in (53)
Conjecture 1 If a convolutional layer has overlap among its patches then the non-overlap bound

ˆRm(HL) ≤ 2L−1ρ∥x∥ (26)
where ρ is the product of the norms of the kernels at each layer becomes

ˆ
Rm(HL) ≤ 2L−1ρ

√
K

K −O
∥x∥ (27)

where K is the size of the kernel (number of components) and O is the size of the overlap.

Sketch proof Call P the number of patches and O the overlap. With no overlap then PK = D where D
is the dimensionality of the input to the layer. In general P = D−O

K−O . It follows that a layer with the
most overlap can add at most < ∥x∥

√
K to the bound. Notice that we assume that each component of

xi averaged across i will have norm
√

1
d .
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The bound is surprisingly small In this section we have derived bounds for convolutional networks
that may potentially be orders of magnitude smaller than equivalent similar bounds for dense networks.
We note that a naive application of Corollary 2 in (29) for the network we used in Theorem 5 would
require treating the network as if it were a dense network. In this case the bound would be proportional
to the product of the norms of each of the Toeplitz matrices in the network individually. In this case,
the total bound becomes

2L
√∏L

l=1(2
l)ρ
√∑m

i=1 ∥xi∥2

m
=

20.25L
2+1.25Lρ

√∑m
i=1 ∥xi∥2

m
(28)

which is much larger than the bound we obtained earlier. The key point is that the Rademacher bounds
achievable for sparse networks are much smaller than for dense networks. This suggests that convolutional
network with local kernels may generalize much better than dense network, which is consistent in spirit
with approximation theory results (compositionally sparse target functions can be approximated by
sparse networks without incurring in the curse of dimensionality, whereas generic functions cannot
be approximated by dense networks without the curse). They also confirm the empirical success of
convolutional networks compared to densely connected networks.
It is also important to observe that the boundswe obtainedmay be non-vacuous in the overparametrized
case, unlike VC bounds which depend on the number of weights and are therefore always vacuous
in overparametrized situations. With our norm-based bounds it is in principle possible to have over-
parametrization and interpolation simultaneously with non-vacuous generalization bounds: this is suggested by
Figure 8. Figure 9 shows the case of a 3-layer convolutional network with a total number of parameters
of ≈ 20K.

5 Neural Collapse
A recent paper (12) described four empirical properties of the terminal phase of training (TPT)
deep networks, using the cross-entropy loss function. TPT begins at the epoch where training error
first vanishes. During TPT, the training error stays effectively zero, while training loss progressively
decreases. Direct empirical measurements expose an inductive bias they call Neural Collapse (NC),
involving four interconnected phenomena. Informally, (NC1) Cross-example within-class variability
of last-layer training activations collapses to zero, as the individual activations themselves collapse to
their class means. (NC2) The class means collapse to the vertices of a simplex equiangular tight frame
(ETF). (NC3) Up to rescaling, the last-layer classifiers collapse to the class means or in other words,
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For a given activation, the classifier’s
decision collapses to simply choosing whichever class has the closest train class mean (i.e., the nearest
class center decision rule).
We now formally define the four Neural Collapse conditions. We consider a network fW (x) = WLh(x),
where h(x) ∈ Rp denotes the last layer feature embedding of the network, andWL ∈ RC×p contains the
parameters of the classifier. The network is trained on a C-class classification problem on a balanced
dataset S = {(xcn, ycn)}N,C

n=1,c=1 with N samples per class. We can compute the per-class mean of the
last layer features as follows

µc =
1

N

N∑
n=1

h(xcn), (29)

The global mean of all features as follows

µG =
1

C

∑
c

µc =
1

NC

C,N∑
c=1,n=1

h(xcn).
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Furthermore, the second order statistics of the last layer features are computed as:

ΣW =
1

C

C∑
c=1

1

N

∑
n=1

(h(xcn)− µc)(h(xcn)− µc)
⊤

ΣB =
1

C

C∑
c=1

(µc − µG)(µc − µG)
⊤

ΣT =
1

NC

C,N∑
c=1,n=1

(h(xcn)− µG)(h(xcn)− µG)
⊤.

(30)

Here, ΣW measures the within-class-covariance of the features, ΣB is the between-class-covariance,
and ΣT is the total covariance of the features (ΣT = ΣW +ΣB).
We can now list the formal conditions for Neural Collapse:

NC1 (Variability collapse) Variability collapse states that the variance of the feature embeddings of
samples from the same class tends to zero, or formally, Tr(ΣW )→ 0.

NC2 (Convergence to Simplex ETF) |∥µc − µG∥2 − ∥µc′ − µG∥2| → 0, or the centered class means
of the last layer features become equinorm. Moreover, if we define µ̃c = µc−µG

∥µc−µG∥2
, then we have

⟨µ̃c, µ̃c′⟩ = − 1
C−1 for c ̸= c′, or the centered class means are also equiangular. The equinorm condition

also implies that∑c µ̃c = 0, i.e., the centered features lie on a simplex.

NC3 (Self-Duality) If we collect the centered class means into a matrix M = [µc − µG], we have∣∣∣∣∣∣ W⊤

∥W∥F
− M

∥M∥F

∣∣∣∣∣∣ → 0, or that the classifier W and the last layer feature means M become duals of
each other.

NC4 (Nearest Center Classification) The classifier implemented by the deep network eventually
boils down to choosing the closest mean last layer feature argmaxc⟨W c

L, h(x)⟩ → argminc∥h(x)− µc∥2.

Related Work on Neural Collapse: Since the empirical observation of Neural Collapse was made in
(12), a number of papers have studied the phenomenon in the so-called Unconstrained Features regime
(32; 34; 40; 33; 39). The basic assumption underlying these proofs is that the features of a deep network
at the last layer can essentially be treated as free optimization variables, which converts the problem of
finding the parameters of a deep network that minimize the training loss, into a matrix factorization
problem of factoring one-hot class labels Y ∈ RC×CN into the last layer weights W ∈ RC×p and
the last layer features H ∈ Rp×CN . In the case of the squared loss, the problem that they study is
minW,H∥WH − Y ∥2 + λW ∥W∥2 + λH∥H∥2.
In this section, we show instead that we can predict the existence of Neural Collapse and its properties
as a consequence of our analysis of the dynamics of SGD on deep binary classifiers trained on the square
loss function with Lagrange Normalization andWeight Decay without any additional assumption. We first
consider the case of binary classification and show that NC follows from the analysis of the dynamics
of the square loss in the previous sections. The loss function is the same one defined in Equation (1),
and we consider minimization using SGD with a batch size of 1. After establishing Neural Collapse
in this familiar setting, we consider the multiclass setting where we derive the conditions of Neural
Collapse from an analysis of the squared loss function with weight decay and weight normalization.

5.1 Binary Classification
We prove in this section that Neural Collapse follows from the following property of the landscape of
the squared loss that we analyzed in the previous section:
[Symmetric Quasi-interpolation (Binary Classification)] Consider a binary classification problem with
inputs in a feature space X and labels space {+1,−1}. A classifier fW : X → R symmetrically quasi-
interpolates a training dataset S = {(xn, yn)}Nn=1 if for all training examples ¯fWn = ynfW (xn) = 1− ϵ,
where ϵ is the interpolation gap.
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We prove first that the property follows without any assumption at convergence from our previous analysis
of the landscape of the squared loss for binary classification.

Lemma 7 An overparameterized deep ReLU network for binary classification trained to convergence under
the squared loss in the presence of weight decay and weight normalization (WN) satisfies the symmetric quasi-
interpolation property. Furthermore, the gap to interpolation of the regularized network is ϵ = λ

µ2+λ where
µ = 1

N

∑
i f̄i.

Proof
Consider the regularized square loss LS = 1

N

∑N
i=1(ρf̄i − 1)2 + λρ2. We recall the definitions made

earlier in section 3.2 of the margin f̄i = yifi, and the first and second order sample statistics of the
margin µ = 1

N

∑N
i=1 f̄i,M = 1

N

∑N
i=1 f̄

2
i , σ

2 = M −µ2. We consider deep networks that are sufficiently
overparameterized to attain 100% accuracy on the training dataset, which means f̄i > 0. Since the
weights of the deep network {Vk}Lk=1 are normalized and the data xi lie within the unit norm ball,
we have that |f̄i| ≤ 1. Even though f̄i could take values close to 1, the typically observed values of f̄i
in our experiments are approximately 5× 10−3. For our purposes it suffices to note that there exists
a maximum possible margin such that 0 < f̄i ≤ µ̄ for all training examples for a given data set and
network architecture.
Using these definitions, we can rewrite the deep network training problem as:

minρ,{Vk}L
k=1
LS = (M + λ)ρ2 − 2ρµ+ 1 (31)

All critical points (including minima) need to satisfy ∂LS
∂ρ = 0, from which we get ρ = µ

M+λ . If we plug
this back into the loss, our minimization problem becomes:

min{Vk}L
k=1

(M + λ)

(
µ

M + λ

)2

− 2
µ2

M + λ
+ 1

= min{Vk}L
k=1

1− µ2

M + λ

= min{Vk}L
k=1

σ2 + λ

µ2 + σ2 + λ

= min{Vk}L
k=1

1

1 + µ2

σ2+λ

(32)

Hence in order to minimize the loss we have to find {Vk}Lk=1 that maximize µ2 and minimize σ2. Since
we assumed that the network is expressive enough to attain any value, the loss is minimized when
σ2 = 0 and µ = µ̄. Thus all training examples have the same margin.
If σ2 → 0, then all margins tend to the same value, f̄i → µ̄, and the optimum value of ρ is ρ = µ̄

µ̄2+λ .
This means that the gap to interpolation is ϵ = 1− ρµ̄ = λ

λ+µ̄2 .

The prediction σ → 0 has empirical support: we show in Figure 11 that all the margins converge to
be roughly equal. Once within class variability disappears, and for all training samples, the last layer
features collapse to their mean. The outputs and margins then also collapse to the same value. We can
see this in the left plot of Figure 13 where all of the margin histograms are concentrated around a single
value. We visualize the evolution of the training margins over the training epochs in Figure 11 which
shows that the margin distribution concentrates over time. At the final epoch the margin distribution
(colored in yellow) is much narrower than at any intermediate epochs. Notice that our analysis of the
origin of the SGD noise shows that “strict” NC1 never happens with SGD, in the sense that the margins
are never, not even asymptotically, exactly equal to each other, but just very close!
We now prove that Neural Collapse follows from property 5.1.

Theorem 7 Let S = {(xn, yn)}Nn=1 be a dataset. Let (ρ, V ) be the parameters of a ReLU network f such
that VL has converged when training using SGD with batches of size 1 on the square loss with LN+WD. Let
µ+ = 1

N

∑N
n=1,yn=1 h(xn), µ− = 1

N

∑N
n=1,yn=−1 h(xn). Consider points of convergence of SGD that satisfy

Property 5.1. Those points also satisfy the conditions of Neural Collapse as described below.
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• NC1: µ+ = h(xn) for all n ∈ [N ], yn = 1, µ− = h(xn) for all n ∈ [N ], yn = −1;

• NC2: µ+ = −µ−, which is the structure of an ETF with two vectors;

• NC3: VL ∝ µ+, µ−;

• NC4: sign(ρfV (x)) = argminc∈{+1,−1} ∥µc − h(x)∥.

Proof The update equations for SGD on the square loss function with LN+WD are given by:

V
(t+1)
L = V

(t)
L − η

∂L
∂V

(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
2ρ(ρf̄n − 1)ynh(xn) + 2ν

(t)
L V

(t)
L

) (33)

We can apply the unit norm constraints ||V (t+1)
L ||2 = 1 and ||V (t)

L ||2 = 1 and ignore all terms that are
O
(
η2
) to compute ν(t)L as:

2ν
(t)
L = 2ρynV

(t)⊤
L h(xn)(1− ρf̄n)

=⇒ ν
(t)
L = ρf̄n(1− ρf̄n)

(34)

This gives us the following SGD update:

V
(t+1)
L = V

(t)
L − η × 2ρyn(ρf̄n − 1)

(
h(xn)− fnV

(t)
L

)
(35)

Using property 5.1, we can see that for every training sample in class yn = 1, h(xn) =
(1−ϵ)

ρ VL, and for
every training sample in class yn = −1, h(xn) =

(−1+ϵ)
ρ VL. This shows that within class variability has

collapsed and that all last layer features collapse to their mean, which is the condition for NC1. We
can also see that µ+ = −µ−, which is the condition for NC2 when there are 2 vectors in the Simplex
ETF. The SGD convergence condition also tells us that VL ∝ µ+ and VL ∝ µ−, which gives us the NC3
condition. NC4 follows then from NC1-NC2, as shown by theorems in (12)

5.2 Multiclass Classification
In the previous section we proved the emergence of Neural Collapse in the case of a binary classifier
with scalar outputs, in order to be consistent with our framework in section 3. The phenomenon
of Neural Collapse was however defined in (12) for the case of multiclass classification with deep
networks. In this section we describe how NC emerges in this setting from the minimization of the
squared loss with Weight Normalization and Weight Decay regularization.
We consider a classification problem with C classes with a balanced training dataset S = ∪Cc=1Sc =
∪Cc=1{(xcn, c)}Nn=1 = {(xn, yn)} that has N training examples Sc = {(xcn, c)}Nn=1 per-class c ∈ [C].
The labels are represented by the unit vectors {ec}Cc=1 in RC . Since we consider deep homoge-
neous networks that do not have bias vectors, we center the one-hot labels, and scale them so that
they have maximum output 1. We denote the resulting labels (for a class-balanced dataset) as
ẽc =

[
−1

C−1, . . . ,
−1
C−1 , 1,

−1
C−1 , . . . ,

−1
C−1

]
, where the cth coordinate is 1. We consider a deep ReLU network

fW : Rd → RC , which takes the form fW (x) = WLσ(WL−1 . . .W2σ(W1x) . . .). However, we stick to
the normalized reparameterization of the deep ReLU network as f(x) = ρVLσ(VL−1 . . . V2σ(V1x) . . .).
We train this normalized network with SGD on the square loss with Lagrange multipliers and Weight
Decay. This architecture differs from the one considered in section 3.4 in that it has C outputs instead
of a scalar output. Let the output of the network be ρfV (x) = [ρf

(1)
V (x) . . . ρf

(C)
V (x)]⊤, and the target

vectors be yn = [y
(1)
n . . . y

(C)
n ]⊤. We will also follow the notation of (12) and use h : Rd → Rp to denote

the last layer features of the deep network. This means that f (c)
V (x) = ⟨V c

L, h(x)⟩. The squared loss
function with weight decay is written as LS(ρ, {Vk}Lk=1) =

1
NC

∑C
c=1

∑N
n=1 ||ycn − ρfV (xcn)||2 + λρ2.
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[Symmetric Quasi-interpolation (Multiclass Classification)] Consider a C-class classification problem
with inputs in a feature space X and labels space RC . A classifier f : X → RC symmetrically quasi-
interpolates a training dataset S = ∪Cc=1Sc = ∪Cc=1{(xcn, ycn)}Nn=1 if for all training examples xcn,
f(xcn) ∝ ẽc.
Similar to the binary classification case, we show that this property arises from an analysis of the
squared loss landscape for multiclass classification.

Lemma 8 An overparameterized deep ReLU classifier trained to convergence under the squared loss in the
presence of weight decay and weight normalization (WN) satisfies the symmetric quasi-interpolation property

Proof
Consider the regularized square loss LS = 1

CN

∑C
c=1

∑N
n=1 ∥ρfV (xcn)− ẽc∥2 + λρ2. In the multiclass

casewedefine the first order statistics of the output of the normalized network asµ = 1
CN

∑C
c=1

∑N
n=1⟨fV (xcn), ẽc⟩,

andM = 1
CN

∑C
c=1

∑N
n=1 ∥fV (xcn)∥2. We consider deep networks that are overparameterized enough

to attain 100% accuracy on the training dataset, which means ⟨fV (xcn), ẽc⟩ > 0. Since the weights of
the deep network {Vk}Lk=1 are normalized and the data xcn lie within the unit norm ball, we also have
that ∥fV (xcn)∥ ≤ 1. However, similar to the binary case, we observe that the norm of fV (xcn) takes
values of the order of 10−3.
Using these definitions, we can rewrite the deep network training problem as:

minρ,{Vk}L
k=1
LS = (M + λ)ρ2 − 2ρµ+

C

C − 1
(36)

All critical points (including minima) need to satisfy ∂LS
∂ρ = 0, from which we get ρ = µ

M+λ . If we plug
this back into the loss, our minimization problem becomes:

min{Vk}L
k=1

(M + λ)×
(

µ

M + λ

)2

− 2
µ2

M + λ
+

C

C − 1

= min{Vk}L
k=1

C

C − 1
− µ2

M + λ

(37)

Hence in order to minimize the loss we have to find {Vk}Lk=1 that maximizes µ2

M+λ . Since the network
is expressive enough to attain any value, and the norm of fV (xcn) is bounded, we see that the loss is
minimized when µ2 is maximized. That is, when f(xcn) ∝ ẽc for all training examples.

We now consider the optimization of the squared loss on deep networks with Weight Normalization
and Weight Decay:

LS(ρ, {Vk}Lk=1) =
1

NC

C∑
c=1

N∑
n=1

||ycn − ρfV (xcn)||2 +
L∑

k=1

νk
(
||Vk||2 − 1

)
+ λρ2 (38)

At each time point t the optimization process selects a random class-balanced batch S ′ = ∪Cc=1 ∪bn=1 S ′c
including B samples per-class from S ′c ⊂ Sc and updates the scale and weights of the network is the
following manner V ← V − η ∂LS′ (ρ,V )

∂V , ρ← ρ− η ∂LS′ (ρ,V )
∂ρ where η > 0 is a predefined learning rate

and b is a divisor ofN . A convergence point of the optimization process is a point (ρ, V ) that will never
be updated by any possible sequence of steps taken by the optimization algorithm. Specifically, the
convergence points of the proposedmethod are all points ρ, V forwhich ∂LS′ (ρ,V )

∂V = 0 and ∂LS′ (ρ,V )
∂ρ = 0

for all class-balanced batches S ′ ⊂ S.

Theorem 8 Let S = ∪Cc=1{(xcn, c)}Nn=1 be a dataset and B be a divisor ofN . Let (ρ, V ) be the parameters of a
ReLU network fW such that VL has converged when training using SGD with balanced batches of size B = bC

on the square loss with LN+WD. Let µc =
1
N

∑N
n=1 h(xcn), µG = 1

C

∑C
c=1 µc andM = [. . . µc − µG . . . ] ∈

Rp×C . Consider points of convergence of SGD that satisfy Property 5.2. Then, those points also satisfy the
conditions of Neural Collapse as described below.

• NC1: µc = h(xcn) for all n ∈ [N ];
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• NC2: the vectors {µc − µG}Cc=1 form an ETF;

• NC3: V ⊤
L = M

∥M∥F
;

• NC4: argmaxc∈[C] f
c
W (x) = argminc∈[C] ∥µc − h(x)∥.

Proof Our training objective is the loss function described in (38). The network is trained using
SGD along with Lagrange normalization and weight decay. We use SGD with balanced batches to
train the network. Each step taken by SGD takes the form −η ∂LS′

∂V , where S ′ ⊂ S is a balanced batch
containing exactly b samples per class. We consider limit points of the learning procedure, meaning
that ∂LS′

∂V = 0 for all balanced batches S ′. Let S ′ = ∪Cc=1 ∪bn=1 {(x̂cn, ŷcn)} be such a balanced batch.
We use SGD, where at each time t the batch S ′ is drawn at random from S , to study the time evolution
of the normalized parameters VL in the limit η → 0.

V
(t+1)
L = V

(t)
L − η

∂LS′

∂V
(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
1

B

C∑
c′=1

b∑
n=1

2ρ(ρfV (xc′n)− ẽc′)h(xc′n)
⊤ + 2ν

(t)
L V

(t)
L

) (39)

We can apply the unit norm constraints ||V (t+1)
L ||2F = tr(V (t+1)⊤

L V
(t+1)
L ) = 1 and ||V (t)

L ||2F = tr(V (t)⊤
L V

(t)
L ) =

1 and ignore all terms that are O (η2) to compute ν(t)L as:

2ν
(t)
L = − 1

B

C∑
c′=1

b∑
n=1

2ρtr
(
V

(t)⊤
L (ρfV (xc′n)− ẽc′)h(xc′n)

⊤
)

=⇒ ν
(t)
L = − 1

B

C∑
c′=1

b∑
n=1

ρtr
(
(V

(t)
L h(xc′n))

⊤(ρfV (xc′n)− ẽc′)
)

= − 1

B

C∑
c′=1

b∑
n=1

ρfV (xc′n)
⊤(ρfV (xc′n)− ẽc′)

(40)

This means that the (stochastic) gradient of the loss with respect to the last layer VL, and each classifier
vector V c

L with Lagrange Normalization can be written as (we drop the time index t for clarity):

∂LS′

∂VL
=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)VL − (ρfV (xc′n)− ẽc′)h(xc′n)

⊤

∂LS′

∂V c
L

=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

(41)

Let us analyze the equilibrium parameters at the last layer, considering each classifier vector V c
L of VL,

separately:

0 =
∂LS′

∂V c
L

=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

=
−2ρ
B

b∑
n=1

fV (xcn)
⊤(ρfV (xcn)− ẽc)V

c
L − (ρf

(c)
V (xcn)− 1)h(xcn)

− 2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L −

(
ρf

(c)
V (xc′n) +

1

C − 1

)
h(xc′n)

(42)

Using Property 5.2 and considering solutions that achieve symmetric quasi-interpolation, with ρfV (x̂cn) =
αẽc, we have
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2ρ

B

b∑
n=1

(α− 1)h(xcn)−
2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

α− 1

C − 1
h(xc′n)−

2α(α− 1)C

C − 1
V c
L = 0. (43)

In addition, consider a second batch S ′′ that differs from S ′ by only one sample x′
cn instead of xcn from

class c. By applying the previous Eq. (43) for S ′ and for S ′′, we can obtain h(xcn) = h(x′
cn), which

proves NC1.
Let S = ∪ki=1Si be a partition of S into k = N/b (an integer) disjoint batches. Since our data is balanced,
we obtain that

0 =
1

k

k∑
i=1

∂LSi(ρ, V )

∂V c
L

=
∂LS(ρ, V )

∂V c
L

=
2ρ

NC

C∑
c′=1

N∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

=
2ρ

NC

N∑
n=1

(α− 1)h(xcn)−
2ρ

NC

∑
c′∈[C]\{c}

N∑
n=1

α− 1

C − 1
h(xc′n)−

2α(α− 1)C

C − 1
V c
L

(44)

Under the conditions of NC1 we can simply write µc = h(xcn) for all n ∈ [N ] and c ∈ [C]. Let us denote
the global feature mean by µG = 1

C

∑C
c=1 µc. This means we have:

∂LS(ρ, V )

∂V c
L

= 0 =⇒ V c
L =

ρ

αC
· (µc − µG). (45)

This implies that the last layer parameters VL are a scaled version of the centered class-wise feature
matrixM = [. . . µc − µG . . .]. Thus at equilibrium, with quasi interpolation of the training labels, we
obtain V ⊤

L

∥VL∥F
= M

∥M |F .
From the SGD equations, we can also see that at equilibrium, with quasi interpolation, all classifier
vectors in the last layer (V c

L , and hence µc − µG) have the same norm:

∥V c
L∥22 =

1
NC

∑C
c′=1

∑N
n=1(ρf

(c)
V (xc′n)− ẽ

(c)
c′ )ρf

(c)
V (xc′n)

1
NC

∑C
c′=1

∑N
n=1⟨ρfV (xc′n)− ẽc′ , ρfV (xc′n)⟩

=

α(α−1)
C + α(α−1)

C(C−1)

α(α− 1)× C
C−1

=
1

C

(46)

From the quasi-interpolation of the correct class label we have that ⟨V c
L, µc⟩ = α

ρ whichmeans ⟨V c
L, µG⟩+

⟨V c
L, µc − µG⟩ = α

ρ . Now using Equation (45)

⟨V c
L, µG⟩ =

α

ρ
− αC

ρ
∥V c

L∥22

=
α

ρ
− αC

ρ
× 1

C
= 0

(47)

From the quasi-interpolation of the incorrect class labels, we have that ⟨V c
L, µc′⟩ = −α

ρ(C−1) , which means
⟨V c

L, µc′ − µG⟩+ ⟨V c
L, µG⟩ = −α

ρ(C−1) . Plugging in the previous result and using (46) yields
αC

ρ
× ⟨V c

L, V
c′

L ⟩ =
−α

ρ(C − 1)

=⇒ ⟨Ṽ c
L, Ṽ

c′

L ⟩ =
1

∥V c
L∥22
× −1

C(C − 1)
= − 1

C − 1
.

(48)

Here Ṽ c
L =

V c
L

∥V c
L∥2

, and we use the fact that all the norms ∥V c
L∥2 are equal. This completes the proof

that the normalized classifier parameters form an ETF. Moreover since V c
L ∝ µc − µG and all the

proportionality constants are independent of c, we obtain∑c V
c
L = 0. This completes the proof of the

NC2 condition. NC4 follows then from NC1-NC2, as shown by theorems in (12).
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Remarks

• The analysis of the loss landscape and of the qualitative dynamics under the square loss in section
3.5 and in section 3.3 implies that all quasi-interpolating solutions with ρ ≥ ρ0 and λ > 0 that
satisfying assumption 5.2 yield Neural Collapse and have its four properties.

• SGD is a necessary requirement in our proof of NC1.
• Our analysis implies that there is no direct relation between Neural Collapse and generalization.

In fact, a careful look at our derivation suggests that NC1 to NC4 should take place for any
quasi-interpolating solutions (in the square loss case), including solutions that do not have a
large margin. In particular, our analysis predicts Neural Collapse for datasets with fully random
labels – a prediction which has been experimentally verified.

6 SGD bias towards low-rank weight matrices and intrinsic SGD
noise

In the previous sections we assumed that ρ and Vk are trained using GF. In this section we consider a
slightly different setting where SGD is applied instead of GF. Specifically, Vk and ρ are first initialized
and then iteratively updated simultaneously in the following manner

ρ← ρ− η
∂LS′(ρ, {Vk}Lk=1)

∂ρ
= ρ− η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
∂LS′(ρ, {Vk}Lk=1)

∂Vk
= Vk − η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2ηνkVk.

(49)

where S ′ is selected uniformly as a subset of S of size B, η > 0 is the learning rate and νk is computed
according to (4) with S replaced by S ′.

6.1 Low-rank bias
An intriguing argument for small rank weight matrices is the following observation that follows from
Equation (5) (see also (7)).

Lemma 9 Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the process
described above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}L

k=1)
∂ρ = 0 and

∀ k ∈ [L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that ∀ n ∈ [N ] : f̄n ̸= 0.
Then, the ranks of the matrices Vk are at most ≤ 2.

Proof Let fV (x) = VLσ(VL−1 . . . σ(V1x) . . . ) be the normalized neural network, where Vl ∈ Rdl+1×dl

and ∥Vl∥ = 1 for all l ∈ [L]. We would like to show that the matrix ∂fV (x)
∂Vk

is of rank ≤ 1. We note that
for any given vector z ∈ Rd, we have σ(v) = diag(σ′(v)) · v (where σ is the ReLU activation function).
Therefore, for any input vector x ∈ Rn, the output of fV can be written as follows,

fV (x) = VLσ(VL−1 . . . σ(V1x) . . . )

= VL ·DL−1(x;V ) · · ·D1(x;V ) · V1 · x,
(50)

where Dl(x;V ) = diag[σ′(ul(x;V )))] and ul(x;V ) = Vlσ(Vl−1 . . . σ(V1x) . . . ). We denote by ul,i(x;V )
the i’th coordinate of the vector ul(x;V ). We note that ul(x;V ) are continuous functions of V . Therefore,
assuming that none of the coordinates ul,i(x;V ) are zero, there exists a sufficiently small ball around V
for which ul,i(x;V ) does not change its sign. Hence, within this ball, σ′(ul,i(x;V )) are constant. We
define a set V := {V | ∀l ≤ L : ∥Vl∥ = 1} and Vl,i = {V ∈ V | ul,i(x;V ) = 0}. We note that as long as
x ̸= 0, the set Vl,i is negligible within V . Since there is a finite set of indices l, i, the set ⋃l,i Vl,i is also
negligible within V .
Let V be a set of matrices for which none of the coordinates ul,i(x;V ) are zero. Then, the matrices
{Dl(x;V )}L−1

l=1 are constant in the neighborhood of V , and therefore, their derivative with respect to
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Vk are zero. Let a⊤ = VL ·DL−1(x;V )VL−1 · · ·Vk+1Dk(x;V ) and b = Dk−1(x) · Vk−1 · · ·V1x. We can
write fV (x) = a(x;V )⊤ · Vk · b(x;V ). Since the derivatives of a(x;V ) and b(x;V ) with respect to Vk

are zero, by applying ∂a⊤Xb
X = ab⊤, we have ∂fV (x)

∂Vk
= a(x;V ) · b(x;V )⊤ which is a matrix of rank at

most 1. Therefore, ∂f̄n
∂Vk

= yn
∂fV (xn)

∂Vk
is a matrix of rank at most 1. Therefore, for any input xn ̸= 0, with

measure 1, ∂f̄n
∂Vk

is a matrix of rank at most 1.
Since ∀ k ∈ [L] :

∂LS′ (ρ,{Vk}L
k=1)

∂Vk
= 0 for all mini-batches S ′ = {(xij , yij )}Bj=1 ⊂ S of size B < |S|, we

have
∂LS′(ρ, {Vk}Lk=1)

∂Vk
=

2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= 0. (51)

Since interpolation is impossible when training with λ > 0, there exists at least one n ∈ [N ] for which
ρf̄n ̸= 1. We consider two batches S ′i and S ′j of size B that differ by sample, (xi, yi) and (xj , yj). We
have

∀ i, j ∈ [N ] : 0 =
∂LS′

i
(ρ, {Vk}Lk=1)

∂Vk
−

∂LS′
j
(ρ, {Vk}Lk=1)

∂Vk

=
2

B
· ρ
[(
1− ρf̄i

)(
−Vkf̄i +

∂f̄i
∂Vk

)
−
(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)]
.

(52)

Assume that there exists a pair i, j ∈ [N ] for which (1− ρf̄i)f̄i ̸= (1− ρf̄j)f̄j . Then, we can write

Vk =

[
(1− ρf̄i) · ∂f̄i

∂Vk
+ (1− ρf̄j) · ∂f̄j

∂Vk

]
[(1− ρf̄i)f̄i − (1− ρf̄j)f̄j ]

. (53)

Since ∂f̄i
∂Vk

and ∂f̄j
∂Vk

are matrices of rank ≤ 1 (see the analysis above), we obtain that Vk is of rank ≤ 2.
Otherwise, assume that for all pairs i, j ∈ [N ], we have α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j . In this case we
obtain that for all i, j ∈ [N ], we have

(
1− ρf̄i

)
· ∂f̄i
∂Vk

=
(
1− ρf̄j

)
· ∂f̄j
∂Vk

= U. (54)

Therefore, since α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j , by Equation 51,

0 =
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= −2ραVk + 2ρU. (55)

Since the network cannot perfectly fit the dataset when trained with λ > 0, we obtain that there exists
i ∈ [N ] for which (1− ρf̄i) ̸= 0. Since f̄i ̸= 0 for all i ∈ [N ], this implies that α ̸= 0. We conclude that
Vk is proportional to U which is of rank ≤ 1.

6.1.1 Is Low-Rank Bias Related to Generalization?

An obvious question is whether a deep ReLU network that fits the data generalizes better than another
one if the rank of its weight matrices is lower. A forthcoming paper (53) proves that

Theorem 9 (informal) Let fW be a normalized neural network, trained with SGD under square loss in the
presence of WN. Assume that the weight matrixWk of dimensionality n, n has rank r < n. Then its contribution
to the Rademacher complexity of the network will be

√
r
n instead of just 1 as in the typical bound.

Proof [Sketch proof] We start assuming W k of norm 1 that is ∥W k∥ = ∥V k∥ = 1 and we consider the
following quantity that appears in the peeling process of deriving the Rademacher complexity of a
network:

Eϵ sup
Wk

1

m

√√√√∥ m∑
i=1

ϵiW kσ(xi)∥2. (56)
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then assume that W k of dimensionality n × n becomes at convergence of rank r whereas the input
activities hi

k−1 = zi has norm ∥zi∥ = 1 and dimensionality n. We also assume that in expectation zi
have components of uniform norm in terms of the standard basis in Rn. We rewrite

Rk = Eϵ sup
Σ,U,V T

1

m

√√√√∥ m∑
i=1

ϵiUΣV T zi∥2. (57)

Since V T is defined to be orthonormal z′ = V T z has the same norm of z. Thus

Rk = Eϵ sup
Σ

1

m

√√√√∥ m∑
i=1

ϵiUΣz′∥2 = Eϵ sup
Σ

1

m

√√√√∥ m∑
i=1

ϵiUz(r)∥2

= Eϵ
1

m

√√√√∥U∥2∥z(r)∥2∥ m∑
i=1

ϵi∥2

=

√
2

m
∥z(r)∥ =

√
2

m

√
r

n
,

(58)

where z(r) consists of the vector with r components of z′.

6.2 Origin of SGD noise
Lemma 9 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy
equilibrium for all minibatches. More details of the argument are illustrated in (54; 55). When λ = 0,
interpolation of all data points is expected: in this case, the GD equilibrium can be reached without
any constraint on the weights. This is also the situation in which SGD noise is expected to essentially
disappear: compare the histograms on the left and the right hand side of Figure 13. Thus, during
training, the solution {Vk}Lk=1 is not the same for all samples: there is no convergence to a unique solution
but instead fluctuations between solutions during training. The absence of convergence to a unique
solution is not surprising for SGD when the landscape is not convex.

7 Summary
The dynamics of GF In this paper we have considered a model of the dynamics of, first, gradient
flow, and then Stochastic Gradient Descent, in overparametrized ReLU neural networks trained for
square loss minimization. Under the assumption of convergence to zero loss minima, we have shown
that solutions have a bias toward small ρ, defined as the product of the Frobenius norms of each
layer’s (unnormalized) weight matrix. We assume that during training there is normalization using a
Lagrange multiplier (LM) of each layer weight matrix but the last one, together with Weight Decay
(WD) with the regularization parameter λ. Without weight decay, the best solution would be the
interpolating solution with minimum ρ that may be achieved with appropriate initial conditions are
appropriate.

Remarks

• The bias towards small ρ solutions induced by regularization with λ > 0may be replaced – when
λ = 0 – by an implicit bias induced by small initialization. With appropriate parameter values,
small initialization allows convergence to the first quasi-interpolating solution for increasing ρ
from≈ 0 to ρ0. For λ = 0we have empirically observed solutions with large ρ that are suboptimal
and probably similar to the NTK regime.

• A puzzle that remains open is why BN leads to better solutions than LN and WN, despite
similarities between them. WN is easier to formalize mathematically as LN, which is the main
reason for the role it plays in this paper.
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Generalization and bounds Building on our analysis of the dynamics of ρwe derive new norm-based
generalization bounds for CNNs for the special case of non-overlapping convolutional patches. These
bounds show a) that generalization for CNNs can be orders ofmagnitude better than for dense networks
and b) that these bounds can be empirically loose but non-vacuous despite overparametrization.

Remarks

• For λ > 0 a main property of the minimizers that upper bounds their expected error is ρ, which
is the inverse of the margin: we prove that among all the quasi-interpolating solutions the ones
associated with smaller ρ have better bounds on the expected classification error.

• The situation here is somewhat similar to the linear case: for overparametrized networks the best
solution in terms of generalization is the minimum norm solution towards which GD is biased.

• Large margin is usually associated with good generalization (56); in the meantime, however, it
is also broadly recognized that margin alone does not fully account for generalization in deep
nets (28; 57; 31). Margin in fact provides an upper bound on generalization error, as shown in
section 4. Larger margin gives a better upper bound on the generalization error for the same
network trained on the same data. We have verified empirically this property by varying the
margin using different degrees of random labels in a binary classification task. While training
gives perfect classification and zero square loss, the margin on the training set together with the
test error decreases with the increase in the percentage of random labels. Of course large margin
in our theoretical analysis is associated with regularization which helps minimizing ρ. Since ρ is
the product of the Frobenius norm, its minimization is directly related to minimizing a Bayes
prior(58) which is itself directly related to minimum description length principles.

• We do not believe that flat minima directly affect generalization. As we described in an earlier
section, degenerate minima correspond to solutions that have zero empirical loss (for λ = 0).
Minimizing the empirical loss is a (almost) necessary condition for good generalization. It is not,
however, sufficient since minimization of the expected error also requires a solution with low
complexity.

• The upper bound given in section 4, however, does not explain by itself details of the generalization
behavior that we observe for different initializations (see Figure 6), where small differences in
margin are actually anticorrelated with small differences in test error. We conjecture that margin
(related to ρ) together with rank (related to RN (F)) may be sufficient to explain generalization.

Neural Collapse Another consequence of our analysis is a proof of Neural Collapse for deep networks
trainedwith square loss in the binary classification casewithout any assumption. In particular, we prove
that training the network using SGDwithweight decay, induces a bias towards low-rankweightmatrices
and yields SGD noise in the weight matrices and in the margins, which makes exact convergence
impossible, even asymptotically.

Remarks

• A natural question is whether Neural Collapse is related to solutions with good generalization.
Our analysis suggests that this is not the case, at least not directly: Neural Collapse is a property
of the dynamics, independently of the size of the margin which provides an upper bound on the
expected error. In fact, our prediction of Neural Collapse for randomly labeled CIFAR10, was
confirmed originally in then preliminary experiments by our collaborators (Papyan et al.) and
more recently in other papers (see for instance, (33)).

• Margins, however, do converge to each other but only within a small ϵ, implying that the first
condition for Neural Collapse (12) is satisfied only in this approximate sense. This is equivalent
to saying that that SGD does not converge to a unique solution that corresponds to zero gradient
for all data point.
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Intertwining of SGD noise, rank minimization, minimum ρ, Neural Collapse, Stiefel manifolds
Consider the equations

ρ̇ = − 2

B
[
∑
n∈B

ρ(fn)
2 −

∑
n∈B

fnyn]− 2λρ (59)

and

V̇k =
2ρ

B

∑
n∈B

[(ρfn − yn)(Vkfn −
∂fn
∂Vk

)] (60)

At convergence there is quasi-interpolation (ρfn − yn) ≤ ϵ > 0 implying V̇k small at all layers, if the
term Vkfn − ∂fn

∂Vk
is not large (since ∥V̇k∥ ≤ 2ρϵ

B2 ∥
∑

n∈B(Vkfn − ∂fn
∂Vk

)∥).
Recall now that if ∥∑n∈B(Vkfn − ∂fn

∂Vk
)∥ is small for k = k∗ then

Vk∗f = [VLDL−1(x)VL−1 · · ·Vk+1Dk(x)]
T
Dk−1(x)Vk−1Dk−2(x) · · ·D1(x)V1x = abT (61)

because f(x) = aTVkb and ∂f
∂Vk

= abT .
Suppose f(x) = VLDVk∗+1DVk∗z with the matrices being orthogonal. Then it is easy to check that
the constraint equations yield V3 ∝ ∂f

∂V3
= V T

4 (V2V1)
T and V2 ∝ (V4V3)

T (V1)
T . Together they satisfy

V3 = V3. These constraints equations are satisfied if the Vk are Stiefel matrices (since then Because of this
property the constraint equations are always satisfied. The underlying reason for restricting this class
of solutions to the orthogonal group is WN, since they are equivalent to constrained optimization with
Lagrange multipliers. Regularization of each weight matrix of a linear network reduces the symmetry
group of the loss function from the general linear group to the orthogonal group . Furthermore,
orthogonal matrices are the inverse matrices of minimum total squared Frobenius norm (sum of the
squared singular values). In general we should consider non-square matrices in an orthogonal Stiefel
manifold on the sphere. The Stiefel manifold can be thought of as a set of matrices by writing a k-frame
as a matrix of k column vectors. The orthonormality condition is expressed by , where denotes the k ×
k identity matrix. Every orthogonal transformation of a k-frame in results in another k-frame, and any
two k-frames are related by some orthogonal transformation.

Conclusion Finally, we would like to emphasize that the analysis of this paper supports the idea
that the advantage of deep networks relative to other standard classifiers is greater for the problems
to which specific deep architectures such as CNNs can be applied. The deep reason is that CNNs
reflect the function graph of certain locally compositional target function – which have small intrinsic
dimensionality – and thus can be approximated well by sparse networks without incurring in the curse
of dimensionality. Despite overparametrization the compositionally sparse networks can then show
good generalization.
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Figure 1: An illustration of two parametrizations of fW (x). In (a) we decompose each layer’s weight
matrix Wi into its norm ρi and its normalized version Vi. In (b) we normalize each layer except for the
top layer’s matrix WL that is decomposed into a global ρ and the last layer VL. Normalizing the weight
matrices, as weight normalization (equivalent to LN) does, is different from Batch Normalization,
though both normalization techniques capture the relevant property of normalization – to make the
dot product invariant to scale.
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Figure 2: A speculative view of the landscape of the unregularized loss – that is for λ = 0. Think of
the loss as the mountain emerging from the water with zero-loss being the water level. ρ is the radial
distance from the center of the mountain as shown in the inset, whereas the Vk can be thought as
multidimensional angles in this “polar” coordinate system. There are global degenerate valleys for
ρ ≥ ρ0 with V1 and V2 weights of unit norm. The coastline of the loss marks the boundary of the zero
loss degenerate minimumwhere L = 0 in the high-dimensional space of ρ and Vk ∀k = 1, · · · , L. The
degenerate global minimum is shown here as a connected valley outside the coastline. The red arrow
marks theminimum losswithminimum ρ. Notice that, depending on the shape of themultidimensional
valley, regularization with a term λρ2 added to the loss, biases the solution towards small ρ but does
not guarantee convergence to the minimum ρ solution, unlike the case of a linear network.
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Figure 3: Training dynamics of ρk duringmodel (b) trainingwith the Lagrangemultiplier normalization
over 1000 epochs. The model contains four convolutional layers, two fully connected layers and the
top ρ (a learnable scalar parameter that can be initialized with different values). ρk(k ∈ [L− 1]) are
effectively stable during training because of weight normalization. The number of channels for the four
convolutional layers (Conv1∼Conv4) are 32, 64, 128 and 128, the filter size is 3×3, the hidden sizes of
the last two fully connected layers (FC1 and FC2) are 1024 and 2, respectively. As mentioned in the
text the norms of the convolutional layers is just the norm of the filters.
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Figure 4: Training dynamics of ρ, of the training loss and of the test error over 1000 epochs with different
initialization (0.9) in the first column and (1.3) in the second column.The number of channels for the
four convolutional layers (Conv1∼Conv4) are 32, 64, 128 and 128, the filter size is 3×3, the hidden
sizes of the last two fully connected layers (FC1 and FC2) are 1024 and 2, respectively. The first row
in the figure is with Weight Decay λ = 0.001, and the second row is with Weight Decay λ = 0. The
network was trained with Cosine Annealing learning rate scheduler (with initial learning rate η = 0.03,
ending with η = 0.0299).
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Figure 5: Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained
with Lagrange multiplier and different percentages of random labels (r = 20%, 40%, 60% and 80%),
initialization scale 1 and weight decay 0.001. As mentioned in the text the norm of the convolutional
layers is just the norm of the filters.(Note that this network fails to get convergence with 100% random
labels.)
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Figure 6: Scatter plots for 1/ρ and mean test accuracy based on 10 runs for binary classification on
CIFAR10 using Lagrange multiplier normalization (LN), square loss and Weight Decay (left) and
without Weight Decay (right). In the left figure, the network was trained with different initialization
scales (init. = [0.9, 1, 1.2, 1.3]) and with weight decay (λ = 1e − 3), while in the right figure, the
network was trained with init. = [0.8, 0.9, 1, 1.3, 1.5] and no weight decay (λ = 0). The horizontal and
vertical error bars correspond to the standard deviations of 1/ρ and mean test accuracy computed over
10 runs for different initializations, while the square dots correspond to the mean values. When λ > 0,
the coefficient (R2), p-value and slope for linear regression between 1/ρ and mean test accuracy are:
R2 = 0.94, p-value = 0.031, slope = -18.968; When λ = 0, the coefficient R2 = 0.004, p-value = 0.92 and
the slope = -2.915.
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Figure 7: A binary CNN.
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Figure 8: Product norm (ρ) and test error with respect to different training data sizes (N) for the
six-layer model trained with LM and square loss. The initialization scale is 0.1, weight decay λ = 10−3,
no biases, the initial learning rate is 0.03 with cosine annealing scheduler; we used the SGD optimizer
(momentum = 0.9), test data size = 2000 in a binary classification task on CIFAR10 dataset. (a) The
table shows the product norm ρ, mean training errors, mean test errors (average over the last 100
epochs), and generalization upper bound for different N . (b) A bar plot for the mean test errors by
different N . (c) Generalization error upper bound defined as ( 2ρ√

N
) for different N . The bounds are

vacuous but “only” by an order of magnitude, while other bounds based on the number of parameters
(here 3519335) are typically much looser.
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Figure 9: Product norm (ρ) and test error with respect to different training data sizes (N) for the
three-layer model (with non-overlapped convolutional image patches, kernel size = 3 × 3, stride =
3) trained with LM and square loss. The initialization scale is 0.1, weight decay λ = 0.001, no biases,
batch size is 32, the initial learning rate is 0.03 with cosine annealing scheduler; we used the SGD
optimizer (momentum = 0.9), test data size = 2000 in a binary classification task on CIFAR10 dataset.
(a) The table shows the product norm ρ, mean training errors, mean test errors (average over the last
100 epochs), and generalization upper bound for different N . (b) A bar plot for the mean test errors
by different N . (c) Generalization error upper bound is a constant (see text) times ( ρ√

N
). The bounds

are almost not vacuous depending on the constant (see text).
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Figure 10: Generalization gap and product norm results based on 5-layer network trained with different
number of training data samples (N) for binary classification of CIFAR10. (a) ρ∗ and G∗

n represent the
empirical product norms and generalization gaps w.r.t. N measured by the model trained with 100%
random labels; ρ and Gn indicate the product norms and generalization gaps w.r.t. N measured by
the model trained with natural labels. The entire model was optimized with LM and Weight Decay
(λ = 10− 3), and was trained with initial learning rate 0.03, initialization scale 0.1 and 10000 epochs.
(b) A bar plot of G∗

n/ρ
∗ for different number of training data samples N .
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Figure 11: Histogram of ynfn across 1000 training epochs for binary classification on the CIFAR10
dataset with Lagrange multiplier and weight decay (λ) = 0.001, initial learning rate 0.03, initialization
0.9. The histogram narrows as training progresses. The final histogram (in red) is concentrated, as
expected for the emergence of NC1. The right side of the plot shows the time course of the top ρ over
the same 1000 epochs.
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Figure 12: Neural Collapse occurs during training for binary classification. The key conditions for
Neural Collapse are: (i) NC1 - Variability collapse, which is measured by Tr(ΣWΣ−1

B ), where ΣW ,ΣB

are the within and between class covariances, (ii) NC2 - equinorm and equiangularity of the mean
features {µc} and classifiers {Wc}. We measure the equinorm condition by the standard deviation
of the norms of the means (in red) and classifiers (in blue) across classes, divided by the average
of the norms, and the equiangularity condition by the standard deviation of the inner products of
the normalized means (in red) and the normalized classifiers (in blue), divided by the average inner
product, and (iii) NC3 - Self-duality or the distance between the normalized classifiers and mean
features. This network was trained on two classes of CIFAR10 with Weight Normalization and Weight
Decay = 5e-4, learning rate 0.067, for 750 epochs with a stepped learning rate decay schedule.
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Figure 13: Training margins computed over 10 runs for binary classification on CIFAR10 trained with
square loss, Lagrange multiplier normalization, and Weight Decay (λ) = 0.001 (left) and without
Weight Decay (right, λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3 and 1.5) with SGD
and minibatch size of 128. The margin distribution is Gaussian-like with standard deviation ≈ 10−4

over the training set (N = 104). The margins without Weight Decay result in a range of smaller margin
values, each with essentially zero variance. As mentioned in the text the norms of the convolutional
layers is just the norm of the filters.
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