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Success in the fine control of the nervous system depends on a deeper understanding of how neural circuits
control behavior. There is, however, a wide gap between the components of neural circuits and behavior. We
advance the idea that a suitable approach for narrowing this gap has to be based on a multiscale information-
theoretic description of the system. We evaluate the possibility that brain-wide complex neural computations
can be dissected into a hierarchy of computational motifs that rely on smaller circuit modules interacting at
multiple scales. In doing so, we draw attention to the importance of formalizing the goals of stimulation in
terms of neural computations so that the possible implementations are matched in scale to the underlying

circuit modules.
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A. Overview

In this theoretical perspective article, we propose the
need for a multiscale information theoretic framework
on how to better control an adaptive complex system
such as the mammalian nervous system. We start with a
brief historical overview of neural stimulation from Gal-
vani’s pioneering work to modern opto-electrical meth-
ods. Pointing to control obstacles, we portray why an
understanding of the information processing levels of neu-
ronal networks is crucial to the proper design of a control
paradigm. We then emphasize the importance of scale-
independence and examine the shortcomings of network
control without it. This interpretation lays out the need
for attention to the dynamic nature of computation and
the functional robustness in the light of structure vari-
ability thus illustrating the multiscale information pro-
cessing nature of neuronal networks. We advance the
idea that, within this framework, better control can be
achieved through targeting the aggregate computational
output rather than attempting to control the system at
its finest scales.

B. Control obstacles and failures of neural stimulation

In 1780, Luigi Galvani discovered that an electrical
spark causes the twitching of a dead frog’s legs. This
discovery was pivotal to the birth of bioelectromagnetism
and led the to the idea of controlling action and behavior
with electricity'®°7. A century after Galvani’s famous
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experiment, Gustav Fritsch and Eduard Hitzig showed
that, in dogs, in vivo motor cortex stimulation causes
limb movement3®. Electrical neuromodulation as a ther-
apeutic tool has since been recognized as a viable and
concrete path to control neurological diseases®®. Recogni-
tion of the implication of the Substantia Nigra’s damaged
cells in Parkinson’s disease*®, better understanding of the
operational principles of basal ganglia-thalamocortical
loops! and the effective reduction of tremor by lesioning
the subthalamic nucleus in monkey model of Parkinson’s®
provided the path to tackle Parkinson’s. Following these
discoveries and a century after Fritsch and Hitzig’s exper-
iments the first deep brain stimulation (DBS) operation
was performed in Parkinsonian patients in 1987 and pos-
itive clinical effects were reported a few years later451,

However, despite the technological advancements in
electrical stimulation, control of the behavior has been
plagued by improper precision and lack of understand-
ing of the network response. In the case of macro-
stimulation (such as TMS — transcranial magnetic stim-
ulation, tDCS — transcranial direct stimulation, DBS),
much of the effort is focused on improved targeting of a
smaller area. The hope is that via fine-tuned targeting,
one would eventually achieve the proper level of control.
Nonetheless, electrical micro-stimulation has not shown
much promise in precise control of the output of circuits.
For example, microstimulation of MT (middle temporal
visual area) directional-selective neurons shows variable
behavioral efficacy across single trials, where this vari-
ability has been ascribed to attention gating®® or spatial
feature-selective gating®®3%. A major issue with the elec-
trical micro-stimulation is the imprecision in targeting a
specific cell-group (excitatory vs inhibitory, or a given
group of inhibitory cells) as well as the nebulous tempo-
ral control of the stimulation effect.

The discovery of optogenetics (use of light to control
neuron) in cultured mammalian neurons®® triggered the
next wave of neuromodulatory attempts through tempo-
rally precise stimulation of individual excitatory and/or
inhibitory neurons with millisecond resolution?%°. An
ever-growing list of studies relying on optogenetics stim-
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ulation have since followed, including those targeting
Parkinson’s*3, aimed at behavioral conditioning”® or
fear-conditioning3®, as well as targeting deep structures
(brainstem)?2, or for inducing fast () rhythms'?, modu-
lating sensory processing®” and attempts to control net-
work disorder (hippocampal seizure)?®.

However, the attempts for control through optogenet-
ics has faced many challenges. The observed variability
of the evoked behavior following transient inactivation of
the motor cortex in rats and nucleus interface (Nif) in
songbirds”? has seriously challenged the assumption that
optogenetics can effectively overcome nonspecific cell tar-
geting and temporal imprecision. As proposed, ignoring
the indirect effects of downstream circuits™ and disre-
garding the interconnectedness of the complex circuitry
are among the key reasons that even a temporally-precise
cell-specific control of individual elements (i.e. neurons)
of the network can not yield precise control of the network
function. The macroscopic behavior of the system (such
as network balance of excitation/inhibition) is insensitive
to the computational state of individual neurons??. This
insensitivity is not because the functional symmetry of
individual elements transcends to the total state?, but
because interconnectedness renders many details (at fine
scale) to be irrelevant at the large-scale behavior of the
system>*. Thus, attempts for precise control of the sys-
tem at its fine scale is precisely where it will fail. This
failure roots in the breakdown of the constructionist view
and its emphasis on the independence of behavior at mi-
croscopic and macroscopic scales?. In what follows, we
emphasize on a the need for a paradigm shift to under-
stand and control the system in a multiscale information
theoretic framework.

C. Levels of information processing

Proper success in augmentation/alteration of the ner-
vous system’s behavior roots in the deep understanding
of the complexity of this computational system. Here, by
complexity we explicitly refer to a) existence of multiple
scales of structure/dynamics, b) although the structural
elements of coarser scales can be physically reduced to
those of the finer scales, the macro-micro dynamical el-
ements are neither fully independent nor completely co-
herent, and ¢) the number of possible states of the sys-
tem (i.e the amount of information — in bits— needed to
define the system) is scale-dependent. Early attempts
to describe the nervous system at multiple scales, led
to the formation of a tri-level hypothesis of information
processing. This approach divides the description of the
system into its computational, algorithmic, and imple-
mentational subsets after David Marr®%:93 or to semantic,
syntactic, and physical categories according to”®. While
this view in neuroscience and philosophy/cognitive sci-
ence has had a tremendous impact (specifically in the
field of visual neuroscience), the missing links across the
tri-levels have been the target of criticisms and a source

of observed failures in the description of neural compu-
tation at the system level and its connection to behavior.
Interestingly, even though Marr initiated this classifica-
tion of levels, his own studies were always focused on only
one level at a time. In fact, Marr’s own quest was ini-
tially more focused on the fine scale level®® 60 but later
he became skeptical®! and switched to the top, i.e. com-
putational, level®®!. The main issue in this approach
is reliance on the separation of scales, a notion deeply
in conflict with the nature of complex systems®. The
behavior of the systems harboring hierarchical levels of
sub-assemblies is defined by the interaction of the sub-
assemblies at higher levels not by details in a given sub-
assembly®889. Surprisingly, a recent reversal of interest
in the implementational level (mainly due to advances
in microscopy and computational tools) has led to the
revival of the constructionist view. This approach en-
tails that by taking into account the adjacent biophysical
details of cell type categories, their placement in micro-
circuitry and their afferent and efferent projections, one
could achieve proper control/alteration of neural infor-
mation processing systems.

The recent surge of interest in the fine level details of
both structure!*3 and simulation®” parallels Marr’s ini-
tial emphasis on fine implementational details. This ap-
proach has drawn criticism from advocates for his later
emphasis on the computational level. The underlying as-
sumption is that through a combined study of in vivo
physiology and network anatomy®, one can build func-
tional connectomics®® and decipher the behavior of the
system. In small systems lacking the hierarchical archi-
tecture of complexity, separation of scales is justifiable
and such an approach may lead to a good understand-
ing of the system’s behavior (such as Dorsophila motion
detection®?), or yield relatively good control of simple be-
haviors (such as optogenetic control of simple motor in
C elegans®?®). The opposing view — mainly driven by sys-
tem neuroscience investigations of the mammalian neo-
cortex — argues that the understanding the underlying
details will not resolve the issues relevant to the neural
computation of interest'®. This vantage point suggests
that a repetition of canonical computation such as lin-
ear filtering82 or divisive normalization®7-%0:101 serves
as building blocks of computation and is the corner-
stone of information processing'® leading to progressively
more complex representation in the hierarchy of sensory
processing cortical areas??. It is suggested that such
canonical computations themselves could be embedded in
canonical circuits?426. The canonical circuit is thus por-
trayed as the structural component of the computational
unit?® where slight modifications of either the hard-
ware or software can shape a rich repertoire of network
output®>5°. Thus, an argument for straying away from
the implementational level is rooted in computational
identity of different circuits (across species) in the face
of the multiplicity of their physical implementation”%9°.

We suggest that for fine scale information (connectome
or biophysically-detailed simulations) to provide any sig-



nificant insight about the nature of computation, they
should be further examined within a scale-dependent
framework and considering;:

The observation scale: Although one can ignore de-
tailed connectivity profile as unnecessary while consid-
ering the overall statistical properties as important, the
proper choice of the scale remains crucial.

The structure-function relationship: Physical

details of the circuit affect the dynamics, suggesting
that the structure constrains the computational
function. However, constraining the space of possible
computations does not provide an exact characteri-
zation of the performed computations because there
exists no one-to-one mapping of structure-function.

Plasticity: The ever-changing structure of the net-
work implies a robustness in computational function
despite changes in fine details of connectivity.

Subcellular control elements: These elements
(whether they are gap junctions, ion channels, den-
dritic spines, etc) provide mechanisms for change of
function without apparent change of structure at the
scale of microcircuitry.

We have to recognize that since our system of interest
harbors plasticity and homeostasis among other funda-
mental features outlined above (e.g. its hierarchy). These
two aspects demand that our manipulations of the sys-
tem be dynamic in nature in order to achieve that the
intended effect is sustained over time despite the chang-
ing conditions (plasticity) and overall constraints (home-
ostasis).

D. What does network control entail?

In the search for a proper spatiotemporal dynamics of
control, some may resort to modern interpretations of
network control. It is essential to recognize the short-
comings of such an admixture of computational and im-
plementational level. Although network structure deter-
mines certain properties of network dynamics such as
limit-cycle oscillator synchrony”! or the likelihood of re-
liable dynamical attractors*®, not all dynamics can be
captured by the network structure alone. Some stud-
ies have considered a connectivity graph of complex net-
works equivalent to its dynamical nature, and have drawn
the conclusion that recognizing the driver nodes is suf-
ficient for understanding the strategy for controlling the
network®. By reducing the dynamics to structural con-
nectivity, they conclude that a large fraction of driver
nodes (80%) are needed to control biological systems.
Even though they point to the difficulty of controlling
sparse inhomogeneous networks, in comparison to dense
homogeneous ones®, their assumptions of reduction of
dynamics to network structure and the definition of con-
trol and numerical methods in defining driver nodes are

criticized by a) the evidence that a few inputs can repro-
gram biological networks™, b) trade-off between phase
space nonlocality of the control trajectory and control in-
put nonlocality®? and c) that the node dynamics — not de-
gree distributions — define the nature of controllability!?.

Another approach in advocating the structural control
has been based on the assumption that active nodes can
simultaneously activate all its connected neighbors but
no further than that”™. This assumption that is neither
valid in the nervous system nor has any relevance to bi-
ological networks composed of elements with a variety of
time constants and delayed communication. Addition-
ally, not only the internal structure but also its connec-
tivity pattern to the drivers and the depth of the net-
work are essential in the emergent dynamics that follow
stimulation. If the network is composed of a high exter-
nal/internal node ratio, it will be largely influenced by
the outside and its individual nodes will have a greater
degree of independent behavior from the external stimu-
lus. In contrast, if within system links are strong, then
the system moves toward synchrony!'®. Likewise, the
depth of the system is very crucial in its response to in-
coming stimuli. Systems with shallow depth are easier
to force to behave in the desired way, as we can directly
probe and influence the effects of external nodes on inter-
nal ones. In contrast, deep networks are harder to con-
trol, and along each step we have to tweak the internal vs
external nodes to achieve the desired outcome. Overall,
in high-dimensional systems that are governed by non-
linear dynamics, have dissipative properties (trajectories
are confined only to a limited part of the permissible
phase space), and where feedback imposes constraints on
controllability, the mere identification of driver nodes and
quantifying node variables are not sufficient to control the
network3267. Thus the control of complex networks re-
quires both structure and dynamics across multiple scales
of the system.

E. Dynamical nature of computation and
structure/function variability

The alterations in network behavior can originate from
constant structural reshaping of the network (addition or
deletion of links), or through modified intrinsic proper-
ties of the network nodes (i.e. neurons) and via changes
in possible states of the interaction among the network
nodes (i.e. synaptic weights). These different modes of
reconfiguration of the network behavior set the dynam-
ics of the information flow and the active behavior of the
organism. A functional translation of these attributes
leads to few rules, where a) one neuron can be involved
in more than one behavior, b) one behavior can involve
several circuits and c) one neuromodulator can alter mul-
tiple circuits. Naturally the involvement of these dif-
ferent modes in reconfiguration of the network behavior
changes according to the size of the system and the reper-
toire of its functional states. In non-vertebrates with a



very limited set of neurons, it is possible to pinpoint in-
dividual or several neurons as the key or even unique
elements involved in highly reliable functions. For ex-
ample, it is suggested that a single neuron in C elegans
can be involved in highly reliable function'!. In verte-
brates (with larger brains), where routing and coordina-
tion of information flow becomes increasingly more im-
portant, local or global effects of neuromodulators and
oscillatory rhythms play an essential role*'#8. One can
conclude that precision in control of the system depends
on its complexity profile (i.e. the amount of information
necessary to represent a system as a function of scale).
As the number of neurons/circuits and diversity of net-
work components increases, the reliability of functional
dependence on individual components decreases. This
increased complexity provides robustness at larger scale
dynamics while it forgoes the details. Assessing the vari-
ability of structure/function thus becomes an essential
aspect for directing stimulus at the right scale.

While the observed variability can be externally
or intrinsically-driven®®, in order to achieve func-
tional adaptability in the light of external variability,
the nervous system benefits from adapting stochastic
responses?’ where a given population activity can be con-
strued as a likely sample from a posteriori distribution3?.
Intrinsic variability in the nervous system originates at
different levels, from ion channels?? to synapses??, single
cells®®7 and population level!®. As a result, in driv-
ing the system, instead of aiming for a pre-determined
response, the target should be to induce population ac-
tivity such that it could be interpreted as one stochastic
instance of the likely probability distribution. This sup-
posed probability distribution of set of responses should
depend on a multidimensional parameter space, where
robustness and flexibility are attained through overlap-
ping redundant functions. This form of redundancy is
in stark contrast to engineered systems where multiple
instances of identical copies are used to guarantee the
robustness®. Instead, in the biological systems (and
specifically in the nervous system), the robustness is
achieved through a) variability at fine scales, where single
cell variability exists in parallel with a robust represen-
tation at the population level??°379 b) networks with
different configurations (of the underlying parameters)
manifest robust response to neuromodulators’” and c)
structurally different circuits respond reliably to external
perturbation®®. The existence of distinct stable basins of
attraction despite the permissible extensive variability at
fine scales, is an essential characteristic of complex sys-
tems. Such systems’ response to perturbation depends
on the scale and the extent of the stimuli. In a sense,
tolerance for small errors in complex systems comes at
the price of the intolerance to large errors*”. As a result,
when the intrinsic variability is reduced due to excessively
increased coupling, the abnormally greater ensemble cor-
relation dramatically reduces the plethora of macroscopic
states, a situation which is the hallmark of loss of com-
plexity in organs with networks of excitable cells. Heart
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arrhythmia or seizures“* are examples of such loss of

complexity.

F. Are complex systems with fine-scale variability and
robust macroscopic features predictable?

In simple chaotic systems, the lack of predictability is
due to sensitivity to initial conditions. In contrast, in
complex adaptive systems, information exchange across
the scales is the main obstacle in the proper control of
the system and the lack of predictability is due to rele-
vant interactions and novel information created by these
interactions. Ignoring the multiscale levels of informa-
tion processing, one may jump to the conclusion that for
proper control, we need to have a detailed knowledge of
the individual elements, the initial conditions and their
interaction among elements. Since we know that this
is impractical if not impossible, can we do better? To
properly control a system through stimulation, one has
to have a proper knowledge of the interaction in the sub-
units of the system. However, only a controlled trajectory
of the macroscopic states is desirable and yet achievable.
From a dynamical system’s point of view, pushing the
system at the right time and the right scale is the key to
fine control. Given the scale-dependent interaction of the
nervous system, we should ask: a) are complex systems
with many scales inherently unpredictable? and b) if the
answer is no, then how do we manipulate the system in
a predictable way? Surprisingly, the answer to the first
question is ‘'no, complex systems are not unpredictable”.
However the predictability requires a few specific condi-
tions and particulars. The existence of nonlinear feed-
back creates either a fast or slow “wait-time of diver-
gence” and therefore, up to some point, prediction holds
and it rapidly deteriorates afterwards. This is similar to
the behavior of some bifurcation systems. In fact, many
systems that are considered to be periodic are inherently
chaotic. A prime example is the solar system where its
very slow divergence time (4 million years) leads to the
observation of chaotic behavior only when 100 million
years of the entire solar system are examined®®. There-
fore to navigate the system in the aimed trajectory, we
have to constantly adjust and push the system such that
it does not deviate from the desired path after the imple-
mentation of the last stimulus. This strategy can be ef-
fective only if the system does not have low-dimensional
chaotic behavior. Otherwise, any simple perturbation
could lead to unrecoverable massive perturbation. In the
case of the ensemble activity (such as cortical processing
with the involvement of a much larger set of neurons in
comparison to the simple nervous system of invertebrates
such as C Elegans), this notion becomes highly relevant
since low dimensional neural trajectories provide surpris-
ingly accurate portrait of the circuit dynamics™ and di-
mensionality reduction methods exhibit effectiveness in
population decoding?°.

In non-chaotic system, our ability to modify the sys-



tem is limited®@. If the system’s behavior is periodic
or multiply periodic (nested periodicity), we are stuck
with the system’s intrinsic periodicity dynamics. We can
slightly change the orbit by small perturbations or we can
only induce perturbations that would switch the domi-
nant periodicity from one of the existent orbits to an-
other existent one. This limitation also means that the
achieved effect is robust because of the existent orbits,
but it will not permit large alterations in the system. In
contrast, the existence of chaos could be helpful in con-
trolling a chaotic system. Since systems with a chaotic
attractor have an infinite number of unstable periodic
orbits, one can exploit this property and push the sys-
tem towards one of the already existing unstable peri-
odic orbits™. However, if the system is high dimensional
evolving chaotically on a low dimensional attractor, this
method no longer works. The reason for the ineffective-
ness of this method in this case is that one would require
an excessive amount of information extracted from the
data and a very long history of the dynamics in order to
be able to properly achieve control*. Though, interest-
ingly, the situation is not hopeless, as one can exploit the
low-dimensionality of the system dynamics and through
a feedback control and repeated application of tiny per-
turbations, control the system*. Here we advance the
idea that recurrent feedback in the neuronal networks
might indeed be the evolutionary mechanism developed
to specifically deal with the low dimensional dynamics of
a high dimensional system for providing intrinsic control
for response reliability. This method has been extended
to control excitable biological systems in the past. It has
been shown that by irregular (based on the chaotic time)
delivery of the electrical stimulation, the cardiac arrhyth-
mia can be pushed back to a low-order periodic regime?!.
In the hippocampal slice (CA3), the same method of en-
trained spontaneous burst discharges proved to be much
more effective than periodic control®®. Other methods,
such as periodic®°° or stochastic?® stimulation can affect
chaotic systems too but it is hard to predict their effect
for networks with many layers.

G. Concluding remarks

In linking the structure and dynamics of the neuronal
network, mapping the space of possible interactions be-
comes important and a matter of challenge. Since all
the possible interactions at a fine scale occupy a vast
multidimensional space, in order to have robust behav-
ior, the system is likely to rely on a more limited set
of probable interactions between local densities (i.e. en-
semble activity). As the scale grows, the set of possible
interactions decreases yet the outcome of such interac-
tions better matches with the behavioral (macroscopic)
outputs of the system. Relevant parameters are those
permissible sets of interactions that have increased prob-
ability of occurrence as the scale increases. Functional
state transitions depend on the spatial variation and in-

teraction of the ensemble activity densities. As a result,
the complexity profile defined as the amount of informa-
tion necessary to represent a system as a function of scale
gives us the number of possible states of the system at a
particular scale®. Therefore the finer the computational
scale of the system, the more information is needed to de-
scribe it. It is through these mechanisms that the system
can maintain its intrinsic dynamical balance yet manifest
responsiveness across multiple time scales?? and provide
stereotypical macroscopic spatiotemporal patterns in the
lights of microscopic variability*®. This viewpoint defies
the blind big-data approach of incorporating more de-
tails with the hope of yielding a better model and more
accurate prediction”. Even with the assumption that at
some point in the future we can map the connectivity and
the activity of all the elements of the neuronal network,
we are still in need of an information-theoretic formalism
that shows how the output is sensitive to fine scale per-
turbations, and how the coarse-scale reflects redundancy
and synergy of the aggregate activity of finer scales'.
In order to enhance the effectiveness of targeting mul-
tiscale neural systems, alterations of biophysically-based
features should match the level of the desired compu-
tation. In targeting a stream of computation, the link
between the computation and the architecture is what
defines the optimal solution for maximizing the efficiency
of the stimulation. In summary, to better control the sys-
tem, we have to focus on the information transfer across
multiple scales. Only with this approach can engineering
advancements in precise opto-electric stimulation open
ways to alter the system in the desired way.
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