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1 Opinion

2
Deciphering Neural Codes of

3
Memory during Sleep

4 Zhe ChenQ1
1,* and Matthew A. Wilson2,*

Memories of experiences are stored in the cerebral cortex. Sleep is critical for
[100_TD$DIFF]the consolidation of hippocampal memory of wake experiences into the neo-
cortex. Understanding representations of neural codes of hippocampal [101_TD$DIFF]–neo-
cortical networks during sleep would reveal important circuit mechanisms [102_TD$DIFF]in
memory consolidation [103_TD$DIFF]and provide novel insights into memory and dreams.
Although sleep-associated ensemble spike activity has been investigated,
identifying the content of memory in sleep remains challenging. Here [104_TD$DIFF]we revisit
important experimental findings on sleep-associatedmemory (i.e., neural activ-
ity patterns in sleep that reflect memory processing) and review computational
approaches [105_TD$DIFF]to the analysis of sleep-associated neural codes ( [106_TD$DIFF]SANCs). We
focus on two analysis paradigms for sleep-associated memory [107_TD$DIFF]and propose
a new unsupervised learning framework [51_TD$DIFF](‘memory first, meaning later[108_TD$DIFF]’) for
unbiased assessment of [109_TD$DIFF]SANCs.

5 Memory, Sleep[123_TD$DIFF], and Neural Codes
6 Memory [124_TD$DIFF]refers to the capacity of an organism to encode, store, retain [125_TD$DIFF], and retrieve information.
7 It can be viewed as a lasting trace of past experiences that influences current or future behavior.
8 Memory uniquely defines a sense of self-identity and includes all information [126_TD$DIFF]on the ‘who’,
9 ‘what’, ‘when’, and ‘where’ of our life experiences in the past and present, remote or recent.

10 The time span over which information in memory remains available varies from seconds (short-
11 term memory) to years (long-term memory). Long-term memory is often divided into two types:
12 explicit or declarative memory [127_TD$DIFF](‘knowing what’) and implicit or procedural memory [128_TD$DIFF](‘knowing
13 how’). Declarative memory also includes episodic memory (see Glossary), semantic memory
14 (knowledge [129_TD$DIFF]), and autobiographical memory.

15 Episodic memory stores details of specific events in space and time, each associated with
16 unique multimodal, [130_TD$DIFF]multidimensional information content. The hippocampus plays a pivotal
17 role in spatial and episodic memory [1]. Sleep is important for learning and memory [2–6]. On
18 average [131_TD$DIFF]human beings spend about one-third of their lifetime [132_TD$DIFF]in sleep, whereas rodents sleep
19 [133_TD$DIFF]12–14 h per day.Memory consolidation occurs in sleep, during which a short-term memory
20 can be transformed into a long-term memory. Sleep deprivation deteriorates performance in
21 memory tests and negatively affects attention, learning, and many other cognitive functions
22 [6,7]. A fundamental task in the study of memory is to understand the representation of [134_TD$DIFF]SANCs
23 that support memory processing. Simply put, [135_TD$DIFF]how can we read out memory during sleep?
24 [136_TD$DIFF]Since sleep-associated memory is influenced by WAKE experiences, [135_TD$DIFF]how do we identify and
25 interpret memory-related neural representations during sleep in an unbiased way?

26 [137_TD$DIFF]To address these questions, neuroscientists record neuronal ensemble activity from the
27 hippocampus and neocortex in sleep sessions before and after a behavioral session. In animal
28 studies [138_TD$DIFF]‘neural codes’ are acquired by implanting [139_TD$DIFF]multielectrode arrays to record in vivo
29 extracellular neuronal ensemble spike activity [8–12]. In human studies [140_TD$DIFF]measurements of brain

Trends
The thalamus (a subcortical structure)
plays an important role in sensory gat-
ing, arousal regulation, and [110_TD$DIFF]the gen-
eration of thalamocortical sleep
spindles. To fully dissect sleep-asso-
ciated memory, it is critical to under-
stand [111_TD$DIFF]the three-way communications
among [112_TD$DIFF]the hippocampal–neocortical,
thalamocortical, and corticothalamic
circuits in sleep.

Combining electrophysiology, imaging,
virtual reality, and optogenetics in experi-
mental investigations can significantly
expand our understanding of [113_TD$DIFF]the neural
codes underlying memory and sleep.

Optogenetics has [114_TD$DIFF]proved powerful in
testing the causal role of neural circuits
in memory consolidation and valuable
[115_TD$DIFF]in the creation of false memories. Find-
ing effective means [116_TD$DIFF]to consolidate
false memories may have a significant
impact on future behavior.

Bridging the research gaps between
rodents and [117_TD$DIFF]nonhuman/human pri-
mates in sleep studies is the key to
[118_TD$DIFF]dissecting circuit mechanisms in [119_TD$DIFF]the
consolidation of various forms of
[120_TD$DIFF]memory and providing further insights
into [121_TD$DIFF]the treatment of neurological and
psychiatric diseases[122_TD$DIFF].
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30 signals are acquired through [141_TD$DIFF]noninvasive electroencephalography (EEG) or functional MRI
31 (fMRI) recordings [13–16]. For the [142_TD$DIFF]purposes of this Opinion article, we review important work in
32 both research areas, with more focus on rodent studies.

33 At the neuronal ensemble level, the computational task of identifying memory-related neural
34 representations of population codes (i.e., neural activity patterns that reflect memory process-
35 ing) in sleep remains challenging for several important reasons[143_TD$DIFF]. First, although local field
36 potentials (LFPs) reveal important information of circuits at a macroscopic scale, they lack
37 the cellular resolution to reveal sleepmemory content. Second, sleep-associated ensemble spike
38 activities are sparse (low occurrence) and fragmental in time. Third, the magnitude of neural
39 population synchrony, measured as the spiking fraction of all recorded neurons during each
40 network burst, follows a lognormal distribution: strongly synchronized events are interspersed
41 irregularly among many medium[144_TD$DIFF]- and small-sized events [17]. Finally, the lack of ground truth
42 makes the interpretationandassessmentofmemory-relatedneural representationsdifficult. In the
43 past two decades, although [145_TD$DIFF]numerous systematic studies have examined memory content in
44 SLEEPcompared [146_TD$DIFF]withWAKE,manymemory-related researchquestions remainedelusive. In the
45 next section, we review some experimental and computational strategies to answer these
46 questions.

47 Hippocampal [12_TD$DIFF]–Neocortical Circuits in Sleep
48 During sleep [147_TD$DIFF]the brain is switched into an [148_TD$DIFF]‘offline’ state that is distinct from wakefulness at both
49 [149_TD$DIFF]the microscopic (spike timing) and macroscopic (e.g., neocortical EEG oscillations) levels. In
50 different stages of sleep [150_TD$DIFF]such as slow wave sleep (SWS) and rapid eye movement (REM)[151_TD$DIFF]
51 sleep, brain activity varies and the cerebral cortex exhibits a wide range of oscillatory activities
52 (Box 1) [18]. During SWS [152_TD$DIFF]the neocortex is known to oscillate between UP[153_TD$DIFF] and DOWN states
53 [19]. During neocortical UP states, increased population synchrony of pyramidal cells in

Glossary
Episodic memory: comprises
associations of several elements
such as objects, space, and times.
The associations are encoded by
chemical and physical changes in
neurons as well as by modifications
to synapses between neurons.
False memory: the recall of an
event or observation that did not
actually occur. Internally generated
stimuli can become associated with
concurrent external stimuli, which
can lead to the formation of false
memories.
Hippocampus: a brain structure
within the MTL that is important for
episodic memory, spatial learning,
and associative recollection. It
comprises CA1, CA2, CA3, and the
dentate gyrus and is connected to
various brain structures including the
PFC, entorhinal cortex, and
amygdala.
Local field potential (LFP):
considered to represent the
aggregate subthreshold activity of a
local population of neurons in a
spatially localized area near the
recording electrode; can be viewed
as the input information in that area.
Spectral analysis of the broadband
LFP signal can reveal significant
oscillatory activity at specific
frequency bands.
Memory consolidation: a process
that converts and stabilizes
information from short-term memory
into long-term storage.
Hippocampal–neocortical memory
consolidation involves the transfer of
hippocampal episodic memory into
the neocortex during an offline (such
as sleep) process after waking
experiences in memory acquisition.
Place receptive field (RF): a
property of localized spatial tuning
exhibited prominently in hippocampal
pyramidal neurons of rodents and
bats. The RF defines the firing
property of hippocampal place cells
with respect to specific spatial
location. On a linear track, the rodent
hippocampal place RF is often
directionally dependent.
Population codes: refer to neuronal
ensemble spike activity that
represents and transmits information.
Spikes are the basic neuronal
language for information and
communication. Depending on
specific neural circuits, various
statistical assumptions are made
about the computational principle or

Box 1. Brain [53_TD$DIFF]Rhythms in Sleep

Slow Oscillation (0.5–1 Hz)

During SWS, neocortical activity displays synchronized slow waves between 0.5 and 1 Hz [54_TD$DIFF]that are associated with
alternation between widespread hyperpolarization and reduced neuronal firing during the DOWN state [55_TD$DIFF]and UP states
associated with widespread depolarization and increased neuronal firing. The cortical slow oscillations also [56_TD$DIFF]reaches and
impact hippocampal and thalamic circuits.

[57_TD$DIFF]Delta Wave (1–4 Hz)

High-amplitude brain wave with frequency of oscillation between 1 and 4 Hz. It is prominent during SWS.

[58_TD$DIFF]Theta Oscillation (4–9 Hz)

During REM sleep the rodent hippocampus exhibits theta oscillations similar to those seen during wakeful exploration.

[59_TD$DIFF]Spindle Oscillation (9–15 Hz)

During SWS the thalamus and neocortex exhibit brief bursts of EEG oscillations between 9 and 15 Hz, typically lasting
[60_TD$DIFF]0.5–2 s. Sleep spindles often occur in the neocortical UP state and are temporally aligned with hippocampal ripples.

[61_TD$DIFF]Gamma Oscillation (35–120 Hz)

During SWS, human and rodent EEG recordings show gamma oscillations in low[62_TD$DIFF]- (35–50 Hz) and high- (60–120 Hz)
frequency bands.

[63_TD$DIFF]Hippocampal SWRs (150–300 Hz)

The SWR complex comprises large-amplitude sharp waves in the hippocampal LFP and associated fast LFP oscillatory
activity filtered between 150 and 300 Hz, typically lasting [64_TD$DIFF]50–100 ms. Bursts of SWRs may last up to 400 [65_TD$DIFF]ms.
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information carrier, such as spike
count, spike timing, and independent
or correlation codes.
Rapid eye movement (REM)
sleep: a sleep stage characterized
by quick, random movements of the
eyes and low muscle tone; occurs in
cycles of about 90–120min at night
and accounts for 20–30% of sleep
time in adult humans. Most human
dream activity occurs in REM sleep.
In rodents, REM sleep is
accompanied by theta oscillations.
Slow wave sleep (SWS): a sleep
stage also known as NREM sleep or
deep sleep, accounting for �75% of
total sleep time; characterized by
synchronized EEG activity with slow
waves of frequency below 1Hz and
relatively high amplitude. Sleep
spindles (9–15 Hz) occur during
SWS.
UP and DOWN states: defined as
periods (approximately a few
hundred milliseconds) of
synchronized population firing and
widespread depolarization and
periods of relative silence and
hyperpolarization, respectively.
DOWN states alternate with UP
states during SWS.

54 hippocampal [101_TD$DIFF]–neocortical networks is accompanied by hippocampal sharp wave [154_TD$DIFF]ripples
55 (SWRs) (Box 1 and Figure 1B) [20,21]. Most animal studies on memory and sleep use the
56 rodent model. A widely adopted spatial memory paradigm is to let rodents freely forage in a
57 closed environment. During active exploration [155_TD$DIFF]many hippocampal pyramidal neurons show
58 localized spatial tuning, or place receptive fields (RFs) [22]. Notably, many hippocampal
59 pyramidal neurons are also responsible for non-spatial sequence coding [23,24] [74_TD$DIFF]as well as
60 conjunctive coding of both spatial and non-spatial memories [25]. During sleep, in the absence
61 of external sensory input or cues, the hippocampal network is switched to a state that is mainly
62 driven by internal computations.
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Figure 1. Study of Rodent Hippocampal Memory and Sleep. (A) A standard study paradigm for rodent
hippocampal memory [3_TD$DIFF]comprises pre-RUN sleep, RUN/behavior, and post-RUN sleep. ( [4_TD$DIFF]B) Classification of sleep stages
from [5_TD$DIFF]electromyography (EMG), cortical local field potentials (LFPs) (delta power), hippocampal ripple power, and cortical
theta/delta power ratio [21]. ( [6_TD$DIFF]C) Rodent hippocampal population spike activity during RUN on a linear track. ([7_TD$DIFF]D) Rodent
hippocampal LFP and [8_TD$DIFF]sharp wave ripples (SWRs) during post-RUN slow wave sleep (SWS) and the associated
spatiotemporal spike pattern [9_TD$DIFF], which shows a similar temporal order [10_TD$DIFF](‘replay’). Reproduced, with permission, from [18].
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63 In a seminal study, Pavildes and Winson [8] first reported that the activity of rat hippocampal
64 place cells in the awake state influenced the firing characteristic (e.g., firing rate [156_TD$DIFF], burst rate) in
65 subsequent sleep episodes. Wilson and McNaughton [9] extended the first-order to second-
66 order statistical analysis and demonstrated that rat hippocampal place cells that were [157_TD$DIFF]coactive
67 during spatial navigation exhibited an increased tendency to fire together during subsequent
68 sleep, whereas neurons that were active but had non-overlapping place RFs did not show such
69 increase. This effect declined gradually during each post-RUN sleep session. Kudrimoti [158_TD$DIFF]et al.
70 [11] and Nádasdy et al. [12] further studied spike patterns involving [159_TD$DIFF]multineuron patterns (e.g.,
71 triplet) during sleep. These studies revealed the temporal relationship between hippocampal
72 replays and SWRs [12] [74_TD$DIFF]as well as the memory trace decay time [11]. Additional studies also
73 revealed that rodent hippocampal spatiotemporal patterns in SWS reflected the activation
74 patterns or temporal order in which the neurons fired during spatial navigation [10,12,26,27].
75 Specifically, subsets of hippocampal neurons fire in an orderly manner at a faster timescale
76 within SWRs, with either the same [160_TD$DIFF]order or the reverse of that in active navigation. In a linear
77 track environment, such population burst events, depending on their contents, can be cate-
78 gorized as [161_TD$DIFF]‘forward’ or ‘reverse’ replay – referred to as reactivated hippocampal sequences of
79 the run trajectory (Figure 1 [162_TD$DIFF]C). Such hippocampal replay events are prevalent in SWS [26], quiet
80 wakefulness [28,29], and [163_TD$DIFF]‘local sleep’ (also known as ‘microsleep’ – the phenomenon of
81 neurons going offline in one cortical area but not [164_TD$DIFF]in others in an awake yet sleep-like state) [30],
82 although the functional roles in each of those states are most likely to be different. The
83 engagement of the replay process, the frequency of activation, and the time during which
84 replay occurs can affect subsequent performance on behavioral tasks or learned skills. In a
85 series of studies [26,31,32], researchers have found that following RUN experiences, hippo-
86 campal place cells reactivated in a temporally precise order repeatedly in SWS and REM sleep.
87 Unlike SWS, the firing-rate correlation in REM sleep was not related to the preceding familiar
88 RUN experience (possibly due to the trace decay during the interleaving SWS) [11], and the
89 memory replays occurred more frequently for remote [165_TD$DIFF]but repeated RUN experiences [31].
90 These findings suggest that reactivated hippocampal sequences in post-RUN sleep consoli-
91 date memory of RUN experiences [166_TD$DIFF]and that SWR-associated hippocampal activity may con-
92 tribute to this process.

93 A central hypothesis of memory consolidation is that the hippocampus and neocortex interact
94 with each other through the temporal coordination of neuronal activity in the form of slow
95 oscillations, SWRs, and sleep spindles [33–39]. While memory reactivation during sleep has
96 been mainly reported in rodents, including the rat primary visual cortex (V1) [36], the barrel
97 cortex [40], the posterior parietal cortex [41], the medial prefrontal cortex (mPFC) [42,43], the
98 primary motor cortex (M1) [44,45] [167_TD$DIFF], and the medial entorhinal cortex (MEC) [46][168_TD$DIFF], general
99 phenomena of neocortical memory reactivation were also reported in [169_TD$DIFF]other species, such

100 as in the song bird during sleep [47] and in the macaque monkey during rest [48]. The
101 assumption of hippocampal[101_TD$DIFF]–neocortical interactions during sleep would naturally suggest
102 [170_TD$DIFF]examination of the interactions of simultaneously recorded hippocampal[101_TD$DIFF]–neocortical ensem-
103 bles [36,38,41,46]. Comparing the spatiotemporal neural patterns in each area during both
104 WAKE and SLEEP would leverage our knowledge of hippocampal spatial coding and further
105 our understanding of the role of hippocampal[101_TD$DIFF]–neocortical memory processing during sleep. In
106 one study of rodent hippocampal [171_TD$DIFF]–visual circuits [36], researchers found that memory reacti-
107 vation in [172_TD$DIFF]V1 was temporally coordinated with memory reactivation in the hippocampus during
108 SWS (Figure 2 [173_TD$DIFF]A,B). In another study [37], researchers found that auditory cues associated with
109 neural activity during learning enhanced replay of the same neural patterns if the same auditory
110 cues were presented during sleep. Although the auditory stimuli did not affect the number of
111 replay events, the replay content was biased by the respective sounds (Figure 2 [174_TD$DIFF]C), suggesting
112 mechanisms of selective memory enhancement in sleep. In another recent report on a similar
113 study [38], researchers simultaneously recorded ensemble spikes from the rat auditory cortex
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Figure 2. [12_TD$DIFF]Dissection of Hippocampal–Neocortical Memories during Sleep. (A,B) Neuronal firing sequences in rat
[14_TD$DIFF]primary visual cortex (V1) (A) and hippocampus (B) during RUN and post-RUN slow wave sleep (SWS) episodes. Lap:
Population neuronal firing pattern during a single running lap on the left-to-right trajectory. Each row represents a cell and
each tick represents a spike. [15_TD$DIFF]Avg: Template firing sequence obtained by averaging over all laps on the trajectory. Each
curve represents the average firing rate of a cell. Cells were assigned to numbers 0, 1, etc. and then arranged (01234567)
from bottom to top according to the order of their firing peaks (vertical lines). [16_TD$DIFF]Frame: The same population firing patterns in
a [17_TD$DIFF]post-RUN SWS episode. Triangles and circles denote the onset of UP and DOWN states, respectively. [18_TD$DIFF]Seq: Firing
sequence in the frame. Spike trains were convolved with a Gaussian window and cells were ordered (0132567) according
to the peaks (vertical lines) of the [19_TD$DIFF]resulting curves [36]. (C) Auditory sound (L, in red, indicating a left turn) biased the
hippocampal reactivation during SWS [37]. In the raster plot, spikes from place cells with place fields on the right side of the
track are blue [20_TD$DIFF]and left-sided place fields [21_TD$DIFF]are red. Place fields are ordered from top to bottom by their location on the track
(right ! left side). [22_TD$DIFF]Before sleep onset, the rat was resting in the sleep chamber. The reactivation event in the green dashed
box is shown to the right. ( [7_TD$DIFF]D) Sound-biased auditory cortical neuronal ensembles (green) predict reactivations of
hippocampal neurons (orange) during [23_TD$DIFF]sharp wave ripples (SWRs). Pink bars indicate sounds; cyan bars indicate detected
SWRs. Top black trace is ripple-filtered [24_TD$DIFF]local field potentials (LFPs) in the hippocampal CA1 [38]. ( [25_TD$DIFF]E) Quantification of
prediction gain [26_TD$DIFF]using sound-biased pre-SWR auditory cortical (AC) ensemble spike patterns to predict hippocampal CA1
firing. Data [27_TD$DIFF]are significantly different from the shuffled statistics (n = 96) [38]. All figures are reproduced with permission.
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114 and hippocampuswhile presenting task-related sounds during sleep (Figure 2 [175_TD$DIFF]D) and found that
115 the patterned activation in [176_TD$DIFF]the auditory cortex preceded and predicted the subsequent content
116 of hippocampal activity during SWRs (Figure 2 [177_TD$DIFF]E), while hippocampal patterns during SWRs
117 also predicted subsequent auditory cortical activity. Consistently, delivering sounds during
118 sleep biased the auditory cortical activity patterns [178_TD$DIFF]and sound-based auditory cortical patterns
119 predicted subsequent hippocampal activity. Among many neocortical structures, the MEC is
120 an important neocortical circuit that sends input to the hippocampus, and [179_TD$DIFF]it plays an important
121 role in spatial navigation and memory processing. Two recent rodent experimental findings
122 have [180_TD$DIFF]shown coordinated replay between hippocampal (CA1) place cells and grid cells at deep
123 MEC layers (L4/5) during rest [49]; however, the cell assemblies at superficial MEC layers
124 replayed trajectories independently of the hippocampal reactivation [181_TD$DIFF]in rest or sleep, suggesting
125 that the superficial MEC can trigger its own replay events and initiate recall and consolidation
126 processes [182_TD$DIFF]independently of hippocampal SWRs whereas deep MEC layers are directly
127 influenced by hippocampal replay [46].

128 Overall [183_TD$DIFF]these findings suggest that the neocortex communicates with the hippocampus about
129 [184_TD$DIFF]‘when’ and ‘what’ to reactivate memory during sleep, and the activation of specific cortical
130 representations during sleep influences the consolidated memory contents. Nearly all reported
131 findings are correlation-based observations. The first direct causal evidence of hippocampal[185_TD$DIFF]–
132 cortical coupling in memory consolidation during sleep was demonstrated physiologically and
133 behaviorally in [39]. Importantly, it was found that reinforcing the endogenous coordination
134 between hippocampal SWRs, cortical delta waves[186_TD$DIFF], and spindles by timed electrical stimula-
135 tions resulted in a reorganization of the mPFC network [187_TD$DIFF]along with subsequent increased
136 prefrontal task responsivity and high [188_TD$DIFF]-recall post-sleep performance [39].

137 In addition to considering the specific ensembles that participate in reactivated memory
138 patterns, the temporal structure of memory patterns can also vary by brain state [25]. The
139 reactivated patterns during SWRs closely resembled the compressed structure of encoded
140 memory observed within individual cycles of the theta rhythm during awake behavior in the
141 hippocampus [12,50]. During SWS, the hippocampal [101_TD$DIFF]–neocortical memory reactivation
142 occurred [189_TD$DIFF]on a faster time scale, with reported time compression factors of [190_TD$DIFF]9–10 in the rodent
143 hippocampus [26] [191_TD$DIFF]and of 6–7 in the rodent mPFC [42], although there was also [192_TD$DIFF]an inconsistent
144 report of no evidence of time compression or expansion in other rodent brain regions [40]. In
145 REM sleep [147_TD$DIFF]the speed of hippocampal replay is close to or slightly faster than the actual run
146 speed [31]. Notably, spatial memory was impaired by selective suppression or disruption of
147 SWRs by electrical or optogenetic stimulations [51–53], suggesting the causal role of SWRs for
148 hippocampal replays during the [193_TD$DIFF]offline state.

149 In contrast to animal research ([194_TD$DIFF]almost exclusively in rodents), human studies have provided
150 more limited access to the content of sleep-associatedmemory at the neuronal ensemble level.
151 Nevertheless, memory [195_TD$DIFF]studies of human subjects such as H.M. [54] provide a unique and
152 valuable perspective far beyond rodent studies. For healthy or diseased human subjects, semi-
153 invasive [196_TD$DIFF]electrocorticography (ECoG) or noninvasive EEG/magnetoencephalography (MEG)
154 and fMRI have been widely used in sleep studies [13–16]. However, none of them directly
155 [197_TD$DIFF]measures single neuronal activity, which therefore poses great challenges in [198_TD$DIFF]the study of
156 sleep’s memory content. When single units are available, different cortical areas display distinct
157 yet localized spatiotemporal spike and LFP patterns [55]. In a remarkable study, researchers
158 used fMRI andmachine[199_TD$DIFF]-learning tools to decode (or [200_TD$DIFF], more precisely, ‘classify’) visual imagery of
159 brain patterns in the visual cortex (V1, V [201_TD$DIFF]2, and V3 areas) during REM sleep [202_TD$DIFF]compared with
160 spatiotemporal brain patterns [203_TD$DIFF]on fMRI in the wakeful state [56]. This provided the first clue
161 about the content of human dreams (Figure 3). In a sleep study on epilepsy patients, it was
162 reported that single-unit spike activity in the [204_TD$DIFF]medial temporal lobe (MTL) [205_TD$DIFF]wasmodulated around
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163 REM onset [206_TD$DIFF]and was similar in REM sleep, wakefulness [207_TD$DIFF], and controlled visual stimulations,
164 suggesting that REM during sleep rearranged discrete epochs of visual-like processing as
165 [208_TD$DIFF]occurred during awake vision [57].

166 Despite rapid progress in experimental investigations and growing knowledge of hippocampal[101_TD$DIFF]–
167 neocortical circuit mechanisms, answers to many research questions remain completely or
168 partially unknown. Sincemost [209_TD$DIFF]‘content’ questions are driven by statistical analyses of [210_TD$DIFF]SANCs, it
169 is imperative to develop computational paradigms to investigate the representation of sleep-
170 associated memory.

171 Computational and Statistical Methods: Strengths and Limitations
172 In WAKE, how do we interpret the representation [211_TD$DIFF](‘meaning’) of neural codes? This is formally
173 established by the neural encoding problem. Given the measured sensory input or motor
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Figure 3. [29_TD$DIFF]Decoding the Content of Visual Imagery during Human Rapid Eye Movement (REM) Sleep. (A)
Functional MRI (fMRI) data were acquired from sleeping participants simultaneously with polysomnography. Participants
were awakened during sleep stage 1 or 2 (red dashed line) and verbally reported their visual experience during sleep. The
fMRI data immediately before awakening (9 s) were used as the input for [31_TD$DIFF]themain decoding analyses (sliding time windows
were used for time [32_TD$DIFF]-course analyses). Words describing visual objects or scenes (red letters) were extracted. The visual
contents were predicted using machine-learning decoders trained on fMRI responses to natural images. ( [4_TD$DIFF]B) During the
training phase, words describing visual objects or scenes were first mapped onto synsets of theWordNet tree [33_TD$DIFF](a dictionary
of nouns, verbs, adverbs, adjectives, and their lexical relations[34_TD$DIFF]). Synsets were grouped into [35_TD$DIFF]‘base synsets’ located higher in
the tree. Visual reports (participant 2) are represented by visual content vectors, in which the presence or absence of the
base synsets in the report at each awakening is indicated by white or black, respectively. Examples of images used for
decoder training are shown for some of the base synsets. During the testing phase, a pairwise or [36_TD$DIFF]multilabel decoder is
applied to awakening [37_TD$DIFF]events to predict the visual object label [38_TD$DIFF]. Reproduced, with permission, from [56].
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174 behavior associated neural responses, we can identify the meaning of neural spike patterns in a
175 supervised manner. In SLEEP, the essential computational question is: [212_TD$DIFF]what and how much
176 information can we read out from memory-related neural representations during sleep? [136_TD$DIFF]Since
177 the representation of an experience is sparse, the answer to this question is nontrivial. To date,
178 several computational methods (Box 2)[44_TD$DIFF] have been developed to analyze [213_TD$DIFF]SANCs derived from
179 hippocampal [101_TD$DIFF]–neocortical circuits. However, most of methods cannot identify the [214_TD$DIFF]meaning
180 (content) of memory other than merely establishing significant [215_TD$DIFF]‘similarity’ (by correlation or
181 matching) of spike activities between WAKE and SLEEP. In other words, they can reveal the
182 presence of memory replay [216_TD$DIFF]but not necessarily the content of replay. As a general principle of
183 deciphering sleep-associated memory content, it is critical to develop statistical methods that
184 allow [217_TD$DIFF]us to study memory without first having to establish how brain activity encodes [147_TD$DIFF]Q2 behavioral
185 variables such as spatial locations or movement kinematics. During sleep the brain is normally
186 disconnected from the external sensory world, although sensory stimulation may induce
187 physiological changes in sleep-associated memory [218_TD$DIFF][37,38,58]. The content of sleep memory

Box 2. Methods for [66_TD$DIFF]Analysis of Sleep-Associated Spike Activity

Correlation Analysis

[67_TD$DIFF]Correlation analysis computes the strength of Pearson correlation between two neurons based on their firing activities in WAKE and SLEEP; the strength of zero-lag
[68_TD$DIFF]coactivation of pairwise cell firing determines the similarity between neural firing patterns in WAKE and SLEEP [9]. The [69_TD$DIFF]‘explained variance’ method assesses how
much additional variance in post-SLEEP correlation can be explained by values in WAKE [70_TD$DIFF]while taking into consideration [71_TD$DIFF]pre-SLEEP structure [11].

[72_TD$DIFF]Template Matching

Template matching compares two spike count matrices (arranged [73_TD$DIFF]as cell by time) that are temporally binned and smoothed [12,31,42] [74_TD$DIFF]and assesses whether the
reactivation in pairwise activity is coherent across neuronal ensembles. The outcome of template matching is sensitive to temporal bin size [75_TD$DIFF]and its correlation strength
varies between different compressed timescales.

[76_TD$DIFF]Sequence Matching

Sequence matching is a combinatorial method for [77_TD$DIFF]examination of the sequential firing patterns of population spike activity. It computes the match probability by
converting neuronal firing orders into a word [78_TD$DIFF]and compares the match probability between two words (one in WAKE and the other in SLEEP), [79_TD$DIFF]determining the
statistical significance of [80_TD$DIFF]the match [26,32]. The sequence[81_TD$DIFF]-matching method is sensitive to spike timing (and consequently to spike detection and sorting) and the
number of activated cells in SLEEP.

[82_TD$DIFF]PCA and ICA

PCA extends the correlation method and assesses the similarity between two correlation matrices between WAKE and SLEEP [83_TD$DIFF][43,59]. It computes the reactivation
strength between two templates and provides an instant-by-instant resemblance measure between WAKE and SLEEP. A large value of reactivation strength
indicates a good similarity ( [84_TD$DIFF]Figure IA). However, the reactivation strength is positively correlated with the neuronal firing rate and does not directly reveal the memory
content of ensemble firing patterns. The PCA method assumes that the correlation statistic is stationary within both WAKE and SLEEP, which is the strongest
limitation in the presence of non[85_TD$DIFF]-stationary neuronal spiking data. [86_TD$DIFF]ICA extends the PCA method and finds a linear projection space that separates statistically
independent sources. The ICAmethod is conceptually similar to the PCAmethod except that there is an additional ICA step followed by PCA [87_TD$DIFF][60]. Both PCA and ICA
are linear subspace [88_TD$DIFF]methods; therefore, they cannot capture any nonlinear transformation [89_TD$DIFF]and their reactivation strengths are positively correlated with the quadratic
power of temporal firing rate [90_TD$DIFF]per se.

Topology Analysis

Algebraic topology is a mathematical tool that was borrowed to study hippocampal neuronal coding for spatial topology [91_TD$DIFF][117–119]. It aims to compute abstract
topological properties from the derived topological object and use those to derive a group relationship within neurons.

[92_TD$DIFF]Population Decoding

Population decoding is a computational approach that uses statistics or information theory to extract quantitative information from neural ensemble spike
activity [93_TD$DIFF][120]. The population-decoding approach makes certain statistical assumptions about the population spike activity (e.g., independent Poisson
assumption) and employs likelihood or Bayesian inference to decode the content of population codes. One class of decoding approach is supervised, which
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requires [94_TD$DIFF]receptive field information about individual neurons [95_TD$DIFF][61,62]; another class of decoding approach is unsupervised, which requires no receptive field or
behavior measure [96_TD$DIFF][63–65] (Figure IB). Systematic comparisons of these two types of population-decoding methods in a sleep-associated hippocampal memory
study are reported in [47_TD$DIFF][66].
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Figure I. Unbiased Assessment of Sleep-Associated Neuronal Population Codes. ( [40_TD$DIFF]A) Principal component (PC) [41_TD$DIFF]analysis (PCA) to compute the similarity of
two templates of correlation matrices from population spike counts (WAKE and SLEEP) and assess [42_TD$DIFF]the reactivation strength during sleep[43_TD$DIFF]. Reproduced, with
permission, from [43]. In WAKE, {l1,p1} are associated with the dominant [44_TD$DIFF]PC extracted from PCA. In SLEEP, time-varying reactivation strength is computed. ( [45_TD$DIFF]B)
Unsupervised population decoding using a finite-state hidden Markov model (HMM). Specifically, the spatial environment is represented by a finite discrete state
space. Trajectories across spatial locations [46_TD$DIFF](‘states’) are associated with consistent hippocampal ensemble spike patterns, which are characterized by a state
transition matrix. From the state transition matrix, a topology graph that defines the connectivity in the state space is inferred [47_TD$DIFF][66]. In these two methods, no
assumption is made about neuronal [48_TD$DIFF]receptive field (RF) and the bin size in post-SLEEP is independent [49_TD$DIFF]of the bin size used in WAKE. Since the order of WAKE and
SLEEP can be switched, and one can apply these methods to SLEEP data first and then examine their meanings in the WAKE behavior[50_TD$DIFF], they both fall into the new
paradigm [51_TD$DIFF](‘memory first, meaning later [52_TD$DIFF]’).
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188 lacks behavioral readout; therefore[219_TD$DIFF], it is preferred to use computational methods that do not
189 require behavioral measurements a priori.

190 Here wewould like to discuss two quantitative approaches for the analysis of [109_TD$DIFF]SANCs. In the first
191 approach, the principal component analysis (PCA) method [220_TD$DIFF][43,59] (see Figure IA in Box 2) does
192 not explicitly define the neuronal RF. Instead, it computes the correlation matrix of cell
193 assemblies in a TEMPLATE epoch and then further compares it with another spatiotemporal
194 population spike matrix from the MATCH epoch [221_TD$DIFF]– moving the population spike vector in time
195 would allow us to assess the time-varying reactivation strength. The basic statistical assump-
196 tion is that the spatiotemporal patterns of a specific behavior can be well characterized by the
197 correlation matrix of ensemble spiking. Conceptually, the choice of TEMPLATE and MATCH is
198 arbitrary and this analysis can be applied to both directions (WAKE ! SLEEP or
199 SLEEP !WAKE). However, the limitation of linear subspace methods, including both PCA
200 and independent component analysis (ICA) [222_TD$DIFF][53,60], is that they assume a stationary correlation
201 statistic during the complete TEMPLATE or MATCH period, which is untrue in the presence of
202 distinct or complex behaviors that drive the state-dependent neuronal responses. Furthermore,
203 the derived reactivation strength from thesemethods does not identify the [223_TD$DIFF]meaning of memory;
204 instead, it is positively correlated with the quadratic power of temporal firing rate in the neuronal
205 ensemble.

206 [224_TD$DIFF]The second approach is a population-decoding method. Unlike the traditional supervised or
207 RF-based decoding methods [95_TD$DIFF][61,62], an unsupervised population-decoding method [225_TD$DIFF][63–66]
208 has been developed [226_TD$DIFF]to recover hippocampal spatial memory with the assumption of place RFs
209 ([227_TD$DIFF]see Figure IB in Box 2). This is achieved by associating spatiotemporal spiking patterns with
210 unique latent states without defining meanings of those states a priori. Such an approach is
211 conceptually appealing since it requires no assumption of explicit behavioral measures. In the
212 case of [228_TD$DIFF]the rodent navigation example, the latent states may represent [229_TD$DIFF]an animal’s spatial
213 locations. Statistically, the latent states are assumed to follow [230_TD$DIFF]Markovian or semi-Markovian
214 transition dynamics. Trajectories across spatial locations [46_TD$DIFF](‘states’) are associated with consis-
215 tent hippocampal ensemble spike patterns. In other non-spatial tasks, the latent states may
216 also accommodate non-spatial features of experiences or distinct behavioral patterns that
217 cannot bemeasured directly. The connection between latent states and spatiotemporal spiking
218 patterns can be established from statistical inference, hypothesis testing, and Monte Carlo
219 shuffled statistics [231_TD$DIFF][63–65]. Furthermore, additional features (such as spiking synchrony or LFP
220 features in terms of power or instantaneous phase) can be incorporated into the statistical
221 model [232_TD$DIFF]to further disassociate distinct latent states. Since this model-based approach is built [233_TD$DIFF]on
222 a generative model, model fitting is therefore strongly dependent on the probability distributions
223 that describe the data generation process. If there is a model mismatch, this approach may
224 yield [234_TD$DIFF]a poor performance.

225 The standard paradigm for memory is to first figure out how the brain encodes information
226 during WAKE [235_TD$DIFF]and then determine whether those coded patterns appear later, during either
227 SLEEP or subsequent behavioral memory testing [236_TD$DIFF]– thereby ‘meaning first, memory later[237_TD$DIFF]’. By
228 contrast, the new framework allows us to shift the paradigm and look at memory first (by
229 decoding intrinsic structure in neural codes) [238_TD$DIFF]and then determine themeaning later (i.e., how that
230 structure might correlate with subsequent behavior) [239_TD$DIFF]– thereby ‘memory first, meaning later[240_TD$DIFF]’
231 [66]. The main differences between these two paradigms are their assumptions and analysis
232 order (independent of the chronological order). The unsupervised approach is unbiased in that
233 it avoids predefining neural activity patterns in WAKE associated with a specific task or behavior
234 [241_TD$DIFF]and it enables us to seek structures that are either not explicitly defined or simply indefinable.
235 Therefore, this unbiased approach may potentially provide us [242_TD$DIFF]with opportunities to discover
236 hidden structures in brain activity, whichmay represent well-definedWAKE experiences or may
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237 reflect some undefined processes (e.g., creative thoughts [243_TD$DIFF], imagination). More importantly, this
238 approach may suggest outstanding research questions for experimental investigations. For
239 instance, how can we distinguish the memory in sleep related to previous navigating expe-
240 riences in two or more distinct spatial environments? How can we decipher non-spatial
241 hippocampal episodic memory [244_TD$DIFF][23,67–70] in sleep?

242 From a data analysis perspective, several technical challenges are worth consideration. First,
243 the sleep episodes have short epochs, sparse and sporadic firing (reduced firing rate compared
244 [245_TD$DIFF]with wake), and compressed [246_TD$DIFF]timescales. Dealing with these issues often involves unsubstanti-
245 ated assumptions (e.g., temporal independence, homogeneity) in data analysis. Second, our
246 empirical studies using synthetic sleep spike data [47_TD$DIFF][66] have demonstrated that the number of
247 active hippocampal pyramidal cells is critical for reliable representation of the space as well as
248 [247_TD$DIFF]the detection of spatiotemporal reactivated patterns in SWS. Since only a small fraction [248_TD$DIFF](�10–
249 15%) of hippocampal neurons that are active during WAKE is reactivated at any given time
250 during SWS, a reliable investigation of sleep-associated population codes would require
251 simultaneous recording of hundreds of neurons in WAKE. Third, there is [249_TD$DIFF]a wide diversity
252 among hippocampal pyramidal neurons [250_TD$DIFF]in their contribution to the sequence replay [251_TD$DIFF][71].
253 Furthermore, a small percentage of hippocampal pyramidal neurons have no significant spatial
254 tuning but may still fire during sleep. It is unclear whether their firing activities represent other
255 non-spatial episodic memory components in the memory space, and how we can identify their
256 statistical significance. Similar challenges would also apply to the neocortex [252_TD$DIFF][72,73].

257 Future Directions
258 Neural [253_TD$DIFF]Population Recording
259 Recent advances in neural recordings have greatly expanded our capability to investigate
260 neuronal population codes [254_TD$DIFF][74–76]. According to the newest technology in [255_TD$DIFF]multielectrode
261 recording (M. Roukes, personal communication [256_TD$DIFF]), it is predicted that by [257_TD$DIFF]2020 neuroscientists
262 [258_TD$DIFF]will be able to simultaneously record 10 [259_TD$DIFF]000–100 000 hippocampal neurons from rats (based
263 on [260_TD$DIFF]the new development of stacked nanoprobes [261_TD$DIFF][77]). As a result the statistical power of SANC
264 analysis would increase significantly[262_TD$DIFF], by �100-fold. Calcium imaging is another emerging
265 technique [263_TD$DIFF]to measure the large-scale activity of neuronal populations [264_TD$DIFF]that has been success-
266 fully used for chronic recordings from the rodent hippocampus [265_TD$DIFF][78–81] and cortex [82]. Since
267 calcium signals are merely indirect measurements of neuronal spiking, the precise relationship
268 between calcium signals and spiking is not fully identifiable and is also susceptible to biophysi-
269 cal variations. Therefore, improving the temporal resolution [266_TD$DIFF](>500 Hz) and light sensitivity [267_TD$DIFF]of
270 fluorescence images would potentially enable us to examine large-scale population codes at
271 faster timescales. Combining electrophysiology and cell-type-specific imaging techniques
272 would be an important future direction due to their complementary strengths. In human/[117_TD$DIFF]
273 nonhuman primate studies, a new tool that integrates electrophysiological [268_TD$DIFF]recordings and
274 fMRI (known as neural-event-triggered fMRI) [269_TD$DIFF][83] has proved valuable in examining the spatial
275 mapping of a priori[270_TD$DIFF]-defined local brain patterns. [271_TD$DIFF]The development of wireless multielectrode
276 recording techniques [272_TD$DIFF][84] is also crucial for chronic neural recording from [117_TD$DIFF]nonhuman primates
277 in a naturalistic sleep environment.

278 [273_TD$DIFF]REM Sleep
279 While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolida-
280 tion of memory traces, the exact function of REM sleep remains elusive [274_TD$DIFF][85,86]. Unlike NREM
281 sleep, in REM sleep there is no UP state or population synchrony associated with hippocampal
282 SWRs, resulting in a decrease in neuronal firing and an increase in synchrony, both of which are
283 correlated with the power of theta oscillations [275_TD$DIFF][87]. This implies that the ensemble spike activity
284 is even more sparse and unstructured. Moreover, there is some experimental evidence that in
285 REM sleep rat hippocampal neurons exhibit [276_TD$DIFF]a gradual phase shift from the novel (theta peak) to
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286 the familiar (theta trough) firing-phase pattern [277_TD$DIFF][88]. Such experience-dependent phase reversal
287 suggests that hippocampal circuits may be selectively restructured during REM sleep by
288 selective [278_TD$DIFF]strengthening of recently acquired memories and weakening [279_TD$DIFF]of remote ones – an
289 idea consistent with the original Crick [280_TD$DIFF]–Mitchison’s hypothesis of [281_TD$DIFF]‘reversal learning’ in REM
290 sleep [89]. Experimentally, the total REM sleep duration is much shorter than the NREM sleep
291 duration for rodents and human adults. Most animal experiments have primarily targeted
292 [282_TD$DIFF]waking behaviors, thereby limiting the recording period of REM sleep. To increase the length
293 of REM sleep or the probability of transition into REM from NREM sleep, optogenetic manip-
294 ulations of specific neural circuits have been considered in rodents [283_TD$DIFF][90–92]. Alternatively, one
295 can investigate rodent infants or other [284_TD$DIFF]species that have longer REM sleep episodes. Recent
296 single-unit recordings in [285_TD$DIFF]the human MTL suggested that eye movements during REM sleep
297 might reflect a change of [286_TD$DIFF]visual imagery in dreams [57]. With ever-accumulating [287_TD$DIFF]‘BIG neural
298 data’, an ultimate goal is to decipher the animal’s dreams during REM sleep in reference to
299 WAKE experiences [288_TD$DIFF]– a demanding task still requiring extensive experimental and computa-
300 tional investigations.

301 [289_TD$DIFF]Contextual Memory
302 All memories are context [290_TD$DIFF]specific, whether spatial, temporal, or emotional, leading to the
303 concept of sequence coding or trajectory coding. As the hippocampal network is connected
304 with the amygdala [291_TD$DIFF]– a specific brain area responsible for emotions and memory modulation [292_TD$DIFF]–

305 episodic memories are often associated with emotions [293_TD$DIFF]such as happiness, fear, [294_TD$DIFF]or anxiety. This
306 may occur in memory recall and dream experiences. Notably, sleep consolidates or reshapes
307 emotional memories [295_TD$DIFF][93]. One hypothesis is that emotional or contextual memory can be
308 strengthened or weakened in the hippocampus during REM sleep theta activity [296_TD$DIFF][94,95]. Recent
309 causal evidence showed that temporally precise attenuation of the theta rhythm impaired fear-
310 conditioned contextual memory [297_TD$DIFF][95]. However, how to read out contextual episodic memories
311 embeddedwith distinct emotions [298_TD$DIFF]remains a big puzzle. The development of new computational
312 approaches [299_TD$DIFF]to decipher hippocampal–amygdalar population codes will be an extended
313 research direction.

314 [300_TD$DIFF]Creativity and Insight
315 Creativity involves the forming of associative elements into [301_TD$DIFF]novel associations that are useful for
316 future task behaviors (e.g., planning, problem solving). Such new association patterns might
317 not occur frequently [302_TD$DIFF]and shall not be confused with [303_TD$DIFF]‘preplay’ events [96]. Insight is defined as a
318 neural restructuring process that leads to a sudden gain of explicit knowledge leading to
319 qualitatively changed behavior [304_TD$DIFF][97]. Human sleep studies suggested that REM sleep promotes
320 creativity and insight because of the changes in cholinergic and noradrenergic neuromodu-
321 lation [305_TD$DIFF][98], which allow neocortical structures to reorganize associative hierarchies and rein-
322 terpret the hippocampal information. Computationally, how to detect such new associations of
323 spatiotemporal patterns across a large hippocampal [101_TD$DIFF]–neocortical network remains unknown.
324 Future simultaneous recordings frommultiple targeted brain areas would enable us to examine
325 high-dimensional spatiotemporal spike patterns and evaluate their probabilities of coincident
326 reactivations at different brain states.

327 [306_TD$DIFF]Manipulation of Memory
328 To date, neuroscientists have relied on many powerful engineering or genetic tools, such as the
329 virtual environment [307_TD$DIFF][99,100] and optogenetics [308_TD$DIFF][53,101–104], to manipulate hippocampal
330 memory during wakeful experiences. In virtual environments [309_TD$DIFF]rodent hippocampal neurons
331 exhibited [310_TD$DIFF]spike firing patterns [311_TD$DIFF]different from those in real environments. However, it remains
332 unclear how such firing patterns would be affected in sleep. Falsememories play a significant
333 role in human mental health and legal practice [312_TD$DIFF][105]. In a series of groundbreaking experiments
334 [313_TD$DIFF][101,102], researchers stimulated or suppressed memories with optogenetics to manipulate
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335 engram-bearing neurons in the mouse hippocampus. Their findings suggested that optoge-
336 netic reactivation of memory engram-bearing cells was not only sufficient for the behavioral
337 recall of that memory, but also served as a conditioned stimulus for the formation of an
338 associative memory. Techniques of selective enhancement of desired memories and indirect
339 suppression of unwanted memories might find potential translational applications in treating
340 traumatic memories in post-traumatic stress disorder (PTSD) patients. Similarly, it remains
341 unknown how these manipulations affect memory during sleep. Among all experimental
342 manipulations, one key research goal is to study their sleep-associated memory contents
343 and use them to further predict future behavior.

344 [314_TD$DIFF]Closed-Loop Neural Interface
345 Brain–machine interfaces provide not only potential therapies for animals and humans [315_TD$DIFF]but also
346 new tools to study memory processing during sleep [316_TD$DIFF][44,53,106,107]. Combining various
347 invasive (e.g., electrical) or [317_TD$DIFF]noninvasive (e.g., optical, acoustic) closed-loop stimulation techni-
348 ques [318_TD$DIFF][39,108–111], we can test the causal functions of neural circuits or sleep [319_TD$DIFF]in memory
349 processing in a real-time manner. For instance, coupling spontaneous reactivation of a place
350 cell during sleep to a reinforcing stimulation of the medial forebrain bundle (MFB) induced a
351 place preference during subsequent wake, providing [320_TD$DIFF]further evidence that place cells encode
352 the same spatial information during sleep and wakefulness [321_TD$DIFF][112].

353 Concluding Remarks
In summary, [322_TD$DIFF]accumulating experimental evidence has pinpointed the critical role of sleep in

354 consolidating hippocampal [101_TD$DIFF]–neocortical memories. With advances in large-scale neural popu-
355 lation recordings and imaging techniques, it is imperative to develop computationally relevant
356 methods to provide unbiased assessment of memory-related [109_TD$DIFF]SANCs. Despite rapid progress
357 in the [323_TD$DIFF]past two decades, many outstanding questions [324_TD$DIFF]remain (see Outstanding Questions).
358 Furthermore, the contributions of many other subcortical circuits to various sleep-associated
359 memories remain to be investigated, such as the ventral striatum [325_TD$DIFF][113,114] and the anterior
360 thalamus [326_TD$DIFF][115,116]. Combinations of experimental and computational investigations will be a
361 crucial step forward [327_TD$DIFF]in improving our understanding of this exciting and important research
362 field. Future dissection of memory during sleep will shed light on [113_TD$DIFF]the neural mechanisms of
363 dreaming, creativity, [328_TD$DIFF]and contextual or emotional memories [329_TD$DIFF]and will provide further insights into
364 memory-related neurological and psychiatric disorders.
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Outstanding Questions
WHAT: representation [330_TD$DIFF]– the content of
sleep-associated memory in [331_TD$DIFF]the
hippocampal–neocortical network.
Does sleep-associated spike activity
have any significant representation [332_TD$DIFF],
and how to assess their significance?
Does the content of sleep-associated
memory in one brain region help [333_TD$DIFF]in
deciphering the content of sleep-asso-
ciated memory in another region?

WHEN: temporal coordination [334_TD$DIFF]– the
timing of memory reactivation (e.g.,
coincident or non-coincident ripple
and spindle events) and their distinct
functional roles. How does
[335_TD$DIFF]hippocampal–neocortical coordination
evolve in different sleep stages?

WHERE: Episodic memories [336_TD$DIFF]comprise
spatiotemporal sequences in behav-
ioral experiences, including spatial tra-
jectory coding and non-spatial
sequence coding. How can we distin-
guish the content of spatial [337_TD$DIFF]versus
non-spatial memories in sleep? Can
we read out contextual or emotional
memories in sleep?

To what extent can we identify the
content of hippocampal [101_TD$DIFF]–neocortical
population codes during REM sleep?

[338_TD$DIFF]What is the principled way to system-
atically investigate creativity and
insights in sleep?

Do [339_TD$DIFF]NREM and REM sleep play differ-
ent roles in consolidating declarative
memory versus procedure memory?

What are the circuit mechanisms that
allow external factors (e.g., reward,
sensory cue) to bias the content of
sleep-associated memory? Are they
top [340_TD$DIFF]down or bottom up?

How can we effectively manipulate
sleep-associated memory to improve
the performance of post-sleep cogni-
tive functions?

Are false memories consolidated in the
same way as true memories during
sleep? What are [341_TD$DIFF]effective ways to
enhance or suppress them?

Can investigations of sleep-associated
memory reveal new [342_TD$DIFF]discoveries
between normal and aging/diseased
brains [343_TD$DIFF]or even between ordinary and
genius brains?
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