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Auditory perception depends critically on abstract and behaviorally meaningful representations of natural
auditory scenes. These representations are implemented by cascades of neuronal processing stages in
which neurons at each stage recode outputs of preceding units. Explanations of auditory coding strategies
must thus involve understanding how low-level acoustic patterns are combined into more complex
structures. While models exist in the visual domain to explain how phase invariance is achieved by V1
complex cells, and how curvature representations emerge in V2, little is known about analogous grouping
principles for mid-level auditory representations.

We propose a hierarchical, generative model of natural sounds that learns combinations of
spectrotemporal features from natural stimulus statistics. In the first layer the model forms a sparse,
convolutional code of spectrograms. Features learned on speech and environmental sounds resemble
spectrotemporal receptive fields (STRFs) of mid-brain and cortical neurons, consistent with previous
findings [1]. To generalize from specific STRF activation patterns, the second layer encodes patterns of
time-varying magnitude (i.e. variance) of multiple first layer coefficients. Because it forms a code of a non-
stationary distribution of STRF activations, it is partially invariant to their specific values. Moreover,
because second-layer features are sensitive to STRF combinations, the representation they support is
more selective to complex acoustic patterns. The second layer substantially improved the model's
performance on a denoising task, implying a closer match to the natural stimulus distribution.

Quantitative hypotheses emerge from the model regarding selectivity of auditory neurons characterized
by multidimensional STRFs [2] and sensitivity to increasingly more abstract structure [3]. The model also
predicts that the auditory system constructs representations progressively more invariant to noise,
consistent with recent experimental findings [4]. Our results suggest that mid-level auditory
representations may be derived from high-order stimulus dependencies present in the natural
environment.
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Fig 3 Second layer of the model. A) Similar patterns of first-layer STRF activations (gray lines) are
interpreted as different samples from a distribution with a particular time varying instantaneous variance
(i.e magnitude, A, thick black lines). The log-variance is encoded by a population of second layer units (B,
visualized in Fig. 3B), convolved with sparse activation time courses (v). B) Example second-layer units.
Panels 1-4 depict first-layer STRFs together with their temporal variance patterns encoded by a single
second-layer unit. Negative ("inhibitory") STRF activations are plotted in blue, while positive ("excitatory")
activations are plotted in red. Some interpretable patterns are evident - e.g. unit C becomes activated by a
sequence of impulsive events (clicks) and suppressed by a harmonic STRF.

Fig 4 Invariance signature. Histograms of correlations among

optimal stimuli for model units. Optimal stimuli are spectrogram 25
chunks which elicit maximally positive (red line) or negative (blue
line) responses in the second layer, or maximal responses in the
first layer (black line, first layer coefficients are non-negative).
While first-layer STRFs respond most strongly to highly correlated
stimuli, optimal stimuli for the second layer units are much less
correlated. This is evidence of increased invariance of the et T
representation relative to the first layer. Correlation coefficient
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Fig 5 Denoising results. 300 ms long speech

spectrograms from the TIMIT database were distorted

with Gaussian white noise 8
(-3 and -7 dB SNR). Single-layer STRF model (black bars) %
is capable of recovering the signal from noise to some
extent, but the full, 2-layer model (gray bars)

substantially increases the denoising performance. -3.0dB SNR -7.0 dB SNR
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