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Abstract

We are very familiar with certain objects; we can quickly rec-
ognize our cars, friends and collaborators despite heavy occlu-
sion, unusual lighting, or extreme viewing angles. We can also
determine if two very different views of a stranger are indeed
of the same person. How can we recognize familiar objects
quickly, while performing deliberate, perceptual inference on
unfamiliar objects? We describe a model combining an iden-
tity classification network for familiar faces with an analysis by
synthesis approach for unfamiliar faces to make rich inferences
about any observed face. We additionally develop an online
non-parametric clustering algorithm for recognition of repeat-
edly experienced unfamiliar faces, and show how new faces
can become familiar by being consolidated into the identity
recognition network. Finally, we show that this model predicts
human behavior in viewpoint generalization and identity clus-
tering tasks, and predicts processing time differences between
familiar and unfamiliar faces. Keywords: face recognition;
analysis-by-synthesis; neural networks; computational

Introduction
Walking to work in the morning, we may encounter familiar
faces, buildings in which we regularly have meetings, or the
passing car of a colleague on their way to the office. Glanc-
ing at these objects, we can effortlessly perceive details of
their shape and appearance; we can also recall associated
identity-specific content (like which colleague owns that car,
or the name of that office building). These two abilities can
be thought of as object perception and identification respec-
tively. Thus, perception is noticing the shape, texture and
expression of a face, even if the person is a stranger. Iden-
tification is recognizing a close friend even if she has had a
dramatic hair cut and is wearing a new pair of large, dark
sunglasses.

Recent work in machine vision has made significant
progress on both of these problems, but very different tech-
niques have been applied to each problem. Dramatic gains
in object identification have come from deep neural networks
(Simonyan & Zisserman, 2014). These methods learn to be
invariant to certain object transformations and small differ-
ences in appearance. However, they require large amounts of
training data, and do not generalize to novel objects without at
least re-training the top classification layers. Rich object per-
ception has become possible using an alternative approach to
vision, known as “analysis by synthesis” or “inverse graph-
ics”. This approach posits that the perceptual system models
the generative processes that form images from scenes, and
works backwards from an observed image to infer the scene
most likely to have generated it (Kulkarni, Kohli, Tenenbaum,
& Mansinghka, 2015). Inverse graphics methods can often
recover the fine-grained geometrical and physical properties
of objects in an image, but are much slower than feed-forward

Figure 1: How many people are depicted here?

neural networks and have not yielded practical object identi-
fication or recognition systems.

However, object identification and object perception are
not separate. For example, extensive research on face percep-
tion has studied familiar face recognition, unfamiliar face per-
ception, and the dynamics of how new faces are recognized
differently as they become increasingly familiar (O’Toole,
Edelman, & Bülthoff, 1998; Burton, Bruce, & Hancock,
1999). Our goal is to build models of these two aspects
of vision and their interaction in the domain of faces, and
more generally to integrate object perception and identifica-
tion, learning to see objects differently as they become famil-
iar to us.

There is a wealth of experimental data, including neu-
rophysiological, fMRI, and behavioral studies, investigating
the differences between familiar and unfamiliar face pro-
cessing (Eifuku, De Souza, Nakata, Ono, & Tamura, 2011;
Natu & O’Toole, 2011). Many behavioral studies have
found dramatic differences in processing, including differ-
ences in viewpoint generalization, reaction times for recog-
nition tasks, and a shift from external to internal facial fea-
ture processing as faces become more familiar (Johnston &
Edmonds, 2009). As a quick example: looking at Figure 1,
how many identities do you see? Do you recognize any of the
individuals?

One of the early conceptual models seeking to capture
some of these behavioral differences was proposed by Bruce
and Young (1986). They suggested that face recognition be-
gins with a structural encoding of the face, regardless of fa-
miliarity. The structural encoding is compared to stored rep-
resentations for familiar faces, and a face recognition unit
is activated if a similarity threshold is reached. The associ-
ated ‘person identity nodes’ can interface with other identity-
specific semantic modules. Quantitative implementations
of just the structural encoding aspect of this model include



O’Toole et al.’s RBF model (1998) and others (Leibo, Mutch,
& Poggio, 2011).

Moving beyond structural encoding, we implement a mod-
ified version of the Bruce and Young system capturing no-
tions of familiarity and identity. Our model suggests that
‘person identity nodes’ are recognized in a holistic way that
depends on learned individual invariances rather than by a
comparison of structural encodings. Recognition is accom-
plished by a ‘long term memory’ which is represented by a
neural network trained to predict identities from face images.
These identities are associated with latent parameters describ-
ing the 3D structure of that person’s face (our structural en-
coding). With this representation of a person identity node,
the set of familiar identities need not be fixed, and can be ex-
panded over time. Thus we provide a computational account
of how we become familiar with a new face, which also ex-
plains how the processing of familiar faces differs from those
we have only seen a few times.

The rest of the paper describes the model in more detail,
including its accuracy and inference curves, as well as an on-
line clustering algorithm for unfamiliar faces. We validate the
model on three different behavioral experiments, and suggest
directions for future research.

Model
Our model represents one way of combining the richness of
generative models with the speed of neural networks. In-
spired by the Helmholtz machine (Dayan, Hinton, Neal, &
Zemel, 1995), we describe an efficient analysis-by-synthesis
approach by training a recognition model to approximate the
latent parameters of a generative model in a fast, feed-forward
way. The approximated parameters provide initializations for
top-down inference in a generative model, allowing for some

fine-tuning. The generative process, inference procedure, and
learned recognition models are described below.

Generative Model

We consider the 3D Morphable Face Model as described in
(Blanz & Vetter, 1999). This model is obtained from a set of
200 laser scanned heads, providing a mean shape and texture
vector for the eyes, nose, mouth and outline of a face, as well
as a covariance matrix to generate new faces by eigendecom-
position. The shape and texture are Gaussian distributed, with
N(µshape,Σshape) and N(µtexture,Σtexture).

Each of the shape and texture vectors are 200 dimensional,
such that a given face lives in a 400 dimensional latent space.
An identity can be thought of as a cluster in this latent repre-
sentation, with a corresponding mean vector µi and isotropic
variance Σ. Here Σ has been set to 0.01 to represent perceptu-
ally indistinguishable identities. An image can be created by
sampling a latent vector for a given facial identity, and ren-
dering it at a specific pose and lighting, as seen in Figure 2b.
Figure 3 shows some example faces drawn from this model.

Figure 3: Pairs of images drawn from the generative model.

Figure 2: Pipeline used for recognizing an observed image. (a) shows our modified model, using the identity recognition
network to determine familiarity, and then initializing with a draw from either the identified familiar cluster or an unfamiliar/new
cluster as appropriate. (b) shows the standard generative model operating only over the base distribution in latent space.



Recognition models
Latents recognition network The first recognition net-
work (Figure 2a, network labeled “Latents”) is trained to pre-
dict the 400 dimensional latent vector that generated a given
image of a face. This allows for an efficient, approximate,
guess for the latent parameters of a face. The details of this
network are described in (Yildirim, Kulkarni, Freiwald, &
Tenenbaum, 2015). Yildirim et al. use the top convolutional
and first fully connected layers of a convolutional neural net-
work (CNN) (pre-trained on ImageNet) to train a linear model
to predict the shape, texture, pose and lighting variables of a
set of generated faces. Here we assume that pose and lighting
are observed, so only shape and texture need to be predicted.
Since the generative model created all training data for the
network, it is self-supervised. This recognition model will be
referred to as the ‘latents recognition model’.

Familiar identity recognition network To mimic long-
term memory, we include a classification network for famil-
iar identities (Figure 2a, network labeled “Identity”). We use
the first fully connected layer of the network (Simonyan &
Zisserman, 2014) (also pre-trained on ImageNet) as input
to a linear model, which outputs a probability for each fa-
miliar identity. Two versions of this network, an ‘old’ net-
work which knows 80 identities (80 output class labels), and
a ‘young’ network (30 familiar identities/class labels), were
trained using 400 different viewing conditions for each famil-
iar identity.

Processing Pipeline
An observed image ID generated with the Morphable Face
Model is fed to both the identity recognition network and
the latents recognition network. The system first determines
whether this is a familiar person by calculating the entropy
across the familiar identities (Figure 2a, entropy/threshold).

Familiar faces If the entropy falls below a learned thresh-
old, the face is classified as familiar and the identity is set
to the most probable class. The latent parameters are then
initialized by sampling from the stored representation asso-
ciated with the determined familiar identity, rather than from
the general purpose latents recognition network (Figure 2a,
Familiar box).

Unfamiliar faces If the entropy falls above the threshold,
the face is unfamiliar and we disregard the familiar identities.
There are then two possible cases for unfamiliar faces: ei-
ther the face is completely novel, or it is the same face as one
which we have only seen a few times before (Figure 2a, Un-
familiar box). This can be viewed as a non-parametric clus-
tering problem. The very first unfamiliar person we see will
generate their own cluster. Each unfamiliar face we see after-
wards will either be clustered with a previously encountered
identity, or form its own cluster. We therefore model this
process using a sequential clustering algorithm with a Chi-
nese Restaurant Process (CRP) prior on cluster assignments
for observation i, where nk is the number of times you have

seen person k before:

P(k) =

{
nk

i+α
(nk > 0,old cluster)

α

i+α
, (nk = 0,new cluster)

α is chosen to be 1 for the following experiments, but this
choice has little effect on the results.

The likelihood of a specific cluster k for the current obser-
vation is computed in image space. We use the generative
model to obtain an image from each cluster, rendered at the
same pose and lighting as the observed image. While the
likelihood for already existing clusters is trivial to compute
(Gaussian in pixel space), determining the likelihood of a new
cluster is more complex. We approximate it using an image
rendered with the latent parameters from the latents recogni-
tion network (Ilrn). Thus the likelihood can be described by a
Gaussian with mean Ik for old clusters, and mean Ilrn for the
new cluster (and noise σ = 0.01).

We choose as our estimate the local MAP, which gives
us a good initialization for the latent parameters of the new
face, even when we are unfamiliar with the observed individ-
ual. After forward inference, the cluster means in latent space
are updated, reflecting the potential addition of a new cluster
member. This learning procedure is the critical contribution
of our approach: it presents an account of how we may be-
come familiar with a previously unfamiliar face, even without
any supervised training data.

Inference
In order to fine-tune the latent parameters for a given im-
age, we iterate through a few sweeps of forward inference
as described in (Yildirim et al., 2015) and (Kulkarni et al.,
2015). After initializing the latent parameters for either a fa-
miliar face or an unfamiliar face as above, multi-site ellip-
tical slice sampling (Murray, Adams, & MacKay, 2009), a
form of MCMC, is performed on the vectors for shape and
texture (Figure 2a, Approximate Renderer → Observation).
At each MCMC sweep, we iterate a proposal-and-acceptance
loop on the shape and texture vectors. Proposals are images
that are rendered based on a set of latent parameters, a set
pose, and a set lighting using a standard graphics engine.
The log-likelihood with respect to the observed image is then
computed (and assumed to be Gaussian in pixel space).

Simulation experiments
We analyze the performance of our model in several differ-
ent scenarios. We first generated a set of 100 identities, each
of which was rendered under 500 different pose and light-
ing conditions. We then trained an output layer on the last
fully connected layer in the network from (Simonyan & Zis-
serman, 2014) to predict either a set of 30 identities (the
young network) or 80 identities (the old network). For each
identity, 400 views were used for training, leaving 100 view-
points for testing. On the test set, the young network achieves
98.72% accuracy while the old network achieves 98.42% ac-
curacy. Training was performed using stochastic gradient de-



(a) Familiar faces (b) Unfamiliar faces (c) Faces observed once before

Figure 4: Inference traces for (a) 20 familiar (b) 20 unfamiliar and (c) observed once before, faces. The addition of the identity
recognition network improves performance for familiar identities, and doesn’t hurt performance for unfamiliar faces.

scent with a learning rate of 0.001 and a maximum number of
iterations of 1000.

Familiarity classification At the first stage of the pipeline,
an incoming face is deemed to be familiar or unfamiliar based
on the entropy over the network class labels. To determine
an appropriate threshold, we maximize accuracy on a famil-
iar/unfamiliar task using 400 views of 20 familiar faces and
400 views of 20 unfamiliar faces in the young network. This
results in an accuracy of 91.3% for the young network. Using
the same threshold for the old network yields an accuracy of
94.1%. The older network slightly outperforms the younger
network, which qualitatively matches the behavioral findings
of (Germine, Duchaine, & Nakayama, 2011), who showed
that face recognition ability increases with age (up to a cer-
tain point).

Inference We check whether including the identity network
yields a better initial estimate of the latent parameters for fa-
miliar faces compared to random initializations or initializa-
tions taken from the latents recognition network. For this ex-
periment, we randomly sampled 20 known and 20 unknown
faces rendered at 3 different viewing conditions. Each face
was presented to the identity model pipeline as described ear-
lier, but without the added “online clustering” for unfamiliar
faces. The resulting log likelihood trajectories are shown in
Figures 4a and 4b.

Online clustering 6 identities were chosen, each with a
frontal view under random lighting and a 1/4 side view un-
der random lighting. The model was first presented with the
6 frontal views, and correctly made 6 new clusters for these
faces. The 6 side views were then presented in scrambled or-
der, and the clustering scheme was able to successfully cluster
4/6 of the secondary views. The average likelihood traces are
shown in Figure 4c.

Expanding the set of familiar identities Finally, we tested
how well the network consolidated new faces into long-term
memory. We sampled 20 views from 3 novel identities, as
well as 5 views from each of our previous 30 familiar identi-
ties as our training set (which might reflect dreaming of new
faces, for example). We initialized the weights of the linear
layer in the identity recognition network to those from the

previous network for the familiar identities, and randomly
initialized the weights for the unfamiliar identities. After
training, we achieve 89.84% accuracy on the old faces, and
89.70% on the new faces, reflecting reasonable memory con-
solidation.

Comparisons with behavioral experiments
Experiment 1 In the first experiment, we show the power
of the unfamiliar face processing component of the model by
reproducing results from O’Toole et al. (1998). In this exper-
iment, participants were trained on 36 unfamiliar faces from
one of three views: frontal, 3/4 or profile. Participants were
then shown 72 images from any of the three viewing condi-
tions, and asked to classify each image as depicting an indi-
vidual in the training set (‘old’), or a new individual (‘new’).
D prime measures were then calculated for each individual in
the task.

We simulated this task by collecting 36 random identities
using the Morphable Face Model. Each individual was ren-
dered under a profile, 3/4 and frontal view, with identical
lighting conditions. We then used the latents recognition net-
work to predict the latent parameters for each of the 36 unfa-
miliar faces, with all faces shown in the same viewing condi-
tion (either profile, 3/4 or frontal). This results in 36 distinct
clusters for 36 individuals. In the test phase, the model ob-
serves a face at one of the three views. We then compute the
likelihood for each of the 36 learned identities (in pixel space)
by rendering its associated latent parameters in the same pose
as the test image. These are compared to the likelihood com-
puted with the latents predicted from the latents recognition
network. If the likelihood of one of the learned clusters is
higher than the likelihood from the latents recognition net-
work, the face is classified as ‘old’. Otherwise, it is classified
as ‘new’. The results from both the psychophysics experi-
ment and from our simulations are shown in Figure 5.

Overall, our model is much more accurate within view-
points than humans on this task, but follows the general trend
for viewpoint-transfer generalization. The model provided
by O’Toole in the paper (based on radial basis functions) also
predicts this trend, although the old/new classification task
would need to incorporate a learned threshold (with one free
parameter), which we do not need. The most major discrep-



(a) Experimental results from (O’Toole et al., 1998) (b) Model results

Figure 5: Results from experiment performed by O’Toole et al. showing viewpoint generalization compared with results from
our model.
ancy lies in the relative inability of our model to generalize
from a 3/4 view to a profile view. This may be mitigated by
running a few sweeps of forward inference during the train-
ing phase (in the model) to more accurately determine latent
parameters for faces viewed from the 3/4 and frontal views.

Experiment 2 We next show that our model can account
for differences in processing speed for familiar and unfamiliar
faces, even in very easy tasks with near ceiling performance.
Balas, Cox, and Conwell (2007) performed a delayed match-
to-sample task for identity, where participants were cued with
a profile of either a familiar or unfamiliar person, and then
asked to choose which of two individuals (shown at either a
3/4 or frontal view) matched the cue. They found that reaction
times for personally familiar individuals was approximately
100 ms faster than for unfamiliar individuals, even though
performance in both conditions was above 95%.

It is not obvious how models that rely on stored viewpoints
for both familiar and unfamiliar faces could account for this
difference in processing speed. Thus, the RBF models pre-
sented by O’Toole or those provided by Leibo et al. (2011)
do not immediately explain the results of this experiment.

Our model can account for this difference regardless of
whether a likelihood measure for the unfamiliar case is done
in image or latent space. In latent space, the perceptual sys-
tem may require a certain confidence in the latent parameters
of a face before making a judgment. Therefore, in the test
phase, if the images are detected as unfamiliar, they will need
more MCMC inference steps to achieve the same likelihood
as in the familiar case.

Alternatively, if likelihood is computed in image space, the
pose and lighting of the test face need to be inferred (which
requires at least one pass through the latents recognition net-
work). The cue face must then be rendered in the appropriate
viewpoint in order to compute likelihoods. This extra projec-
tion step could account for the longer reaction times.

To ensure that our model achieves comparable accuracy for
this task, we trained it on 80 familiar faces, and then randomly
chose 9 of these as well as 9 unfamiliar faces for the exper-
iment. The model is first shown a cue face (in the profile
view), and then shown two faces during the test phase. The

test images are shown in either frontal or 3/4 view. As in the
original experiment, each identity is used as a cue 4 times,
giving 36 trials for the familiar cases and 36 for the unfamil-
iar. For 8/9 familiar identities, the model correctly identifies
the individual and classifies both the cue image and one of
the two test images as familiar. This requires only two passes
through the feed-forward identity recognition network. In the
last case, the cue was classified as unfamiliar, but the correct
judgment was still made when choosing the image with the
highest likelihood to the cued face.

For the unfamiliar faces, the model correctly matched the
cued individual on each run. It also correctly classified ev-
ery cued image as “unfamiliar” which meant that a projection
back to image space was performed. In future work, we will
run further controlled experiments looking at reaction times,
and quantitatively compare the model’s performance to hu-
man performance in recognition tasks for familiar and unfa-
miliar individuals.

Experiment 3 In this experiment, Jenkins et al. showed
that there are massive differences between familiar and unfa-
miliar face recognition by asking participants to cluster im-
ages of two famous Dutch actresses (20 images for each indi-
vidual) into identities (Jenkins, White, Van Montfort, & Bur-
ton, 2011). The experimenters did not specify how many
identities were depicted in the collection. Strikingly, they
found that participants who were unfamiliar with the ac-
tresses clustered the set of images into 6-10 identities (mode
9, range 3-16), while those who were familiar with the ac-
tresses correctly clustered the space into two individuals
(mode 2, range 2-5). Interestingly, the rate of misidentifi-
cation (ie. sorting the two different individuals into the same
pile) was very rare for both groups.

We simulated this task in a sequential clustering experi-
ment, with two individuals rendered under 20 different view-
ing conditions each. We used our ‘old’ network which was
trained on 80 identities, but varied whether or not the two
individuals were included in the training set (giving an unfa-
miliar condition as well as a familiar condition).

In the unfamiliar condition, the model created 5 distinct
clusters for the two identities with memberships of 7, 3, 9, 7



Figure 6: Clusters discovered by the model in the unfamiliar
condition (left) and familiar condition (right).

and 12 images (selections from clusters are shown in Figure
6), while 2 faces were incorrectly classified as familiar (into
two separate identities). In the familiar condition, the model
correctly identified the first individual (with all 20 images be-
ing classified as the correct familiar person), while mostly
correctly classifying the second individual (with 17/20 im-
ages). There were three minor misclassifications for the sec-
ond individual, resulting in a third cluster being formed.

These results seem to reflect those found by Jenkins et al.
(2011). Namely, the model also over-clusters the space when
the identities are unfamiliar, but makes only three mistakes
when the identities are familiar. In the latents recognition
network, the inferred latents depend substantially on pose
and lighting, and thus are not successfully ignored in clus-
tering unfamiliar faces. In the familiar network, these invari-
ances are successfully learned, allowing for accurate cluster-
ing. Additionally, matching humans, the model never forms
clusters which have images from the two different identities
in either the familiar or unfamiliar conditions.

Discussion
The model that we have described is both computationally
powerful, and also qualitatively and quantitatively captures
human behavior across a wide range of different experiments.
To our knowledge, this is the first model that learns new iden-
tities in both an unsupervised and supervised way, and can
account for both effects of familiar and unfamiliar face recog-
nition.

First, we showed how the unfamiliar component of the
model can predict the patterns of viewpoint generalization
found by O’Toole et al. (1998), even with no explicit view-
point dependence built in. Although the model is 3 dimen-
sional, the reconstruction accuracy is constrained by the fact
that there may be multiple sets of generative parameters that
give rise to the same 2D view, which leads to this viewpoint
dependent generalization. Second, we show how recognition
of familiar faces can proceed significantly faster than for un-
familiar faces, predicting the experimental results from Balas
et al. (2007). We discussed how this could result either from a
comparison in the latent space (where a good estimate of the
latents may be required, and the estimates get better faster for
familiar faces) or by a projection back to image space, which

is only necessary for unfamiliar faces. This cannot be imme-
diately predicted by standard view-dependent models. Third,
we show a major difference in the processing of familiar and
unfamiliar identities by replicating the findings of Jenkins et
al.’s clustering experiment (albeit in an online fashion). Our
model over-clusters the space when faces are unfamiliar, but
correctly clusters the space (with minor errors) when the faces
are familiar.

We propose that this framework presents a general way of
integrating identification and perception. One future line of
work will investigate whether the same architecture might be
applied to familiar and unfamiliar objects. We also plan to
examine other methods of non-parametric clustering, run ex-
periments using the face stimuli we generated, and do a more
thorough model comparison. We will also investigate how
much exposure you need with an individual in order for them
to be consolidated in long-term memory, and whether or not
this requires sleep.
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