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Abstract

Social cognition depends on our capacity for mentalizing, or explaining an agent’s behavior in

terms of their mental states. The development and neural substrates of mentalizing are

well-studied, but its computational basis is only beginning to be probed. Here we present a model

of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from

how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is

based on probabilistically inverting AI approaches to rational planning and state estimation,

which extend classical expected-utility agent models to sequential actions in complex, partially

observable domains. The model accurately captures the quantitative mental-state judgments of

human participants in two experiments, each varying multiple stimulus dimensions across a large

number of stimuli. Comparative model fits with both simpler “lesioned” BToM models and a

family of simpler non-mentalistic motion features reveal the value contributed by each component

of our model.

Keywords: theory of mind, mentalizing, Bayesian models of cognition
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Rational quantitative attribution of beliefs, desires, and percepts in human mentalizing

Humans are natural mind readers. The ability to intuit what others think or want from brief

nonverbal interactions is crucial to our social lives. If someone opens a door, looks inside, closes

it, and turns around, what do we think they are thinking? Humans see others’ behaviors not just as

motions, but as intentional actions: the result of plans seeking to achieve their desires given their

beliefs; and when beliefs are incomplete or false, seeking to update them via perception in order

to act more effectively. Yet the computational basis of these mental state inferences remains

poorly understood.

The aim of the present work is to reverse-engineer human mental state inferences in their

most elemental form: the capacity to attribute beliefs, desires, and percepts to others which are

grounded in physical action and the state of the world. Our goal is a formal, computational

account, analogous in scope and explanatory power to computational accounts of visual

perception [32, 24, 50] that represent some of the greatest successes of model-building in

cognitive science. Here we report a key step in the form of a model of how humans attribute

mental states to agents moving in complex spatial environments, quantitative tests of the model in

parametrically controlled experiments, and extensive comparisons with alternative models. Taken

together, this work brings us closer to understanding the brain mechanisms and developmental

origins of theory of mind. It could also enable us to engineer machines which interact with

humans in more fluent, human-like ways.

Mental state inference (or “mentalizing”) in adults likely draws on a diverse set of

representations and processes, but our focus is on a capacity that appears in some form in

infancy [36, 53, 8, 17, 28, 6] and persists as a richer theory of mind develops through the first

years of life [52, 51]. What we call core mentalizing is grounded in perception, action, and the

physical world: It is based on observing and predicting the behavior of agents reaching for,

moving toward, or manipulating objects in their immediate spatial environment, forming beliefs

based on what they can see in their line of sight, and interacting with other nearby agents who
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have analogous beliefs, desires, and percepts. In contrast to more explicit, language-based ToM

tasks, which are only passed by older children, these core abilities can be formalized using the

math of perception from sparse noisy data and action planning in simple motor systems. Hence

core mentalizing is an aspect of social cognition that is particularly likely to be readily explained

in terms of rational computational principles that make precise quantitative predictions, along the

lines of what cognitive scientists have come to expect in the study of perception and motor

control [50, 25, 3].

We will contrast two general approaches to modeling human core mentalizing, which can be

broadly characterized as “model-based” versus “cue-based”. The model-based approach says that

humans have an intuitive theory of what agents think and do – a generative model of how mental

states cause actions – which gets inverted to go from observed actions to mental state inferences.

The cue-based approach assumes that mentalizing is based on a direct mapping from low-level

sensory inputs to high-level mental states via statistical associations, e.g. “you want something

because you reach for it”. Although a cue-based, heuristic approach is unlikely to provide a

satisfying account of full theory of mind, it may be sufficient to explain the simpler forms of

action understanding at work when we see people reaching for or moving to objects in their

immediate spatial environment. However, we contend that to explain even these basic forms of

mentalizing requires a model-based, generative account.

Previous work has proposed both model-based [37, 2, 31, 38, 21, 20] and cue-based [4, 55]

models of how both children and adults infer one class of mental states: desires, and associated

notions such as goals, intentions, and preferences. Other model-based frameworks have

considered inference of knowledge about world states and causal structure [15, 43, 21, 41],

inference of beliefs based on unobserved events [18], or joint inference of knowledge and

intentions in the context of epistemic trust and coordination [42, 5]. However, these models are

unable to reason jointly about beliefs and percepts as well as desires, as core mentalizing requires.

Our work addresses these limitations, and prior models can be seen as important special cases of
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the model-based and cue-based models we formulate and test here.

To make our focus concrete, consider the scenario in Fig. 1a: a hungry student leaves his

office looking for lunch from one of three food trucks: Korean (K), Lebanese (L), or Mexican

(M). The university provides only two parking spots, so at most two trucks can be on campus on

any given day; parking spots can also remain empty if only one truck comes to campus that day.

When the student leaves his office (Frame 1), he can see that the Korean truck is parked in the

near spot in the Southwest corner of campus. The Lebanese truck is parked in the far spot in the

Northeast corner of campus, but he cannot see that, because it is not in his direct line of sight.

Suppose that he walks past the Korean truck and around to the other side of the building, where

he can now see the far parking spot: He sees the Lebanese truck parked there (Frame 2). He then

turns around and goes back to the Korean truck (Frame 3). What can an observer infer about his

mental state: his desires and his beliefs? Observers judge that he desires Mexican most, followed

by Korean, and Lebanese least (Fig. 1a: Desire bar plot). This is a sophisticated mentalistic

inference, not predicted by simpler (non-mentalistic) accounts of goal inference that posit goals as

the targets of an agent’s efficient (shortest path) reaching or locomotion. Here, the agent’s goal is

judged to be an object that is not even present in the scene. The agent appears to be taking an

efficient path to a target that is his mental representation of what is behind the wall (the Mexican

truck); and when he sees what is actually there, he pauses and turns around. Consistent with this

interpretation, observers also judge that the student’s initial belief was most likely that the

Mexican truck was in the far parking spot (Fig. 1a: Belief bar plot).

These inferences have several properties that any computational model should account for.

First, our inferences tacitly assume that the agent under observation is approximately rational [13]

– that their behavior will employ efficient means to achieve their desires while minimizing costs

incurred, subject to their beliefs about the world, which are rational functions of their prior

knowledge and their percepts. Second, these inferences are genuinely

metarepresentational [39, 28] – they represent other agents’ models of the world, and their beliefs
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about, and desires toward actual and possible world states. Third, these inferences highlight the

three crucial causal roles that define the concept of belief in ToM [51, 6]: Beliefs are the joint

effects of (1) the agent’s percepts and (2) their prior beliefs, and also (3) the causes of the agent’s

actions (Fig. 1b). These multiple causal roles support multiple routes to inference: beliefs can be

inferred both forward from inferences about an agent’s percepts and priors, or backward from an

agent’s observed actions (and inferred desires), or jointly forward and backward by integrating

available information of all these types. Joint causal inferences about the situation, how an agent

perceives it, and what the agent believes about it are critical: Even if we couldn’t see the far side

of the building, we could still infer that some truck is located there if the student goes around to

look and doesn’t come back, and that whichever truck is there, he likes it better than the K truck.

Finally, core mentalizing inferences are not simply qualitative and static but are quantitative and

dynamic: the inference that the student likes Mexican after Frame 2 is stronger than in Frame 1,

but even stronger in Frame 3, after he has turned around and gone back to the Korean truck.

We explain these inferences with a formal model-based account of core mentalizing as

Bayesian inference over generative models of rational agents perceiving and acting in a dynamic

world. In the remainder of the paper, we first describe the basic structure of this BToM (Bayesian

Theory of Mind) model, along with several candidate alternative models. We then present two

behavioral experiments showing that the BToM model can quantitatively predict people’s

inferences about agents’ mental states in a range of parametrically controlled scenarios similar to

those in Fig. 1a. Experiment 1 tests people’s ability to jointly attribute beliefs and desires to

others, given observed actions. Experiment 2 tests whether people can use their theory of mind to

reason jointly about others’ beliefs, percepts, and the state of the world.

Computational models

The Bayesian Theory of Mind (BToM) model formalizes mentalizing as Bayesian inference

over a generative model of a rational agent. BToM defines the core representation of rational
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agency (Fig. 1b) using partially observable Markov decision processes (POMDPs): an

agent-based framework for rational planning and state estimation [22], inspired by the classical

theory of decision-making by maximizing expected utility [49], but generalized to agents

planning sequential actions that unfold over space and time with uncertainty due to incomplete

information. POMDPs capture three central causal principles of core mentalizing highlighted by

Fig. 1b: A rational agent (I) forms percepts that are a rational function of the world state, their

own state, and the nature of their perceptual apparatus – for a visually guided agent, anything in

their line of sight should register in their world model (perception); (II) forms beliefs that are

rational inferences based on the combination of their percepts and their prior knowledge

(inference); and (III) plans rational sequences of actions – actions that, given their beliefs, can be

expected to achieve their desires efficiently and reliably (planning).

BToM integrates the POMDP generative model with a hypothesis space of candidate mental

states, and a prior over those hypotheses, to make Bayesian inferences of beliefs, desires and

percepts, given an agent’s behavior in a situational context. More formally, a POMDP agent’s

beliefs are represented by a probability distribution over states derived by logically enumerating

the space of possible worlds, e.g, in the food truck setting, the set of assignments of trucks to

parking spaces (see SI Appendix: Beliefs). The agent’s belief updates, given their percepts and

prior beliefs, are modeled as rational Bayesian state estimates (see SI Appendix: Bayesian Belief

Updating). A POMDP agent’s desires are represented by a utility function over situations,

actions, and events; in the food truck setting, agents receive a different real-valued utility for

eating at each truck (see SI Appendix: Desires). The agent’s desires trade off against the intrinsic

cost, or negative utility of action; we assume the agent incurs a small constant cost per step, which

penalizes lengthy action sequences. The BToM prior takes the form of a probability distribution

over beliefs and desires – a distribution over POMDPs, each parameterized by a different initial

probability distribution over world states and utility functions. The hypothesis spaces of desires

and initial beliefs are drawn from discrete, approximately uniform grids (see SI Appendix: Belief
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and Desire Priors). The agent’s desires are assumed to be constant over a single episode, although

their beliefs may change as they move through the environment or the environment itself changes.

Starting from these priors, BToM jointly infers the posterior probability of unobservable

mental states for the agent (beliefs, desires, and percepts), conditioned on observing the agent’s

actions and the situation (both the world state and the agent’s state) evolving over time. By using

POMDPs to explicitly model the observer’s model of the agent’s perceptual, inferential and

planning capacities, BToM crucially allows the situation to be partially observed by either the

agent, the observer, or both. The joint system of the observer and the agent can also be seen as a

special case of an interactive POMDP (or I-POMDP [14]), a generalization of POMDPs to

multi-agent systems in which agents recursively model each other in a hierarchy of levels; in

I-POMDP terms, the observer builds a non-recursive Level-1 model of a Level-0 observer (see SI

Appendix: Rational Observer Model).

To give a flavor for how BToM computations work as Bayesian inferences, we sketch the

model inference for a single observed event in which the agent forms a percept of their current

situation, updates their beliefs from an initial belief B0 to a subsequent belief B1 and then chooses

an action A. (The full BToM model generalizes this computation to a sequence of observed

actions with recursive belief updating over time; see Methods: Eq. 2). In the single-action case,

given the prior Pr(B0, D, S) over the agent’s initial beliefs B0, desires D and the situation S, the

likelihoods defined by principles (I-III) above, and conditioning on observations A of how the

agent then acts in that situation, the BToM observer can infer the posterior probability

Pr(B,D, P, S|A) of mental states (belief states B = {B0, B1}, desires D, and percepts P ), and

the situation S given actions A using Bayes’ rule:

Pr(B,D, P, S|A) ∝ Pr(A|B1, D) · Pr(B1|P,B0) · Pr(P |S) · Pr(B0, D, S). (1)

The likelihood factors into three components. Pr(P |S) (corresponding to principle I) represents

the observer’s expectations about what the agent sees in a given situation. This model of an
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agent’s (visual) perception is based on the isovist from the agent’s location: a polygonal region

containing all points of the environment within a 360-degree field of view [10, 34] (see SI

Appendix: Percept Distribution). Pr(B1|P,B0) (corresponding to principle II) represents the

observer’s model of the agent’s belief update from initial state B0 to B1. Pr(A|B1, D)

(corresponding to principle III) represents the observer’s model of the agent’s efficient planning

process. To capture ways in which rational agents’ behavior may deviate from the ideal, and

BToM observers’ inferences may be correspondingly weaker or more graded, we assume that the

agent acts by sampling actions with probability proportional to their exponentiated

expected-utility (a softmax function with parameter β). The value of β is a parameter fit to

participant judgments. Under this formulation, agents typically choose the highest-utility action

at each time step but sometimes choose a non-optimal action.

Our goal is not to simply present and test this one model, but also to quantitatively contrast

BToM with alternative accounts of core social perception. We compare BToM with three models

inspired by previous work, including two model-based alternatives, and one cue-based alternative

(see SI Appendix: Alternative Models). Earlier model-based accounts [2, 21, 20] used various

adaptations of Markov Decision Processes (MDPs), special cases of POMDPs, which assume that

the world state is fully observed and known to the agent. MDP-based models embody the core

notion that intentional agents act efficiently to achieve their goals [8], but are limited by the

assumption of a fully-observable world – they cannot represent beliefs which differ from the true

world state, and they capture only the planning capacities of rational agency (i.e., only the bottom

section of Fig. 1b), neglecting the perceptual and inferential capacities, as well as their

interaction. We demonstrate these limitations by formulating an MDP-based alternative model

called TrueBelief, and showing that it is unable to model the joint inferences about beliefs,

desires, percepts and world states that are at the heart of core mentalizing, and that our BToM

model captures. A second alternative model, called NoCost, establishes the need for the principle

of efficiency in BToM and MDP-based accounts of people’s belief and desire attributions by
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assuming the agent’s actions are cost-free, and therefore unconstrained by the tradeoff between

effort and desire. We formulate both of these alternative models as “lesioned” special cases of the

full BToM model.

Several cue-based accounts have used motion features extracted from visual input to model

human inferences about intentional behavior [4, 55, 48]. Non-formal cue-based accounts of infant

false belief reasoning have also been proposed [40], which argue that learned associations

between agents, objects and scenes underlie classic demonstrations of infant false belief

reasoning [36]. To test these accounts, we formulate a motion-based heuristic alternative, called

MotionHeuristic, which maps cues extracted from the agent’s motion and environment directly

onto people’s judgments of agent’s beliefs, desires and percepts of the world. For Experiment 1,

MotionHeuristic fit five linear weights for desires, and five for beliefs, for a total of ten weights.

The first and second weights captured the statistical association between the agent’s motion (1)

toward each potential goal or (2) toward an alternative goal, and attributions of desire for that goal

or belief that it was present. The last three weights fit the a priori bias toward each desire and

belief rating. For Experiment 2, MotionHeuristic fit eight linear weights for each of six possible

world ratings, for a total of 48 weights. Here, the first three weights captured the association

between the agent’s motion toward each spot and the rating that a more highly-desired cart was

located there. The remaining five weights captured the a priori bias toward each possible world

rating.

Results

We tested BToM and these alternative modeling approaches against human judgments in

two experiments. In Exp. 1, participants saw a large number of dynamic “food truck” stimuli (as

in Fig. 1a), and made quantitative inferences about agents’ beliefs and desires given their

observable actions. Belief inferences were made retrospectively, about what the agent believed

was in the far parking spot before they set off along their path, given the information from the rest
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of the agent’s path. Exp. 2 used similar stimuli, but participants made inferences about agents’

percepts and aspects of the world that only the agent could perceive. Both experiments

manipulated key variables that should affect mental state attribution according to the BToM

model: the structure and constraints of the environment (agent and object locations, physical

barriers), the actions observed (their cost, whether they are ongoing or completed, the space of

alternative actions), the set of goals (their number and presence, their utility, their availability),

and the observability of the state of the world (what is or is not perceptible due to occlusion).

Experiment 1: Predicting human inferences about beliefs and desires

In each scenario of Experiment 1, participants observed a unique action-situation pair, and

rated the agent’s desire for each goal object (food trucks: Korean (K), Lebanese (L), and Mexican

(M)), and the agent’s initial belief about the state of the world (possible occupant of the far

parking spot: L, M, or nothing (N)). BToM predictions were obtained by computing the posterior

expectation of the agent’s utility for each goal object, and the posterior expectation of the agent’s

degree of belief in each possible world state (see Methods: Eq. 2).

Model predictions were compared with participants’ judgments on 73 distinct scenarios

generated through a factorial design (see Methods: Experiment 1)1, which can be organized into 7

basic scenario types (Fig. 2a-g) based on the environment’s structure and the agent’s actions. The

scenario types differ in the number of trucks present: two trucks in a-d; one truck in e-g. The

high-level structure of the agent’s actions varies between types: initially, the agent can go either to

the truck visible in the near parking spot (a, e) or go behind the building to see which truck (if

any) is in the far spot (b, f). After checking the far spot, the agent can either return to the first

truck (c, g), or continue to the far truck, if it is present (d). In all scenarios where the agent goes

1These scenarios were generated through a factorial experimental design that produced 78 scenarios in total, five

of which were not consistent with an assumption of rational agency. We characterize these “irrational” scenarios in SI

Appendix: Experiment 1 and analyze only the 73 rationally interpretable scenarios here.
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around the building, at the moment when they can first see the far parking spot the agent either

pauses for one frame before they continue to one of the trucks (c, d, g), or the trial ends with an

incomplete path (b, f). Our model predictions also assume a one-frame pause at this moment. We

first present an analysis of the model’s quantitative predictive power over all scenarios, and then

highlight the most revealing qualitative predictions across these scenario types.

Fig. 2h shows the quantitative desire and belief fits of BToM, averaged within the seven

scenario-types defined above (Desire judgments rBSCV =0.97 (95% CI 0.95, 0.98), Belief

judgments rBSCV =0.91 (95% CI 0.87, 0.98)). Fig. 3a shows the quantitative desire and belief fits

of BToM at the level of all 73 individual scenarios (Desire judgments rBSCV =0.91 (95% CI

0.89, 0.92), Belief judgments rBSCV =0.78 (95% CI 0.72, 0.85)). These correlations and 95%

confidence intervals (CIs) were computed using bootstrap cross-validation (BSCV; see Methods:

Statistics), and all were highly significant.

Although BToM quantitatively predicted both belief and desire judgments, belief judgments

were fit less well, and were also intrinsically more variable than desire judgments in ways that

BToM predicted. Desire judgments varied primarily between the seven scenario types, but

minimally within scenarios of the same type. This shows that small differences in scene

geometry, which varied within scenario types, had minimal impact on desire judgments.

Consistent with this finding, BToM predictions averaged within scenario types showed a high

correlation with human desire judgments (r=0.95 (95% CI 0.94, 0.96)), while BToM predictions

at the individual scenario level showed no partial correlation with human judgments after

controlling for scenario type (partial r=0.066 (95% CI −0.067, 0.20)). Human belief inferences

varied in more complex ways – in particular, they varied both between and within the seven

scenario types. BToM predictions averaged within scenario types, combined with individual

scenario BToM predictions, explain 75 percent of the variance in human belief judgments

(r=0.88 (95% CI 0.84, 0.90)). Moreover, both types of predictions yielded significant partial

correlations with human belief judgments when controlling for the other (individual-scenario:
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partial r=0.28 (95% CI 0.15, 0.39); type-averaged: partial r=0.63 (95% CI 0.54, 0.70)).

Consistent with the greater empirical variability in human belief inferences relative to desire

inferences, the BToM model showed three times greater variance within scenario types for beliefs

(σ2 = 0.34) than for desires (σ2 = 0.11; F (218, 218) = 3.24 (95% CI 2.59, inf, one-sided)). In

short, people’s belief judgments were much more affected (relative to desire judgments) by the

small variations in scene geometry that varied within scenario types, and this overall trend was

also predicted by the BToM model.

We also compared three alternative models with BToM, in terms of how well they could

predict human belief and desire judgments across all 73 individual scenarios (see SI Appendix:

Experiment 1 for details). Fig. 3b,c show that both TrueBelief and NoCost were able to predict

desire judgments to some extent but significantly less well than BToM (rBSCV =0.72 (95% CI

0.68, 0.77), rBSCV =0.75 (95% CI 0.69, 0.81), respectively). Fig. 3b,c show that neither

TrueBelief nor NoCost could predict belief judgments at all (rBSCV =− 0.022 (95% CI

−0.16, 0.11), rBSCV =0.10 (95% CI 0.045, 0.16), respectively). The motion-based heuristic was

able to predict belief inferences as well as BToM (rBSCV =0.77 (95% CI 0.69, 0.83)) but fared

worse than all models on desire inferences (rBSCV =0.62 (95% CI 0.51, 0.70)). Fig. 3d shows that

although the motion-based heuristic correlates relatively highly with the human data, it is

qualitatively poorly calibrated to human judgments – the range of model predictions is

compressed, and the predictions mostly fall into two clusters which are aligned with the data, but

which have little variance internally. These results illustrate the value of the full POMDP

architecture underlying the BToM model, and more generally the need to model joint inferences

about beliefs and desires, even if we only want to predict one of these two classes of mental states.

A more qualitative analysis of specific scenario types illustrates how BToM captures many

subtleties of human mentalizing. Fig. 2a-c show that both BToM and human judgments are

consistent with the intuitive inferences about beliefs and desires sketched in the Introduction.

BToM closely predicts the differences between these scenario types, and also between these
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scenarios and analogous ones in which no truck is present in the other spot (Fig. 2e-g). For

instance, in scenarios with two trucks present (Fig. 2a-d), BToM correctly predicts stronger

inferences when the agent checks which truck is parked in the far spot (Fig. 2c,d) as opposed to

going straight to the K truck in the near spot (Fig. 2a): only in Fig. 2c,d can we clearly distinguish

the strengths of the agent’s desire for all three trucks, and the strengths of the agent’s initial

beliefs for all three possible worlds. When there is no truck parked in the far spot, BToM

correctly predicts how inferences become weaker when the agent goes to check that spot

(compare how belief and desire inferences for M and L trucks become indistinguishable in

Fig. 2f,g, relative to 2b,c), but not when the agent goes straight to the near spot without checking

(observe no effect of the second truck’s presence in Fig. 2a vs. 2e). BToM also predicts stronger

inferences from complete paths as opposed to incomplete paths (compare both the belief and

desire inferences in Fig. 2c,d with 2b), and the subtle differences in people’s judgments about the

agents’ beliefs and desires in the two incomplete path scenarios, varying in whether a second

truck is present: When a truck is present in the far spot, the agent’s brief pause at the end of the

incomplete path is interpreted as weak evidence that the second truck might not be what the agent

was hoping to see (Fig. 2b), while if there is no truck parked in the far spot, the same brief pause

is uninformative about which of the other two trucks the agent was hoping to see (Fig. 2f). These

are just a few examples of the qualitative predictions that the BToM model makes in accord with

human intuition – predictions that are not specifically or explicitly wired in, but that fall out

naturally from the general principle of Bayesian inference over generative models of rational

agents’ planning and state estimation.

Experiment 2: Reasoning about others’ percepts from their actions

From early childhood, mentalizing is useful not only in explaining people’s behavior, but

also in learning about unobserved aspects of the world by observing other actors and inferring

what they must have seen and believed in order to explain the way they
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acted [8, 9, 33, 15, 43, 21, 18]. Our BToM model was not developed to account for such social

inferences, but if it is really capturing core mentalizing abilities, it should generalize to handle

them naturally. Exp. 2 tested this hypothesis, using similar scenarios to Exp. 1, in which an agent

searched for his favorite food cart in a spatially complex environment that constrained movements

and visibility. Now, however, participants could not observe the locations of three food carts, and

were tasked with inferring these locations on the basis of the agent’s actions. The carts served

Afghani (A), Burmese (B), and Colombian (C) food, and they could be in any of three locations:

North, West, and East spots (see Fig. 4a). Participants were told that the agent preferred A over B,

and both A and B over C, and would always search through the environment until he found the

most preferred cart that was open. To add further complexity, carts A and B could be either open

or closed, while C was assumed to always be open (so the agent always had at least one available

option). The agent thus could be in one of 24 possible worlds (24 = 6× 2× 2, for 6 assignments

of carts to locations, and 2 states (open, closed) for each of the A and B carts). Although the cart

locations and availabilities (specifying which of the 24 possible worlds applied) were hidden from

participants, they were observable to the agent – though only within line of sight. Based only on

the agent’s search behavior, participants were asked to infer the locations of all three carts.

We generated 19 experimental scenarios (including three simplified introductory scenarios;

see Methods: Experiment 2), varying the agent’s path and including both complete paths (when

the agent had successfully found the best available cart) and incomplete paths (showing only the

first part of a complete path). Fig. 4a shows the environment and one representative complete path

from the experiment: initially only the North location is within the agent’s line of sight; after

taking several steps, the agent also sees what is present in the West location; finally, the agent

returns to the starting point and chooses the cart in the North location. After observing this path,

participants rated the probability of all six possible spatial configurations of the three food carts.

Participants overwhelmingly judged one configuration as most probable, and the BToM model

agrees: cart B is in the North location, cart A is in the West, and cart C is the East. The model
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captures human performance by first generating a contingent POMDP plan for each of the 24

possible worlds, and for each initial belief the agent could hold (see SI Appendix: Belief and

Desire Priors), then computing a likelihood assignment for the agent’s action conditioned on each

possible cart configuration (and marginalizing over initial belief and whether the carts were open

or closed; see Methods: Eq. 3). Assuming equal prior probabilities on all possible worlds and

initial beliefs, and applying Bayes’ rule, these likelihoods determine the relative posterior

probabilities on possible worlds that participants are asked to judge.

Analogous judgments to those shown in Fig. 4a were made in all 19 scenarios for all six cart

configurations, for a total of 114 judgments per participant. Fig. 5a shows that BToM accurately

predicted participants’ mean judgments (Fig. 3g, rBSCV =0.91 (95% CI 0.86, 0.94)). We also

compared the performance of our three alternative models (SI Appendix: Experiment 2). Fig. 5d

shows that the motion-based heuristic correlates only weakly with human judgments

(rBSCV =0.61 (95% CI 0.10, 0.83)), arguing for the necessity of mental-state reasoning even in a

task that does not directly ask for it. Fig. 5b,c show that both TrueBelief and NoCost also fit

poorly, suggesting that joint reasoning about beliefs, percepts, and efficient action-planning is

essential for this task (rBSCV =0.63 (95% CI 0.24, 0.83), rBSCV =0.46 (95% CI 0.17, 0.79),

respectively).

Fig. 4b-g illustrate the BToM model’s ability to capture analogous judgments for more and

less complex paths, including incomplete paths. In Fig. 4b, the agent goes directly to the North

location, suggesting that they saw cart A there (and A was open), but leaving the locations of B

and C unknown. Fig. 4d shows a path that begins like Fig. 4a but terminates in the West location.

Here, both people and BToM infer that the agent probably saw A at the West spot, but it is also

possible that they saw A in the North location, and it was closed, leading them to go West where

they found the B cart open. Fig. 4g shows the longest trajectory from this experiment, with the

agent first seeing the North location, then checking West, then East, before returning to the West

location. Although the path is longer than that in Fig. 4a, people’s inferences are less certain
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because the multiple reversals could be explained by several different cart configurations

depending on which carts are open or closed; BToM captures this same ambiguity. Fig. 4c,e show

incomplete paths, which leave both people and BToM more uncertain about the world

configuration in ways that reflect rational expected values: locations that the agent has seen but

moved away from are most likely to contain his least preferred option C; if he has seen and

moved away from two different locations (as in Fig. 4e), most likely they contain his two least

preferred options B and C (although in unknown order). Fig. 4f shows a continuation of Fig. 4e

which terminates at the East location: people’s inferences are similar in both scenarios, which

BToM explains by predicting the likely outcome of the path as soon as the agent turns away from

the West location; the additional steps in Fig. 4f provide little additional information beyond the

partial path in Fig. 4e. As with Exp. 1, these and many other qualitative predictions consistent

with human intuitions fall out naturally from BToM, simply from the principle of mentalizing

based on Bayesian inference over models of rational agents and the constraints and affordances of

the situation.

Discussion

We proposed that core mental state inferences can be modeled as Bayesian inversion of a

probabilistic state-estimation and expected-utility-maximizing planning process, conditioned on

observing others’ actions in a given environment. Our BToM model quantitatively predicted

many social inferences in complex novel scenarios, varying both environmental contexts and

action sequences, and including both inferences about others’ beliefs, desires and percepts, as

well as unobservable world states posited to explain how others explore and exploit their

environment. Alternative models which did not represent others’ costs of action or uncertain

world beliefs consistently diverged from human judgments, as did combinations of

special-purpose motion features which did not model mental states and had to be custom-fit to

each experiment. That people’s judgments require joint reasoning about beliefs, desires, and
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percepts is further supported by the failure of models which lesioned any one of these

representations: these models show a deficit not only in the missing representations, but also in

the remaining mental state inferences with which they are causally entwined. Bayesian inversion

of models of rational agents thus provides a powerful quantitative model of how people

understand the psychological and social world.

It is important to clarify what we mean when we say that participants, like the BToM model,

are performing joint inferences about an agent’s beliefs, desires and percepts. To us, joint

inference is about representing a joint hypothesis space of the agent’s beliefs and desires, such

that in explaining a complete action sequence, the observer’s posterior distributions over the

agent’s beliefs and desires are coupled; inferences about the agent’s beliefs inform inferences

about the agent’s desires, and/or vice versa. In the Marr hierarchy of levels of explanation [32],

this is a computational-level claim. It does not require that algorithmically, at each point in time,

the observer is simultaneously considering the full joint space of all possible belief-desire

combinations and updating their inferences about beliefs and desires simultaneously. The

algorithmic implementation of our BToM model in fact works this way, but this could be

intractable for more complex settings, and indeed there are other inference algorithms that people

could use to perform joint belief-desire inference more efficiently by alternating between

updating belief inferences given current desire inferences and updating desire inferences given

current belief inferences. For instance, in Experiment 1, observers could initially posit a uniform

distribution for the agent’s beliefs, then infer the agent’s desires from their full trajectory while

tracking their belief updates based on isovists, and finally use the inferred desires to

retrospectively infer the agent’s most likely initial beliefs. Developing such an algorithmic

account of BToM inferences and testing it on a more general set of stimuli and inferences is an

important direction for future work.

Similarly, inverse rational POMDP planning is a computational-level theory of human core

mentalizing. Although optimal POMDP planning is computationally intractable in general,
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optimal POMDP solutions can be tractably approximated in certain cases [19], and modern

solvers can scale to problems with millions of states [44, 45]. In the domains we study here,

near-optimal solutions can be computed efficiently using approximate solvers: for Experiment 1

we used a grid-based approximation [30], and for Experiment 2 we used a point-based

algorithm [27]. Testing a broader range of approximate solvers within BToM will be critical for

developing algorithmic theories of human core mentalizing, and for scaling the framework to

more complex domains.

The POMDP formulation we adopt here is at best only a first approximation to the true

agent model in core mentalizing, but its value is in giving an elegant integrated account of three

crucial functions that beliefs should fulfill in any intuitive theory (Fig. 1b) – rational updating in

response to both the agent’s perception of their environment and inference based on their other

beliefs, and rational action planning to best achieve the agent’s desires given their beliefs – in a

form that embeds naturally inside a Bayesian cognitive model to capture judgments from sparse,

incomplete data. A complete account of mentalizing will likely invoke both less and more

sophisticated agent models. At one extreme, entirely model-free approaches based on motion

features failed to explain judgments in our tasks, but the deep network architectures that have

driven recent successes in computer vision could help to speed up routine BToM computations by

learning to generate fast approximate inferences in a bottom-up, feed-forward pass [26]. At the

other extreme, theory of mind in adults draws on language to represent recursive beliefs and

desires, with propositional content that goes well beyond what infants can entertain [11].

Consider the belief that “Harold believes that the morning star is beautiful, but not as beautiful as

the evening star, and not nearly as beautiful as Julie wants him to think she is.” It is an open

question whether BToM models can be extended to such cases.

BToM models can be extended to include richer environment and action models sensitive to

intuitive physics [3], and multi-agent planning to parse competitive or cooperative social

interactions such as chasing and fleeing [1] or helping and hindering [16]. Generative models of
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multiple agents’ interactive behavior can be expressed as Markov games [29], and simpler

game-theoretic models have already been useful in modeling other theory of mind tasks [54].

Extending these models to capture (as BToM requires) agents’ subjective beliefs about the world,

and nested beliefs about other agents’ beliefs [47, 12], is an important direction for future

research.

Another aspect of theory of mind that our model does not fully address is the distinction

between instrumental (expected utility maximizing) goals and epistemic (information seeking)

goals. People intuitively make this distinction: for instance, in Fig. 1a, if asked why did the agent

go around the wall, people might reply that his preferred truck is M, his goal was to get to that

truck, and he was hoping M would be there, but one might also say that his immediate goal was to

see what truck was parked on the other side, and with the intention of going to that truck if it

turned out to be his preferred one. The latter explanation posits an epistemic subgoal as part of a

larger instrumental plan. Extending our model to include explicit epistemic goals is an important

direction for future work. However, it is interesting that even without explicit epistemic goals,

BToM is able to explain a wide range of information-seeking behaviors as implicit epistemic

goals that emerge automatically in the service of an instrumental plan. For instance, imagine that

the wall in the scenarios in Exp. 1 has a window that allows the agent to look but not pass through

to the other side (extending only the isovist, but not the potential routes). In some cases, BToM

would predict that the agent should first go to the window, rather than moving around the wall,

provided the window is closer to its start position2.

Although our work was motivated by action understanding abilities that are present in

young children, we evaluated our model only against adult judgments. It is thus an open question

at what age children become able to make the kinds of inferences our experimental tasks tap into,

and what if any stage in children’s development of mentalizing capacities our model might be

capturing. Our definition of core mentalizing is not meant to imply that BToM is an account of

2We thank an anonymous reviewer for this scenario.
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infants’ innate capacities for understanding agents, what Spelke and Carey have called “core

knowledge” [46]. Our use of the term “core” is meant to imply that our model builds only on

representations of the world – specifically, representations of space and spatial constraints on

visibility, objects as goals, and actions as movement guided by efficiency – that are part of

early-emerging human knowledge, and metarepresentations of beliefs and desires defined over

those representations. In our view there is much room for core mentalizing capacities to develop

and change through experience; regardless of the extent to which they build on innate capacities,

they need not be hard-wired.

Finally, it is worth commenting on the contrast between BToM’s framing of human planning

as approximately maximizing expected utility, and prominent experiments in psychology

suggesting the opposite [23]. In part this may reflect the limited domain where core mentalizing

operates, relative to studies in behavioral economics: Moving through space to reach concrete

sources of reward (such as food), where costs are due primarily to energy expended (or distance

traveled), is a developmentally and evolutionarily ancient setting where humans may well plan

efficiently, have finely-tuned expectations that others will behave likewise, and make

approximately optimal Bayesian inferences subject to these assumptions. In these cases,

mechanisms of human action planning and action understanding may converge, yielding

mental-state inferences via BToM that are not only rational but veridical. But humans could also

overextend their core mentalizing capacities to settings where people do not in fact plan well by

expected-utility standards: BToM-style models could be correct in positing that people assume

others act rationally in some domain, even if modeling people as rational actors is not correct

there. This tension could explain why demonstrations of people violating expected-utility norms

are often so compelling. They are counter-intuitive, in domains where our intuitions over-attribute

rationality to ourselves and others. And the fact of their counter-intuitiveness may be the best

evidence we have that intuitive theories of minds – if not always actual human minds – are

rational to the core.
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Methods

Computational Modeling

Full technical details of BToM are available in SI Appendix: Computational Modeling.

Here we outline the basic technical information underlying Eq. 1. The BToM observer uses

partially observable Markov decision processes (POMDP) to represent agents’ beliefs, desires,

percepts, actions, and environment. A POMDP [22] represents a state space S, a set of actions A,

a state transition distribution T , a reward functionR, a set of observations Ω, and an observation

distribution O. We decompose the state space S into a fully observable state space, X (the agent

location), and a partially observable state space Y (the truck locations and availability)3, such that

S = 〈X ,Y〉.

The BToM observer’s belief and desire inferences (Exp. 1) are given by the joint posterior

marginal over the agent’s beliefs bt and rewards r at time t, conditioned on the state sequence x1:T

up until T ≥ t, and the world state y:

P (bt, r|x1:T , y). (2)

The BToM observer’s inferences of world states (Exp. 2) are given by jointly inferring beliefs,

desires, and world states, and then marginalizing over the agent’s beliefs and desires:

P (y|x1:T ) =
∑
bt,r

P (bt, r|x1:T , y)P (y). (3)

Experiment 1

Experimental Design. Fig. 6 shows our factorial design, which varied four factors of the

situation and action: (1) goal configuration, (2) environment configuration, (3) initial agent
3Technically, this is a mixed-observability MDPs (MOMDP) [35], an extension of POMDPs in which portions

of the state space are fully observable, as in MDPs, and portions of the state space are partially observable, as in

POMDPs. However, we will refer to the model as a POMDP for consistency and clarity, as this term is more widely

known.
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location, and (4) agent’s high-level path. Of the scenarios generated by varying these factors, 78

were valid scenarios in which the actions obeyed the constraints of the environment, i.e., not

passing through obstacles, and ending at a present goal. For example, combinations of

Environment 1 with Agent path 7 were invalid, because the path passes through the obstacle.

Combinations of Goal configuration 2 with Agent path 7 were also invalid, because the path ends

at a spot with no goal present. The full set of experimental scenarios is shown in SI Appendix:

Experiment 1 Scenarios and Results.

Five factors were randomized between subjects. Truck labels were randomly scrambled in

each scenario (for clarity we describe the experiment using the canonical ordering Korean (K),

Lebanese (L), Mexican (M)). Scenarios were presented in pseudo-random order. Each scenario

randomly reflected the display vertically and horizontally so that subjects would remain engaged

with the task and not lapse into a repetitive strategy. Each scenario randomly displayed the agent

in 1 of 10 colors, and sampled a random male or female name without replacement. This ensured

that subjects did not generalize information about one agent’s beliefs or desires to agents in

subsequent scenarios.

Stimuli. Stimuli were short animations displayed at a frame-rate of 10 Hz, depicting

scenarios featuring an agent’s path through a static environment. Three frames from an example

stimulus are shown in Fig. 7a.

Procedure. Subjects first completed a familiarization stage that explained all details of

our displays and the scenarios they depicted. To ensure that subjects understood what the agents

could and couldn’t see, the familiarization explained the visualization of the agent’s isovist, which

was updated along each step of the agent’s path. The isovist was displayed during the testing

stage of the experiment as well.

The experimental task involved rating the agent’s degree of belief in each possible world

(Lebanese truck behind the building (L); Mexican truck behind the building (M); or nothing

behind the building (N)), and rating how much the agent liked each truck. All ratings were on a
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7-point scale. Belief ratings were made retrospectively, about what agents thought was in the far

parking spot at the beginning of the scenario, based on their subsequent path. The rating task

counterbalanced the side of the monitor on which the “likes” and “believes” questions were

displayed.

Participants. Participants were 17 members of the MIT Brain and Cognitive Sciences

subject pool, 6 female, and 11 male. One male subject did not understand the instructions and was

excluded from the analysis. All gave informed consent, and were treated according to protocol

approved by MIT’s Institutional Review Board.

Experiment 2

Experimental Design. Scenarios involved 24 possible worlds (6 possible permutations of

the carts’ locations multiplied by 4 permutations of carts A and B being open or closed), and were

generated as follows. We assumed that the agent always started at the entrance of the North

hallway, and chose between entering that hall, going to the West hall, or going to the East hall. An

exhaustive list of possible paths was constructed by listing all possible combinations of short-term

goals of the agent (go to entrance of W hall, go to entrance of N hall, or go to entrance of W hall),

assuming that the first time a hall is selected it is for the purpose of exploration, and any selection

of a hall that had been selected previously is for exploitation, meaning the agent has chosen to eat

there. From the eleven exhaustively enumerated paths, two paths that only produced permutations

of beliefs were removed, leaving a total of 9 complete paths. In addition, 7 incomplete paths

(subsequences of the 9 complete paths) which produce different judgments were selected. Lastly,

three of these paths were duplicated in initial displays in which all carts are assumed to be open,

shown to familiarize subjects with the task. This produced a total of 19 different paths (see SI

Appendix: Experiment 2 Scenarios and Results) for which each subject rated six possible

configurations of carts, for a total of 114 judgments per subject. Food cart names as well as

stimulus order were randomized across subjects (for clarity we describe the experiment using the
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canonical cart names and ordering: Afghani (A), Burmese (B), and Colombian (C)).

Stimuli. Stimuli were static images depicting scenarios featuring an agent’s path through

a static environment. Example stimuli from three scenarios are shown in Fig. 7b.

Procedure. Subjects first completed a familiarization stage, which explained the basic

food cart setting, then provided judgments for three introductory scenarios where the food carts

were assumed to always be open. Next, the possibility that carts could be closed was introduced

with a step by step example. The remaining 16 experimental scenarios immediately followed.

In each scenario, subjects were shown either a complete or an incomplete path. They were

then asked to rate on a scale from 0 to 10 (with 0 meaning “Definitely Not”; 10 “Definitely”; and

5 “Maybe”) how likely each of six possible cart configurations was to be the real one.

Participants. 200 U.S. residents were recruited through Amazon Mechanical Turk. 176

subjects were included in the analysis, with 24 excluded due to server error. All gave informed

consent, and were treated according to protocol approved by MIT’s Institutional Review Board.

Statistics

Bootstrap Cross-Validation (BSCV). Bootstrap Cross-Validation is a non-parametric

technique for assessing goodness of fit [7]. BSCV is useful when comparing different models

with different numbers of free parameters, as we do here, because it naturally controls for

possible overfitting.

For each experiment, we generate 100, 000 random splits of the total set of individual

scenarios into non-overlapping training and test sets. Identical training and test sets are used to

evaluate each model. We then compute the predictive accuracy (r, or Pearson correlation

coefficient) of each model on each test set, using parameters fit to the corresponding training set.

The statistic rBSCV denotes the median value, and confidence intervals span 95% of the 100, 000

sampled values. Bootstrapped hypothesis tests compute the proportion of samples in which the r

value of one model exceeds that of another.
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BSCV analyses for BToM, TrueBelief, and NoCost selected best-fitting parameters on each

iteration from the discrete ranges shown in SI Appendix: Experiment 1 and SI Appendix:

Experiment 2. For MotionHeuristic, best-fitting parameters were selected on each iteration from a

continuous range using linear regression.

It may be surprising that BSCV correlations often exceed overall correlations. This happens

because the Pearson r statistic involves estimating slope and intercept values to optimize the

model fit to each test set. However, because we use the same bootstrapped training and test sets to

evaluate each model, the effect does not favor any particular model.

Data Availability

The data that support the findings of this study are available at

https://github.com/clbaker/BToM.

Code Availability

The code for all models and analyses that support the findings of this study are available at

https://github.com/clbaker/BToM.
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Figure 1. a “Food-trucks” scenario, using animated two-dimensional displays of an agent

navigating through simple grid-worlds. The agent is marked by a triangle, three trucks are marked

by letters (Korean (K), Lebanese (L), and Mexican (M)), parking spaces are marked by yellow

regions, and buildings (which block movement and line of sight visibility) are marked by black

rectangles. Frames 1-3 show several points along a possible path the agent could take, on a day

when the K and L trucks are present but the M truck has not come to campus: The agent leaves

his office where he can see the K truck (Frame 1), but walks past it to the other side of the

building where he sees the L truck parked (Frame 2); he then turns around and goes back to the K

truck (Frame 3). Which is his favorite truck? And which truck did he believe was parked on the

other side of the building? Red bar plots show mean human judgments about these desires and

beliefs, with standard error bars after viewing the agent’s path up to frame 3. Desire ratings were

given for each food truck (K, L, M), and belief ratings were given for the agent’s initial belief

about the occupant of the far parking spot (L, M, or nothing (N)). In this scenario, participants

(n=16) judged that the agent most desired the M truck, and (falsely) believed it was probably

present in the far spot. Our Bayesian Theory of Mind (BToM) model (blue bars) predicts these

judgments and analogous ones for many other scenarios (see Figs. 2, 4). b Folk-psychological

schema for Theory of Mind. BToM formalizes this schema as a generative model for action based

on solving a partially observable Markov decision process, and formalizes mentalizing as

Bayesian inference about unobserved variables (beliefs, desires, percepts) in this generative

model, conditioned on observed actions.
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Figure 2. Exp. 1 results. Plots and correlations (Pearson r, n=21) use the best-fitting model

parameterization (β = 2.5). a-g Comparing BToM and mean human (n=16) desire and belief

inferences from seven key scenario types (error bars show s.e.m). a-d show scenarios with two

trucks present; e-g, only one truck present. a,e: Agent goes straight to the nearest truck. b,f:

Agent’s incomplete path heads behind the building to check the far spot. c,g: Our introductory

scenario: agent returns to the near truck after checking the far spot. BToM and humans attribute a

desire for the missing truck, and an initial false belief that it was present. d: Agent goes to the far

truck after checking the far spot. See SI Appendix: Experiment 1 for results from all scenarios

and alternative models. h Comparing BToM and mean human (n=16) desire and belief inferences

across seven scenario types (error bars show s.d. of within-trial mean judgment).
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Figure 3. Comparing BToM and mean human (n=16) desire and belief inferences across all

individual scenarios. Correlations (Pearson r, n=219) use the best-fitting model parameterization.

a BToM versus people, with β = 2.5. b TrueBelief versus people, with β = 9.0. c NoCost versus

people, with β = 2.5. d MotionHeuristic versus people.
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Figure 4. Exp. 2 results. a-g Comparing BToM and mean human (n=176) percept inferences on a

range of key scenarios. Model predictions use best-fitting parameterization (β = 1.5).
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Figure 5. Exp. 2 results, comparing models and mean human (n=176) percept inferences across

all individual scenarios. Correlations (Pearson r, n=114) use best-fitting model parameterization.

a BToM versus people, with β = 1.5. b TrueBelief versus people, with β = 0.25. c NoCost

versus people, with β = 5.0. d MotionHeuristic versus people.
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Figure 6. The factorial design of Experiment 1 varied four factors: (1) goal configuration, (2)

environment configuration, (3) initial agent location, and (4) agent path.



39

b

a

Figure 7. Example experimental stimuli. a Three frames from an example Experiment 1 scenario.

b Three example scenarios from Experiment 2.


