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Abstract. The steady expansion of neural recording capability provides exciting opportunities for dis-
covering unexpected patterns and gaining new insights into neural computation. Realizing these gains re-
quires flexible and accurate yet tractable statistical methods for extracting structure from large-scale neural
recordings. Here we present a model for simultaneously recorded multi-neuron spike trains with negative bi-
nomial spiking and structured patterns of functional coupling between neurons. We use a generalized linear
model (GLM) with negative-binomial observations to describe spike trains, which provides a flexible model
for over-dispersed spike counts (i.e., responses with greater-than-Poisson variability), and introduce flexible
priors over functional coupling kernels derived from sparse random network models. The coupling kernels
capture dependencies between neurons by allowing spiking activity in each neuron to influence future spiking
activity in its neighbors. However, these dependencies tend to be sparse, and to have additional structure
that is not exploited by standard (e.g., group lasso) regularization methods.

For example, neurons may belong to different classes, as is often found in the retina, or they may be
characterized by a small number of features, such as a preferred stimulus selectivity. These latent variables
lend interpretability to otherwise incomprehensible data. To incorporate these concepts, we decompose the
coupling kernels with a weighted network, and leverage latent variable models like the Erdés-Renyi model,
stochastic block model, and the latent feature model as priors over the interactions.

To perform inference, we exploit recent innovations in negative binomial regression to perform efficient,
fully-Bayesian sampling of the posterior distribution over parameters given the data. This provides access
to the full posterior distribution over connectivity, and allows underlying network variables to be inferred
alongside the low-dimensional latent variables of each neuron. We apply the model to neural data from
primate retina and show that it recovers interpretable patterns of interaction between different cell types.

1. Model. We begin with vectors of simultaneously recorded spike counts, {s,}_,, from N neurons,
where each vector s, € Ni represents 1" time bins. Typically, the bin size is taken to be small enough that
only a few spikes may be observed, for example 10ms. We will model these spike counts as random draws
from a negative binomial distribution,
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for € > 0 and p,, ¢ € (0,1). Letting A\, ; = 15;‘)’: -, we have that E[s,, ¢] = Anr and Var[s, ] = A1 (1 4+ As,).

We proceed by modeling A, ; with a log linear model. Let,
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where b, ~ N (pp, O'g) is a constant bias for neuron n; A, _,, € {0,1} is a binary variable indicating whether
or not the spikes on neuron n’ affect the firing of neuron n; X, _, € RT*B is a matrix of given regressors,
typically the filtered spike history; and w, _,, € RE is a vector of weights capturing the directed effect of
neuron n’ on neuron n. Together, A and w represent a sparse, directed network of functional relationships.

This spike-and-slab model yields sparse parameter estimates and lends interpretability to an otherwise
complex set of O(N?) variables. Moreover, we often expect to find interpretably structure within the func-
tional network. In this abstract we will focus on one particular type of structure where each neuron belongs to
a latent class ¢, € [1,...,C]. These latent classes govern the sparsity of the functional network through the
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Fig 1: The negative binomial GLM applied to a population recording of retinal ganglion cells. Neurons 1-16 are
“OFF” cells, and 1727 are “OFF” cells. The sparse network of inferred interactions is shown on the left, with
canonical patterns of within-type excitation (black) and between-type inhibition (red). Each connection corresponds
to a weighted impulse response, like those shown in the center. The sum of weighted impulse responses are passed
through an exponential link function to determine the expected number of spikes per bin under the negative binomial
model (right).

model A,_,,, ~ Bernoulli(p. , ., ), and the weights through w,/_, ~ /\/‘(ucn,_)cn,Ecn,%Cn). For example,
in the retina these classes could distinguish “ON” and “OFF” cells. In this “stochastic block model,” the
classes are drawn from a categorial distribution with parameter p. Conjugate Dirichlet and normal-inverse
Wishart priors are placed over the parameters to complete the model.

2. Bayesian Inference. Pillow and Scott (2012) have derived a data augmentation scheme to efficiently
perform Bayesian inference in negative binomial regression models. The fundamental property they exploit
is that the likelihood as a function of ¥, ; = log A, + can be written as,
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where wy, ¢ ~ PG(sp, +&,0) and PG denotes the Polya-Gamma distribution. Hence, if we augment our
data with Polya-Gamma random variables w;, ;, then conditioned on these variables the log likelihood is
a quadratic function of v, ; and conjugate with a Gaussian prior. Similarly, the posterior distribution
over w,, factorizes into independent Polya-Gamma distributions that can be efficiently sampled. This data
augmentation scheme renders the our model conjugate and hence amenable to Gibbs sampling. The only
exception is the spike-and-slab prior over A, _,, and w, _,. To improve the mixing of our Markov chain,
we jointly update these parameters by marginalizing over the weights to sample A and then sampling w
given A. Since the weights and the likelihood are both Gaussian distributions, the marginal likelihood is also
Gaussian and can be computed in closed form. Integrating out weights removes the conditional independence
of the elements of ,,, but the resulting marginal distribution is Gaussian with a low rank plus diagonal
covariance matrix, and hence can be efficiently inverted with the matrix inversion lemma.

To demonstrate this approach, we have applied our negative binomial GLM to a population of primate
retinal ganglion cells. With a simple Erdos-Renyi network prior, we recover a sparse pattern of connectivity
that filters out the insignificant interactions and leaves an obvious pattern of mutual excitation among cells
of the same type (diagonal blocks) and inhibition between cells of different types (off-diagonal blocks), as
shown in Figure 1.

As we look toward increasingly large multiple spike train recordings, we plan to leverage many nice
properties of this method. First, the data augmentation used to sample the negative binomial model is
naively parallelizable. Moreover, given the conjugacy of this model, stochastic variational inference is an
appealing alternative to Gibbs sampling that combines the benefits of Bayesian inference with the scalability
required to discover structure in large scale recordings.
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