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Abstract

Recognizing the actions of others from visual stimuli is a crucial aspect of human perception

that allows individuals to respond to social cues. Humans are able to discriminate between

similar actions despite transformations, like changes in viewpoint or actor, that substantially

alter the visual appearance of a scene. This ability to generalize across complex trans-

formations is a hallmark of human visual intelligence. Advances in understanding action

recognition at the neural level have not always translated into precise accounts of the

computational principles underlying what representations of action sequences are con-

structed by human visual cortex. Here we test the hypothesis that invariant action discrimi-

nation might fill this gap. Recently, the study of artificial systems for static object perception

has produced models, Convolutional Neural Networks (CNNs), that achieve human level

performance in complex discriminative tasks. Within this class, architectures that better sup-

port invariant object recognition also produce image representations that better match those

implied by human and primate neural data. However, whether these models produce repre-

sentations of action sequences that support recognition across complex transformations

and closely follow neural representations of actions remains unknown. Here we show that

spatiotemporal CNNs accurately categorize video stimuli into action classes, and that delib-

erate model modifications that improve performance on an invariant action recognition task

lead to data representations that better match human neural recordings. Our results support

our hypothesis that performance on invariant discrimination dictates the neural representa-

tions of actions computed in the brain. These results broaden the scope of the invariant rec-

ognition framework for understanding visual intelligence from perception of inanimate

objects and faces in static images to the study of human perception of action sequences.

Author summary

Recognizing the actions of others from video sequences across changes in viewpoint, gait

or illumination is a hallmark of human visual intelligence. A large number of studies have

highlighted which areas in the human brain are involved in the processing of biological

motion, while others have described how single neurons behave in response to videos of
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human actions. However, little is known about the computational necessities that shaped

these neural mechanisms either through evolution or experience. In this paper, we test the

hypothesis that this computational goal is the discrimination of action categories from

complex video stimuli and across identity-preserving transformations. We show that,

within the class of Spatiotemporal Convolutional Neural Networks (ST-CNN), deliberate

model modifications leading to representations of videos that better support robust action

discrimination, also produce representations that better match human neural data. Im-

portantly, increasing model performance on invariant action recognition leads to a better

match with human neural data, despite the model never being exposed to such data.

These results suggest that, similarly to what is known for object recognition, supporting

invariant discrimination within the constraints of hierarchical ST-CNN architectures

drives the neural mechanisms underlying our ability to perceive the actions of others.

Introduction

Humans’ ability to recognize the actions of others is a crucial aspect of visual perception.

Remarkably, the accuracy with which we can finely discern what others are doing is largely

unaffected by transformations that substantially change the visual appearance of a given scene,

but do not change the semantics of what we observe (e.g. a change in viewpoint). Recognizing

actions, the middle ground between action primitives and activities [1], across these transfor-

mations is a hallmark of human visual intelligence, which has proven difficult to replicate in

artificial systems. Because of this, invariance to transformations that are orthogonal to a learn-

ing task has been the subject of extensive theoretical and empirical investigation in both artifi-

cial and biological perception [2,3].

Over the past few decades, artificial systems for action processing have received consider-

able attention. These methods can be divided into global and local approaches. Some space-

time global approaches rely on fitting the present scene to a joint-based model of human bod-

ies, actions are then described as sequences of joint configurations over time [4]. Other global

methods use descriptors that are computed using the entire input video at once [5–7]. Local

approaches, on the other hand, extract information from video sequences in a bottom-up fash-

ion, by detecting, in their input video, the presence of features that are local in space and time.

These local descriptors are then combined, following a hierarchical architecture, to construct

more complex representations [8–10]. A specific class of bottom up, local architectures, spa-

tial-temporal Convolutional Neural Networks (ST-CNNs), as well as their recursive extensions

[11], are currently the best performing models on action recognition tasks.

Alongside these computational advances, recent studies have furthered our understanding

of the neural basis of action perception. Broadly, the neural computations underlying action

recognition in visual cortex are organized as a hierarchical succession of spatiotemporal fea-

ture detectors of increasing size and complexity [10,12]. In addition, other studies have

highlighted of which specific brain areas are involved in the processing of biological motion

and actions. In humans and other primates, the Superior Temporal Sulcus, and particularly its

posterior portion, is believed to participate in the processing of biological motion and actions

[13–20]. In addition to studying which brain regions engage during action processing, a num-

ber of studies have characterized the responses of individual neurons. The preferred stimuli of

neurons in visual areas V1 and MT are well approximated by moving edge-detection filters

and energy-based pooling mechanisms [21,22]. Neurons in the STS region of macaque mon-

keys respond selectively to actions, are invariant to changes in actors and viewpoint [23] and
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their tuning curves are well modeled by simple snippet-matching models [24]. Finally, mirror

neurons, cells that exhibit strong responses when subjects are both observing and performing

goal directed actions, have been carefully described in recent years [25].

Despite the characterization of the regional and single-unit responses that are involved in

constructing neural representations of action sequences, little information is available on what

computational tasks might be relevant to explaining and recapitulating how these representa-

tions are organized, and in particular which robustness properties are present. The idea of

visual representations, internal encodings of incoming stimuli that are useful to the viewer, has

a long history in the study of human perception and, since its inception, has provided a power-

ful tool to link neurophysiology and brain imaging data to more abstract computational con-

cepts like recognition or detection [26–28]. Fueled by advances in computer vision methods

for object and scene categorization, recent studies have made progress towards linking neural

recordings to computational concepts through quantitatively accurate models of single neu-

rons and entire brain regions. Interestingly, these studies have highlighted a correlation

between performance optimization on discriminative object recognition tasks and the accu-

racy of neural predictions both at the single recording site and neural representation level [29–

32]. However, these results have not been extended to action perception and dynamic stimuli.

Here we take advantage of recent advances in artificial systems for action processing to test

the hypothesis that invariant recognition drives the representations of action sequences com-

puted by visual cortex. We do so by comparing representations obtained with biologically

plausible artificial systems and those measured in human subjects through Magnetoencepha-

lography (MEG) recordings [33]. In this paper we show that, within the Spatiotemporal Con-

volutional Neural Networks model class [10,12,34,35], deliberate modifications that result in

better performing models on invariant action recognition, also lead to empirical dissimilarity

matrices that better match those obtained with human neural recordings. Our results suggest

that discriminative tasks, and especially those that require generalization across complex trans-

formations, alongside the constraints imposed by the hierarchical organization of visual pro-

cessing in human cortex, determined which representations of action sequences are computed

by visual cortex. Importantly, we quantify the degree of overlap between neural and artificial

representations using Representational Similarity Analysis [32]. This measure of agreement

between two encodings, does not rely on a one-to-one mapping between neural signal sources

and their artificial counterpart, but rather, exploits similarity structures directly in the repre-

sentation spaces to establish a measure of consensus. Moreover, by highlighting the role of

robustness to nuisances that are orthogonal to the discrimination task, our results extend the

scope of invariant recognition as a computational framework for understanding human visual

intelligence to the study of action recognition from video sequences.

Results

Action discrimination with Spatiotemporal Convolutional representations

We filmed a video dataset showing five actors, performing five actions (drink, eat, jump, run

and walk) at five different viewpoints (Fig 1). We then developed four variants of feedforward

hierarchical models of visual cortex and used them to extract feature representations of videos

showing two different viewpoints, frontal and side. Subsequently, we trained a machine learn-

ing classifier to discriminate video sequences into different action classes based on each mod-

el’s output. We then evaluated the classifier’s accuracy in predicting the action content of new,

unseen videos.

The four models we developed to extract representations of action sequences from videos

were instances of Spatiotemporal Convolutional Neural Networks (ST-CNNs), currently the
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best performing artificial perception systems for action recognition [34] and were specifically

designed to exhibit a varying degree of performance on invariant action recognition tasks.

ST-CNN architectures are direct extensions of the Convolutional Neural Networks used to

recognize objects or faces in static images [27,36], to input stimuli that extend both in space

and time. ST-CNNs are hierarchical models that build selectivity to specific stimuli through

template matching operations and robustness to transformations through pooling operations

(Fig 2). Qualitatively, Spatiotemporal Convolutional Neural Networks detect the presence of a

certain video segment (a template) in their input stimulus; detections for various templates are

then aggregated, following a hierarchical architecture, to construct video representations. Nui-

sances that should not be reflected in the model’s output, like changes in position, are dis-

carded through the pooling mechanism [26].

We considered a basic, purely convolutional model, and subsequently introduced modifica-

tions to its pooling mechanism and template learning rule to improve performance on invari-

ant action recognition [36]. The first, purely convolutional model, consisted of convolutional

layers with fixed templates, interleaved by pooling layers that computed max-operations across

contiguous regions of space. In particular, templates in the first convolutional layer contained

moving Gabor filters, while templates in the second convolutional layer were sampled from a

set of action sequences collected at various viewpoints. The second, Unstructured Pooling

model, allowed pooling units in the last layer to span random sets of templates as well as con-

tiguous space regions (Fig 3B). The third, Structured Pooling model, allowed pooling over

Fig 1. Action recognition stimulus set. Sample frames from action recognition dataset consisting of 2s video

clips depicting five actors performing five actions (top row: drink, eat, jump, run and walk). Actions were recorded

at five different viewpoints (bottom row: 0-frontal, 45, 90-side, 135 and 180 degrees with respect to the normal to

the focal plane), they were all performed on a treadmill and actors held a water bottle and an apple in their hand

regardless of the action they performed in order to minimize low-level object/action confounds. Actors were

centered in the frame and the background was held constant regardless of viewpoint. The authors who collected

the videos identified themselves and the purpose of the videos to the people being video recorded. The

individuals agreed to have their videos taken and potentially published.

https://doi.org/10.1371/journal.pcbi.1005859.g001
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contiguous regions of space as well as across templates depicting the same action at various

viewpoints. The 3D orientation of each template was discarded through this pooling mecha-

nism, similarly to how position in space is discarded in traditional CNNs (Fig 3A) [2,37]. The

fourth and final model employed backpropagation, a gradient based optimization method, to

learn convolutional layers’ templates by iteratively maximizing performance on an action rec-

ognition task [36].

The basic, purely convolutional model we used as a starting point has been shown to be a

reliable model of biological motion processing in human visual cortex [10,12]. The modifica-

tions we introduced aimed to improve its performance on a challenging invariant action rec-

ognition task. In particular, structured and unstructured template pooling mechanisms have

been analyzed and theoretically motivated in recent years [2,3]. Moreover, these pooling

mechanisms have successfully applied to robust face and object recognition [37]. Finally, back-

propagation, the gradient based optimization method used to construct the last model, is

widely used in computer vision systems [36], and recently it has been applied to vision science

[29,31]. While prima facie this method might not be relevant to brain science (see Discussion),

we found here, that the representations obtained with this technique better match human

brain data.

We used these models to recognize actions in video sequences in a simple three-steps exper-

imental procedure: first we constructed feedforward hierarchical architectures and used them

to extract feature representations of a number of video sequences. We then trained a machine

learning classifier to predict the action label of a sequence based on each feature representa-

tion. Finally, we quantified the performance of the classifier by measuring prediction accuracy

on a set of new unseen videos. The procedure just outlined was performed using three separate

subsets of the video dataset described above, one for each step. In particular, constructing spa-

tiotemporal convolutional models requires access to video sequences to sample, or learn,

Fig 2. Spatiotemporal Convolutional Neural Networks. Schematic overview of the class of models we used: Spatiotemporal Convolutional Neural

Networks (ST-CNNs). ST-CNNs are hierarchical feature extraction architectures. Input videos go through layers of computation and the output of each layer

serves as input to the next layer. The output of the last layer constitutes the video representation used in downstream tasks. The models we considered

consisted of two convolutional-pooling layers’ pairs, denoted as Conv1, Pool1, Conv2 and Pool2. Convolutional layers performed template matching with a

shared set of templates at all positions in space and time (spatiotemporal convolution), and pooling layers increased robustness through max-pooling

operations. Convolutional layers’ templates can be either fixed a priori, sampled or learned. In this example, templates in the first layer Conv1 are fixed and

depict moving Gabor-like receptive fields, while templates in the second simple layer Conv2 are sampled from a set of videos containing actions and filmed at

different viewpoints. The authors who collected the videos identified themselves and the purpose of the videos to the people being video recorded. The

individuals agreed to have their videos taken and potentially published.

https://doi.org/10.1371/journal.pcbi.1005859.g002
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convolutional layers’ templates. The subset of videos used for this particular purpose was called

the embedding set. Likewise, training and testing a classifier requires access to model

responses extracted from action sequences; the videos used in these two steps were organized

in a training set and a test set. There was never any overlap between the test set and the

union of training and embedding set.

Specifically, we sought to evaluate the four models based on how well they could support

discrimination between the five actions in our video dataset both across and within changes in

viewpoint. To this end, in Experiment 1, we trained and tested the classifier using model fea-

tures extracted from videos captured at the same viewpoint while in Experiment 2, we trained

and tested the classifier using model features computed from videos at mismatching view-

points (e.g. if the classifier was trained using videos captured at the frontal viewpoint, then test-

ing would be conducted using videos at the side viewpoint).

Experiment 1: Action discrimination–viewpoint match condition. In Experiment 1, we

trained and tested the action classifier using feature representations of videos acquired at the

same viewpoint, and therefore did not investigate robustness to changes in viewpoint. In this

Fig 3. Structured and unstructured pooling. We introduced modifications to the basic ST-CNN to increase robustness to changes in 3D-viewpoint.

Qualitatively Spatiotemporal Convolutional Neural Networks detect the presence of a certain video segment (a template) in their input stimulus. The 3D

orientation of this template is discarded by the pooling mechanism in our structured pooling model, analogous to how position in space is discarded in a

traditional CNN. a) In models with Structured Pooling (model 3, in the main text), the template set for Conv2 layer cells was sampled from a set of videos

containing four actors performing five actions at five different viewpoints (see Materials and Methods). All templates sampled from videos of a specific actor

and performing a specific action were pooled together by one Pool2 layer unit. b) Models employing Unstructured Pooling (model 2, in the main text)

allowed Pool2 cells to pool over the entire spatial extent of their input as well as across channels. These models used the exact same templates employed

by models relying on Structured Pooling and matched these models in the number of templates wired to a pooling unit. However, the assignment of

templates to pooling was randomized (uniform without replacement) and did not reflect any semantic structure. The authors who collected the videos

identified themselves and the purpose of the videos to the people being video recorded. The individuals agreed to have their videos taken and potentially

published.

https://doi.org/10.1371/journal.pcbi.1005859.g003
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case, the embedding set contained videos showing all five actions performed at all five view-

points by four of the five actors. The training set was a subset of the embedding set and con-

tained all videos at either the frontal or the side viewpoint. Finally, the test set contained

videos of all five actions performed by the fifth, left-out actor, and performed at the viewpoint

matching that shown in the training set. All models produced representations that successfully

classified videos based on the action they depicted (Fig 4). We observed a significant difference

in performance between model 4, the end-to-end trainable model, and fixed template models

1, 2 and 3 (see Methods Section). However, the task considered in Experiment 1 was not suffi-

cient to rank the four types of ST-CNN models.

Experiment 2: Action discrimination–viewpoint mismatch condition. The four

ST-CNN models we developed were designed to have varying degrees of tolerance to changes

in viewpoint. In Experiment 2, we investigated how well these model representations could

support learning to discriminate video sequences based on their action content, across changes

in viewpoint. The general experimental procedure was identical to the one outlined for Experi-

ment 1 and used the exact same models. In this case however, we used features extracted from

videos acquired at mismatching viewpoints for training and testing (e.g., a classifier trained

using videos captured at the frontal viewpoint, would be tested on videos at the side view-

point). We focused exclusively on to views: 0 and 90 degree with respect to frontal, to test the

Fig 4. Action recognition: Viewpoint match condition. We trained a supervised machine learning

classifier to discriminate videos based on their action content by using the feature representation computed by

each of the Spatiotemporal Convolutional Neural Network models we considered. This figure shows the

prediction accuracy of a machine learning classifier trained and tested using videos recorded at the same

viewpoint. The classifier was trained on videos depicting four actors performing five actions at either the

frontal or side view. The machine learning classifier accuracy was then assessed using new, unseen videos of

a new, unseen actor performing those same five actions. No generalization across changes in 3D viewpoints

was required of the feature extraction and classification system. Here we report the mean and standard error

of the classification accuracy over the five possible choices of test actor. Models with learned templates

outperform models with fixed templates significantly on this task. Chance is 1/5 and is indicated by a

horizontal line. Horizontal lines at the top indicate significant difference between two conditions (p < 0.05)

based on group ANOVA or Bonferroni corrected paired t-test (see Materials and Methods section).

https://doi.org/10.1371/journal.pcbi.1005859.g004
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same extreme case of generalization across changes in viewpoint (training on a single view that

is non-adjacent and non-mirror-symmetric to the test view) as used for the MEG experiments

(see Experiment 3 and Materials and Methods). All the models we considered produced repre-

sentations that were, at least to a minimal degree, useful to discriminate actions invariantly to

changes in viewpoint (Fig 5). Unlike what we observed in Experiment 1, it was possible to rank

the models we considered based on performance on this task. This was expected, since the var-

ious architectures were designed to exhibit various degrees of robustness to changes in view-

point (see Materials and Methods). The end-to-end trainable models (model 4) performed

better than models 1,2 and 3, which used fixed templates, on this task. Within the fixed tem-

plates models group, as expected, models that employed a Structured Channel Pooling mecha-

nism to increase robustness performed best [38].

Comparison of model representations and neural recordings

We used Representational Similarity Analysis (RSA) to assess how well each model feature

representation, as well as an ideal categorical oracle, matched human neural data. RSA pro-

duces a measure of agreement between artificial models and brain recordings based on the

correlation between empirical dissimilarity matrices constructed using either the model

Fig 5. Action recognition: Viewpoint mismatch condition. This figure shows the prediction accuracy of a

machine learning classifier trained and tested using feature representations of videos at opposed viewpoints.

Hierarchical models were constructed using convolutional templates sampled or learned from videos showing

all five viewpoints. During the training and testing of the classifier however, mismatching viewpoints were

used. When the classifier was trained using videos at, say, the frontal viewpoint, its accuracy in discriminating

new, unseen videos would be established using videos recorded at the side viewpoint. Here we report the

mean and standard error of the classification accuracy over the five possible choices of test actor. Models with

learned templates resulted in significantly higher accuracy in this task. Among models with fixed templates,

Spatiotemporal Convolutional Neural Networks employing Structured pooling outperformed both purely

convolutional and Unstructured Pooling models. Chance is 1/5 indicated with horizontal line. Horizontal lines

at the top indicate significant difference between two conditions (p < 0.05) based on group ANOVA or

Bonferroni corrected paired t-test (see Materials and Methods).

https://doi.org/10.1371/journal.pcbi.1005859.g005
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representation of a set of stimuli, or recordings of the neural responses these stimuli elicit (Fig

6) [32]. We used video feature representations extracted by each model from a set of new,

unseen stimuli to construct model dissimilarity matrices. We also constructed dissimilarity

matrices using Magnetoencephalograpy (MEG) data from the average of eight subjects viewing

the same action video clips. The MEG data consisted of magnetometer and gradiometer

recordings from 306 sensors, averaged over a 100ms window centered at the time when action

identity was best decoded from these data in a separate experiment [33] (see Materials and

Methods). Finally, we constructed a dissimilarity matrix using an action categorical oracle, a

simulated ideal observer able to perfectly classify video sequences based on their action con-

tent. In this case, the dissimilarity between videos of the same action was zero and the distance

across actions was one.

Fig 6. Feature representation empirical dissimilarity matrices. We used feature representations, extracted with the four Spatiotemporal Convolutional

Neural Network models, from 50 videos depicting five actors performing five actions at two different viewpoints, frontal and side. Moreover, we obtained

Magnetoencephalography (MEG) recordings of human subjects’ brain activity while they were watching these same videos, and used these recordings as a

proxy for the neural representation of these videos. These videos were not used to construct or learn any of the models. For each of the six representations

of each video (four artificial models, a categorical oracle and one neural recordings) we constructed an empirical dissimilarity matrix using linear correlation

and normalized it between 0 and 1. Empirical dissimilarity matrices on the same set of stimuli constructed with video representations from a) Model 1:

Purely Convolutional model, b) Model 2: Unstructured pooling model, c) Model 3: Structured pooling model d) Model 4: Learned templates model e)

Categorical oracle and f) Magnetoencephalography brain recordings.

https://doi.org/10.1371/journal.pcbi.1005859.g006
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We observed that end-to-end trainable models (model 4) produced dissimilarity structures

that better agreed with those constructed from neural data than models with fixed templates

(Fig 7). Within models with fixed templates, model 3, constructed using a Structured Pooling

mechanism to build invariance to changes in viewpoint, produced representations that agree

better with the neural data than models employing Unstructured Pooling (model 2) and purely

convolutional models (model 1). The category oracle did not match the MEG data as well as

the highest performing models (models 3 and 4), suggesting that improving performance on

the action recognition task does not trivially improve matching with the neural data.

Discussion

We have shown that, within the Spatiotemporal Convolutional Neural Networks model class

and across a deliberate set of model modifications, feature representations that are more useful

to discriminate actions in video sequences in a manner that is robust to changes in viewpoint,

Fig 7. Representational Similarity Analysis between model representations and human neural data.

We computed the Spearman Correlation Coefficient (SCC) between the lower triangular portion of the

dissimilarity matrix constructed with each of the artificial models we considered and the dissimilarity matrix

constructed with neural data (shown and described in Fig 6). We assessed the uncertainty of this measure by

resampling the rows and columns of the matrices we constructed. In order to give the SCC score a meaningful

interpretation we reported here a normalized score: the SCC is normalized so that the noise ceiling is 1 and the

noise floor is 0. The noise ceiling was assessed by computing the SCC between each individual human

subjects’ dissimilarity matrix and the average dissimilarity matrix over the rest of the subjects. The noise floor

was computed by assessing the SCC between the lower portion of the dissimilarity matrix constructed using

each of the model representation and a scrambled version of the neural dissimilarity matrix. This normalization

embeds the intuition that we cannot expect artificial representations to match human data better than an

individual human subject’s data matches the mean of other humans and that we should only be concerned

care with how much better the models we considered are, on this scale, than a random guess. Models with

learned templates agree with the neural data significantly better than models with fixed templates. Among

these, models with Structured Pooling outperform both purely Convolutional and Unstructured models.

Horizontal lines at the top indicate significant difference between two conditions (p < 0.05) based on group

ANOVA or Bonferroni corrected paired t-test (see Materials and Methods).

https://doi.org/10.1371/journal.pcbi.1005859.g007
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produce empirical dissimilarity structures that are more similar to those constructed using

human neural data. These results support our hypothesis that performance on invariant dis-

criminative tasks drives the neural representations of actions that are computed by our visual

cortex. Moreover, dissimilarity matrices constructed with ST-CNNs representations match

those built with neural data better than a purely categorical dissimilarity matrix. This highlights

the importance of both the computational task and the architectural constraints, described in

previous accounts of the neural processing of action and motions, to build quantitatively accu-

rate models of neural data representations [39]. Our findings are in agreement with what has

been reported for the perception of objects from static images, both at the single recording site

and at the whole brain level [29–31], and identify a computational task that explains and reca-

pitulates the properties of the representations of human action in visual cortex.

We developed the four ST-CNN models using deliberate modifications to improve the

models’ feature representations to invariant action recognition. In so doing, we verified that

structured pooling architectures and memory based learning (model 3), as previously

described and theoretically motivated [2,3], can be applied to build representations of video

sequences that support recognition invariant to complex, non-affine transformations. How-

ever, empirically, we found that learning model templates using gradient based methods and a

fully supervised action recognition task (model 4), led to better results, both in terms of classi-

fication accuracy and agreement with neural recordings [31].

The five actions in our dataset were selected to be highly familiar, include both goal-

directed hand-arm movements and whole body movements, and span coarse (run vs. eat) as

well as fine (drink vs. eat) action discriminations. While the five actions we considered are far

from exhaustive, they allow us rank the performance of our four different models on invariant

action recognition. Importantly, we show that our top-performing models capture non-trivial

aspects of the neural representations of these actions, as shown by the fact that the ST-CNN

models match MEG data better than a categorical oracle.

A limitation of the methods used here is that the extent of the match between a model

representation and the neural data is appraised solely based on the correlation between the

empirical dissimilarity structures constructed with neural recordings and model representa-

tions. This relatively abstract comparison provides no guidance in establishing a one-to-one

mapping between model units and brain regions or sub-regions and therefore cannot exclude

models on the basis of biological implausibility [30]. In this work, we mitigated this limitation

by constraining the model class to reflect previous accounts of neural computational units and

mechanisms that are involved in the perception of motion [10,21,22,40,41].

Furthermore, the class of models we developed in our experiments is purely feedforward,

however, the neural recordings were maximally action discriminative 470ms after stimulus

onset. This late in the visual processing, it is likely that feedback signals are among the energy

sources captured by the recordings. These signals are not accounted for in our models. We

provide evidence that adding a feedback mechanism, through recursion, does not improve rec-

ognition performance nor correlation with the neural data (S1 Fig). We cannot, however,

exclude that this is due to the stimuli and discrimination task we designed, which only consid-

ered pre-segmented, relatively short action sequences.

Recognizing the actions of others from complex visual stimuli is a crucial aspect of human

perception. We investigated the relevance of invariant action discrimination to improving

model representations’ agreement with neural recordings and showed that it is one of the

computational principles shaping the representation of human action sequences human visual

cortex evolved, or learned to compute. Our deliberate approach to model design underlined

the relevance of both supervised, gradient based, performance optimization methods and

memory based, structured pooling methods to the modeling of neural data representations.
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While memory-based learning and structured pooling have been investigated extensively as a

biologically plausible learning algorithms [2,37,42,43], if and how primate visual cortex could

implement gradient based optimization or acquire the necessary supervision remains, despite

recent efforts, an unsettled matter [44–46]. Irrespective of the precise biological mechanisms

that could carry out performance optimization on invariant discriminative tasks, computa-

tional studies point to its relevance to understanding neural representations of visual scenes

[29–31]. Recognizing the semantic category of visual stimuli across photometric, geometric or

more complex changes, in very low sample regimes is a hallmark of human visual intelligence.

By building data representations that support this kind of robust recognition, we have shown

here, one obtains empirical dissimilarity structures that match those constructed using human

neural data. In the wider context of the study of perception, our results strengthen the claim

that the computational goal of human visual cortex is to support invariant recognition by

broadening it to the study of action perception.

Materials and methods

Ethics statement

The MIT Committee on the Use of Humans as Experimental Subjects approved the experi-

mental protocol. Subjects provided informed written consent before the experiment. Approval

number: 0403000026.

Action recognition dataset

We collected a dataset of five actors performing five actions (drink, eat, jump, run and walk)

on a treadmill at five different viewpoints (0, 45, 90, 135 and 180 degrees between the line

across the center of the treadmill and the line normal to the focal plane of the video-camera).

We rotated the treadmill rather than the camera to keep the background constant across

changes in viewpoint (Fig 1). The actors were instructed to hold an apple and a bottle in their

hand regardless of the action they were performing, so that objects and background would not

differ between actions. Each action/actor/view was filmed for at least 52s. Subsequently the

original videos were cut into 26 clips, each 2s long resulting in a dataset of 3,250 video clips.

Video clips started at random points in the action cycle (for example a jump might start mid-

air or before the actor’s feet left the ground) and each 2s clip contained a full action cycle. The

authors manually identified one single spatial bounding box that contained the entire body of

each actor and cropped all videos according to this bounding box. The authors who collected

the videos identified themselves and the purpose of the videos to the people being video

recorded. The individuals agreed to have their videos taken and potentially published.

Recognizing actions with spatiotemporal convolutional representations

General experimental procedure. Experiment 1 and Experiment 2 were designed to

quantify the amount of action information extracted from video sequences by four computa-

tional models of primate visual cortex. In Experiment 1, we tested basic action recognition. In

Experiment 2, in particular, we further quantified whether this action information could sup-

port action recognition robustly to changes in viewpoint. The motivating idea behind our

design is that, if a machine learning classifier is able to discriminate unseen video sequences

based on their action content, using the output of a computational model, then this model

representation contains some action information. Moreover, if the classifier is able to discrimi-

nate videos based on action at new, unseen viewpoints, using model outputs then it must be

that these model representations not only carry action information, but that changes in
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viewpoint are not reflected in the model output. This procedure is analogous to neural decod-

ing techniques with the important difference that the output of an artificial model is used in

lieu of brain recordings [47,48].

The general experimental procedure is as follows: we constructed feedforward hierarchical

spatiotemporal convolutional models and used them to extract feature representations of a

number of video sequences. We then trained a machine learning classifier to predict the action

label of a video sequence based on its feature representation. Finally, we quantified the perfor-

mance of the classifier, by measuring prediction accuracy on a set of new, unseen videos.

The procedure outlined above was performed using three separate subsets of the action rec-

ognition dataset described in the previous section. In particular, constructing spatiotemporal

convolutional model requires access to video sequences depicting actions to sample or learn

convolutional layers’ templates. The subset of video sequences used to learn or sample tem-

plates was called embedding set. Training and testing the classifier required extracting model

responses from a number of video sequences; these sequences were organized in two subsets:

training set and test set. There was never any overlap between the test set and the union of

training set and embedding set.

Experiment 1. The purpose of Experiment 1 was to assess how well the data representa-

tions produced by each of the four models, supported a non-invariant action recognition task.

In particular, the embedding set used to sample or learn templates contained videos showing

all five actions at all five viewpoints performed by four of the five actors. The training set was

a subset of the embedding set, and contained videos at either the frontal viewpoint or the side

viewpoint. Lastly the test set contained videos of all five actions, performed by the fifth left-out

actor and performed at either the frontal or side viewpoint. We obtained five different splits by

choosing each of the five actors exactly once for test. After the templates had either been

learned or sampled we used each model to extract representations of the train and test sets

videos. We averaged the classifier’s performance over the two possible choices of training

viewpoint, frontal or side. We report the mean and standard error of the classification accuracy

across the five possible choices of the test actor.

Experiment 2. Experiment 2 was designed to assess the performance of each model in

producing data representations that were useful to classify videos according to their action

content, when a generalization across changes in viewpoint was required. The experiment is

identical to Experiment 1, and used the exact same models. However, when the training set

contained videos recorded at the frontal viewpoint, the test set would contain videos at side

viewpoint and vice-versa. We report the mean and standard deviation over the choice of the

test actor of the average accuracy over the choice of training viewpoint.

Feedforward Spatiotemporal Convolutional Neural Networks. Feedforward Spatiotem-

poral Convolutional Neural Networks (ST-CNNs) are hierarchical models: input video

sequences go through layers of computations and the output of each layer serves as input to

the next layer (Fig 2). These models are direct generalizations of models of the neural mecha-

nisms that support recognizing objects in static images [26,27], to stimuli that extend in both

space and time (i.e. video stimuli). Within each layer, single computational units process a por-

tion of the input video sequence that is compact both in space and time. The outputs of each

layer’s units are then processed and aggregated by units in the subsequent layers to construct a

final signature representation for the whole input video. The sequence of layers we adopted

alternates layers of units which perform template matching (or convolutional layers), and lay-

ers of units which perform max pooling operations [10,24,34]. Units’ receptive field sizes

increases as the signal propagates through the hierarchy of layers.

All convolutional units within a layer share the same set of templates (filter bank) and out-

put the dot-product between each filter and their input. Qualitatively, these models work by
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detecting the presence of a certain video segment (a template) in the input stimulus. The exact

position in space and time of the detection is discarded by the pooling mechanism. The spe-

cific models we present here consist of two convolutional-pooling layers’ pairs. The layers are

denoted as Conv1, Pool1, Conv2 and Pool2 (Fig 2). Convolutional layers are completely char-

acterized by the size, content and stride of their units’ receptive fields and pooling layers are

completely characterized by the operation they perform (in the cases we considered, output

the maximum value of their input) and their pooling regions (which can extend across space,

time and filters).

Model 1: Purely convolutional model with sampled templates. The purely convolu-

tional models with fixed and sampled templates we considered were implemented using the

Cortical Network Simulator package [49].

The input videos were (128x76 pixel) x 60 frames; the model received the original input vid-

eos alongside two scaled-down versions of it (scaling of factors ½ and ¼ in each spatial dimen-

sion respectively).

The first layer, Conv1, consisted of convolutional units with 72 templates of size (7x7 pixel)

x 3 frames, (9x9 pixel) x 4 frames and (11x11 pixel) x 5 frames. Convolution was carried out

with a stride of 1 pixel (no spatial subsampling). Conv1 filters were obtained by letting Gabor-

like receptive fields shift in space over frames (as described in previous studies describing the

receptive fields of V1 and MT cells [21,22,40]). The full expression for each filter was as fol-

lows:

G x; y; t; y; r;s; l; nð Þ ¼ f tð Þ exp �
ðx0ðy; r; tÞ2 þ y0ðy; r; tÞ2Þ

2s2

� �

cos
2py0

l

� �

Where x0(θ,ρ,t) and y0(θ,ρ,t), are transformed coordinates that take into account a rotation

by θ and a shift by ρt in the direction orthogonal to θ. The Gabor filters we considered had a

spatial aperture (in both spatial directions) of σ = 0.6 S, with S representing the spatial receptive

field size and a wavelength l ¼
ffiffi
2
p

2
s [50]. Each filter had a preferred orientation θ chosen

among 8 possible orientations (0, 45, 90, 135, 180, 225, 270, 315 degrees with respect to verti-

cal). Each template was obtained by letting the Gabor-like receptive field just described, shift

in the orthogonal direction to its preferred orientation (e.g. a vertical edge would move side-

ways) with a speed ρ chosen from a linear grid of 3 points between 4/3 and 4 pixels per frame

(the shift in the first frame of the template was chosen so that the mean of Gabor-like receptive

field’s envelop would be centered in the middle frame). Lastly, Conv1 templates had time mod-

ulation f tð Þ ¼ ðktÞ2e� kt2 1

n!
�

ðktÞ2

ðnþ2Þ!

h i
with n = 3 and t = 0,. . .,T with T the temporal receptive

field size [10,22].

The second layer, Pool1, performed max pooling operations on its input by simply finding

and outputting the maximum value of each pooling region. Responses to each channel in the

Conv1 filter bank was pooled independently and units pooled across regions of space: (4x4

units in space) x 1 unit in time with a stride of 2 units in space, and 1 unit in time, and two

scale channels. The functional form of the kernel was chosen based on established models of

action processing in visual cortex [10].

A second simple layer Conv2, followed Pool1. Templates in this case were sampled ran-

domly from the Pool1 responses to videos in the embedding set. We used a model with 512

Conv2 units with sizes (9x9 units in space) x 3 units in time, (17x17 units in space) x 7 units in

time and (25x25 units in space) x 11 units in time, and stride of 1 in all directions.

Finally, the Pool2 layer units performed max pooling. Pooling regions extended over the

entire spatial input, one temporal unit, all remaining scales, and a single Conv2 channel.
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Model 2 and 3: Structured and Unstructured Pooling models with sampled templates.

Structured and Unstructured Pooling models (model 2 and 3, respectively) were constructed

by modifying the Pool2 layer of the purely convolutional models. Specifically, in these models

Pool2 units pooled over the entire spatial input, one temporal unit, all remaining scales, and 9

Conv2 channels, (512 Conv2 channels and 60 Pool2 units mean that some Pool2 units oper-

ated on 8 channels and others on 9).

In the models employing a Structured Pooling mechanism, all templates sampled from vid-

eos of a particular actor performing a particular action, regardless of viewpoint were pooled

together (Fig 3B). Templates of different sizes and corresponding to different scale channels

were pooled independently. This resulted in 6 Pool2 units per action/actor pair, one for each

receptive-field-size/scale-channel pair. The intuition behind the Structured Pooling mecha-

nism is that the resulting Pool2 units will respond strongly to the presence of a certain template

(e.g. the torso of someone running) regardless of its 3D pose [2,37,38,43,51–54].

The models employing an Unstructured Pooling mechanism followed a similar pattern

however, the wiring between simple and complex cells was random (Fig 3A). The fixed tem-

plates models (model 1,2 and 3) employed the exact same set of templates (we sampled the

templates from the embedding sets only once and used them in all three models) and differed

only in their pooling mechanisms.

Model 4: Model with learned templates. Models with learned templates were imple-

mented using Torch packages. These models’ templates were trained to recognize actions from

videos in the embedding set using a Cross Entropy Loss function, full supervision and back-

propagation [55]. The models’ general architecture was similar to the one we used for models

with structured and unstructured pooling. Specifically, during template learning we used two

stacked Convolution-BatchNorm-MaxPooling-BatchNorm modules [56] followed by two Lin-

ear-ReLU-BatchNorm modules (ReLU units are half-rectifiers) and a final Log-Soft-Max layer.

During feature extraction, the Linear and LogSoftMax layers were discarded.

Input videos were resized to (128x76 pixel) x 60 frames, like in the fixed-template models.

The first convolutional layer’s filter bank comprised 72 filters of size (9x9 pixel) x 9 frames and

convolution was applied with stride of 2 in all directions. The first max-pooling layer used

pooling regions of size (4x4 units in space) x 1 unit in time and were applied with stride of 2

units in both spatial directions and 1 unit in time. The second convolutional layer’s filter bank

was made up of 60 templates of size (17x17 units in space) x 3 units in time, responses were

computed with a stride of 2 units in time and 1 unit in all spatial directions. The second Max-

Pooling layer’s units pooled over the full extent of both spatial dimensions, 1 unit in time and

5 channels. Lastly, the Linear layers had 256 and 128 units respectively and free bias terms.

Model training was carried out using Stochastic Gradient Descent [55] and mini-batches of 10

videos.

Machine learning classifier. We used the GURLS package [57] to train and test a Regu-

larized Least Squares Gaussian-Kernel classifier using features extracted from the training and

test set respectively and the corresponding action labels. The aperture of the Gaussian Kernel

as well as the l2 regularization parameter were chosen with a Leave-One-Out cross-validation

procedure on the training set. Accuracy was evaluated separately for each class and then aver-

aged over classes.

Significance testing: Model accuracy. We used a group one-way ANOVA to assess the

significance of the difference in performance between all the fixed-template methods and the

models with learned templates. We then used a paired-sample t-test with Bonferroni correc-

tion to assess the significance level of the difference between the performance of individual

models. Difference were deemed significant p< 0.05.
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Quantifying agreement between model representations and neural

recordings

Neural recordings. The brain activity of 8 human participants with normal or corrected

to normal vision was recorded with an Elekta Neuromag Triux Magnetoencephalography

(MEG) scanner while they watched 50 videos (five actors, five actions, two viewpoints: front

and side) acquired with the same procedure outlined above, but not included in the dataset

used for model template sampling or training. The MEG recordings data was first presented in

[33] (the reference also details all acquisition, preprocessing and decoding methods). The MIT

Committee on the Use of Humans as Experimental Subjects approved the experimental proto-

col. Subjects provided informed written consent before the experiment.

In the original neural recording study MEG recordings were used to train a pattern classi-

fier to discriminate video stimuli on the basis of the neural response they elicited. The perfor-

mance of the pattern classifier was then assessed on a separate set of recordings from the same

subjects. This train/test decoding procedure was repeated every 10ms and individually for

each subject both in a non-invariant (train and test at the same viewpoint) and an invariant

(train at one viewpoint and test at the different viewpoint) case. It was possible to discriminate

videos according to their action content based on the neural response they elicited [33].

We used the filtered MEG recordings (all 306 sensors) elicited by each of the 50 videos

mentioned above, averaged across subjects and averaged over a 100ms window centered

around 470ms after stimulus onset as a proxy to the neural representation of the video (maxi-

mum accuracy for action decoding, as reported in the original study, RSA score with the entire

time course is shown, for completeness in (S2 Fig).).

Representational Similarity Analysis. We computed the pairwise correlation-based dis-

similarity matrix for each of the model representations of the 50 videos that were shown to

human subjects in the MEG. Likewise, we computed the empirical dissimilarity matrix com-

puted using MEG neural recordings. We then performed 50 rounds of bootstrap, in each

round we randomly sampled 30 videos out of the original 50 (corresponding to 30 rows and

columns of the dissimilarity matrices). For each 30-videos sample, we assessed the level of

agreement of the dissimilarity matrix induced by each model representation, with the one

computed using neural data by calculating the Spearman Correlation Coefficient (SCC)

between the lower triangular portions of the two matrices.

We computed an estimate for the noise ceiling in the neural data by repeating the bootstrap

procedure outlined above to assess the level of agreement between an individual human sub-

ject and the average of the rest. We then selected the highest possible match score across sub-

jects and across 100 rounds of bootstrap to serve as noise ceiling.

Similarly, we assessed a chance level for the Representational Similarity score by computing

the match between each model and a scrambled version of the neural data matrix. We per-

formed 100 rounds of bootstrap per model (reshuffling the neural dissimilarity matrix rows

and columns each time) and selected the maximum score across rounds of bootstrap and mod-

els to serve as baseline score [32].

We normalized the SCC obtained by comparing each model representation to the neural

recordings, by re-scaling them to fall between 0 (chance level) and 1 (noise ceiling). In this nor-

malized scale, anything positive matches neural data better than chance with p< 0.01.

Significance testing: Matching neural data. We used a one-way group ANOVA to assess

the difference between the Spearman Correlation Coefficient (SCC) obtained using models

that employed fixed templates and models with learned templates. Subsequently, we assessed

the significance of the difference between the SCC of each model by performing a paired t-test
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between the samples obtained through the bootstrap procedure. We deemed differences to be

significant when p< 0.05 (Bonferroni corrected).

Supporting information

S1 Fig. a) Classification accuracy, within and across changes in 3D viewpoint for a Recurrent

Convolutional Neural Network. This architecture does not outperform a purely feedforward

baseline. b) A Recurrent Convolutional Neural Network does not produce a dissimilarity

structure that better agrees with the neural data than a purely feedforward baseline.

(TIF)

S2 Fig. Spearman Correlation Coefficient between the dissimilarity structure constructed

using the representation of 50 videos computed from the Spatiotemporal Convolutional

Neural Network with learned templates and the neural data over all possible choices of the

neural data time bin. Neural data is most informative for action content of the stimulus at the

time indicated by the vertical black line [33].

(TIF)

S1 Text. Recurrent neural networks and RSA over time.
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