
Metareasoning in Symbolic Domains

Kevin Ellis (ellisk@mit.edu) and Owen Lewis (olewis@mit.edu)
MIT Department of Brain and Cognitive Science, 43 Vassar Street

Cambridge, MA 02139 USA

1 Introduction

Many AI problems, such as planning, grammar learning, program induction, and theory
discovery, require searching in symbolic domains. Most models perform this search by
evaluating a sequence of candidate solutions, generated in order by some heuristic. Human
reasoning, though, is not limited to sequential trial and error. In particular, humans are able
to reason about what the solution to a particular problem should look like, before comparing
candidates against the data. In a program synthesis task, for instance, a human might first
determine that the task at hand should be solved by a tail-recursive algorithm, before filling
in the algorithm’s details.

Reasoning in this way about solution structure confers at least two computational advan-
tages. First, a given structure subsumes a potentially large collection of primitive solutions,
and exploiting the constraints present in the structure’s definition makes it possible to eval-
uate the collection in substantially less time than it would take to evaluate each in turn.
For example, a programmer might quickly conclude that a given algorithm cannot be imple-
mented without recursion, without having to consider all possible non-recursive solutions.
Second, it is often possible to estimate ahead of time the cost of evaluating different struc-
tures, making it possible to prioritize those that can be treated cheaply. In planning a route
through an unfamiliar city, for example, one might first consider possibilities which use the
subway exclusively, excluding for the moment ones that involve bus trips as well: if a suc-
cessfully subway-only solution can be found, one then avoids the (potentially) exponentially
more difficult bus-and-subway search problem.

Here, we consider a family of toy problems [1], in which an agent is given a balance scale, and
is required to find a lighter counterfeit coin in a collection of genuine coins using at most some
prescribed number of weighings. We develop a language for expressing solution structure
that places restrictions on a set of programs, and use recent program synthesis techniques
to search for a solution, encoded as a program, subject to hypothesized constraints on the
program structure.

2 Model

Our objective is to find a model, or theory, that satisfies some specification or minimizes
some loss. At a high level the approach is to propose metatheories, which are schemas, or
templates, that can be filled in to give a concrete theory. Our model has three components:
(1) a language for metatheories; (2) a solver, which searches for a theory, given a metatheory,
and (3) a policy, which selects metatheories to hand off to the solver.

2.1 A language for metatheories

Our goal here is to define a space of metatheories: templates that can be filled in to give a
concrete testable theory. Our theories take the form of programs, so we want metatheories
that restrict the structure of programs. We restrict the structure of a program by specifying

1



Figure 2: Programs that solve coin weighing problems (left) and their call graphs, which
are metatheories (right). The bottom program is one possible solution to the 19 coins in
three weighings problem, and the top one solves 9 coins in two weighings, or 27 coins in
three weighings.

the call graph, which is a directed graph whose vertices correspond to subroutines, and where
there is an edge from a to b if a calls b. So a metatheory specifies all of the subroutines in
a theory, as well as what subroutines can use what other subroutines.

M→ , ,

M

,

M

,

M M

,

M M M

→ 1 , 2

Figure 1: A grammar over metatheo-
ries. Metatheories are directed graphs
generated by the M production; com-
mas separate production rules. Each
vertex (subroutine) has an arity (we
arbitrarily consider only 1 or 2).

Drawing inspiration from [2], we generate our
metatheories from a grammar over directed graphs,
shown in Fig. 1.

Our model automatically translates a metatheory
into an input for the solver, using a template
for subroutine bodies that specifies domain-specific
program components. Fig. 2 gives example pro-
grams and metatheories.

2.2 Solver

We use a general-purpose program synthesis tool,
called Sketch [3], as our solver. The Sketch tool
takes as input a partial program (referred to as
a “sketch”), along with a specification. A sketch
leaves some constants unspecified, leaving “holes”,
and Sketch can solve for the values of the holes
that make the specification hold using a SAT solver.
We automatically compile each metatheory into a
sketch, and introduce holes that when assigned val-
ues will concretize the sketch into a specific the-
ory. Sketch excels at discovering intricate low-level
structure, but is less adept at making high-level decisions, such as how many subroutines
a program should have, or what their types should be. Thus we left those decisions to our
metareasoning process.

2.3 Metatheory selection policies

Given some metatheories, we need a policy that picks a promising candidate. One ap-
proach, inspired by Levin search and OOPS [4], is to try the next metatheory maximizing
P (success)/E(search time) - heuristically, maximize successes per second. In this work,
we did not attempt to model the probability of success, and so treat all metatheories as
equally likely to succeed. So we’re after the metatheory minimizing E(search time) - the
next metatheory which we can most quickly accept or reject.

We considered four metatheory selection policies. The first three minimize different proxies
for search time, namely: (1) call graph size, (2) number of holes, and (3) variables in SAT
problem solved by Sketch. The fourth policy uses linear regression to learn to predict search

2



time based on problem features (the three above, plus the number of clauses in the SAT
encoding.) See Fig. 3.

3 Problem domain

The family of problems we consider involves finding a counterfeit coin among a collection of
genuine coins, given a balance scale and the knowledge the counterfeit coin is lighter than
the genuine ones. The classic version of the problem has nine coins and two weighings, and
may be solved as follows: first split the nine coins into three groups of three, and weigh
the first two groups against each other. If one group is lighter, then it must contain the
counterfeit coin; if they balance, the counterfeit is in the third group. Regardless, after the
first weighing it remains to find the counterfeit among three genuine ones. This can be done
by weighing two of them against each other: if one is lighter, it is the counterfeit, and if
they balance, the held out third coin is.

We consider solutions of the following form: a subroutine takes in a collection of coins,
divides them into subcollections, either by forming n equally-sized groups or by forming
groups of specified sizes. It then weighs two subcollections against each other, and calls
another subroutine depending on the outcome of the weighing. Fig. 2 shows two sample
programs and their call graphs.

Note that the sample solution above is recursive: at each step it splits a collection into three
equally-sized subcollections, and recurses into the one containing the counterfeit. This gives
a hint of why our model will help: creating an arbitrary program requires choosing a large
number of splits and subroutine calls, but once it is known the solution is recursive (as will
be hypothesized by our metatheory search), only a few choices remain.

3.1 Results

Figure 3: Predictions of our lin-
ear model for solver runtime. We
regressed from problem features (#
coins) and metatheory features (#
holes, # clauses, # variables in the re-
sulting sketch)

We selected six problems within the coin weighing
domain, some of whose solutions had simple recur-
sive metatheories. We solved these problems with
each policy and compared against a baseline sketch,
one without any metatheory constraints. Fig. 1
gives the times to find a solution for each problem
and policy.

We see that metareasoning speeds up search when
the solution has some special structure (such as the
recursive solution for 9 coins), and can allow the
solver to discover solutions to problems otherwise
outside its scope (eg, 27 coins/3 weighs). However,
there is no free lunch: trying simpler metatheories
first, as in 5 coins/2 weighs, hurts when the solu-
tion doesn’t fit these simpler forms. But, in first
proposing metatheories that it can reject quickly,
it avoids catastrophic slowdowns, similar to [4] or
other variants of iterative deepening. We see that
the variables and learned policies do best, and note
that it is exactly these that have access to the un-
derlying constraints given to the solver. In gen-
eral, metareasoners might do well to have access to
features of the underlying representation sent to a
backend reasoner.

4 Related Work

The work described in [5, 6] consider theory learning problems in which inference involves an
outer loop Metropolis-Hastings (MH) search over rules, and an inner loop Gibbs sampling

3



baseline graph degrees of freedom variables learned
2 coins 1 weighs 0.60 sec 0.60 sec 0.60 sec 0.60 sec 0.60 sec
3 coins 1 weighs 0.65 sec 0.65 sec 0.65 sec 0.65 sec 0.65 sec
4 coins 2 weighs 4.73 sec 2.39 sec 2.39 sec 1.68 sec 2.39 sec
5 coins 2 weighs 7.57 sec 18.69 sec 18.69 sec 8.25 sec 18.69 sec
9 coins 2 weighs 29.16 sec 6.01 sec 6.01 sec 3.81 sec 3.81 sec
27 coins 3 weighs ≥ 3 hrs 253.55 sec 253.55 sec – –

Table 1: Solution time under different policies. Baseline: no metareasoning. Graph: try in
order of call graph size. Degrees of freedom: try in order of # holes. Variables: try in order
of # variables in SAT formula. Learned: use learned runtime model (see Fig. 3). Solver
fails on most 27 coins/3 weighs metatheories, so we omit results for these cases.

assignment of latent predicates, roughly analogous to our metatheory search and solver.
However, [5, 6] deploy Gibbs sampling on all MH proposals, whereas we use a policy to
select only the most promising metatheories.

Like us, [7] models a search over algorithms, and like our learning-based policy, they use a
feature-based problem representation to estimate algorithm runtime. Our model differs, in
that it considers a potentially infinite collection of solutions, generated on-the-fly.Also like us,
[2] considers an infinite set of over hypotheses generated by a grammars over graphs. Their
focus was defining this expressive class of models, while our focus here is on metareasoning
strategies for efficient inference for similarly structured spaces.

5 Open Questions and Future Work

While our metatheory language captures some important structural aspects of candidate
solutions, it leaves others out. Among the first observations a human would make about
the coin weighing puzzle, for instance, is that each weighing should place equal numbers of
coins on the two sides of the scale. A human would be similarly quick to notice that if a
weighing shows one batch of coins to be lighter than another, then the counterfeit coin must
be among the light ones, and that future weighings in a recursive strategy should focus on
this group. Building in these observations to our model would yield substantial speed ups,
but at present there is no facility in our metalanguage for expressing such facts, and no
mechanism by which the model could discover or prove them on its own.

Figure 4: A grammar and its metathe-
ory

Future work will apply this method to other do-
mains, such as grammar induction. Like more gen-
eral programs, a grammar’s large-scale structure
can be characterized by a call graph, in which non-
terminals take the place of subprocedures, meaning
that our approach could be applied more or less
out of the box. Fig. 4 shows the call graph for an
example grammar. Another cognitively interest-
ing domain is theory learning. Many theories are
naturally expressed as logic programs, which have
strong formal similarities to grammars, and which,
like grammars, can be assigned a call graph.

In grammar and program induction problems, there are infinitely many solutions that match
the training data, and a prior is required to choose among them. Thus, solving a grammar
or program induction requires optimizing a posterior distribution over solutions rather then
simply finding a single acceptable solution as in the coin weighing puzzle. This consideration
gives an additional criterion for selecting metatheories: a good metatheory should tend to
lead to primitive solutions with high prior probability.

Acknowledgments: This material is based upon work supported by the Center for Brains, Minds
and Machines (CBMM), funded by NSF STC award CCF-1231216.

4



References

[1] Richard K Guy and Richard J Nowakowski. Coin-weighing problems. American Mathematical
Monthly, pages 164–167, 1995.

[2] Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Proceedings of the
National Academy of Sciences, 105(31):10687–10692, 2008.

[3] Armando Solar-Lezama. Program synthesis by sketching. ProQuest, 2008.

[4] Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211–254, 2004.

[5] Tomer D Ullman, Noah D Goodman, and Joshua B Tenenbaum. Theory learning as stochastic
search in the language of thought. Cognitive Development, 27(4):455–480, 2012.

[6] Yarden Katz, Noah D Goodman, Kristian Kersting, Charles Kemp, and Joshua B Tenenbaum.
Modeling semantic cognition as logical dimensionality reduction. In Proceedings of thirtieth
annual meeting of the cognitive science society, 2008.

[7] Falk Lieder, Dillon Plunkett, Jessica B Hamrick, Stuart J Russell, Nicholas Hay, and Thomas
Griffiths. Algorithm selection by rational metareasoning as a model of human strategy selection.
In Advances in Neural Information Processing Systems, pages 2870–2878, 2014.

5


