
Neural Population Control via Deep Image Synthesis1

Pouya Bashivan∗, Kohitij Kar∗, and James J DiCarlo

Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research,
and Center for Brains, Minds, and Machines,

Massachusetts Institute of Technology, Cambridge, MA, USA

To whom correspondence should be addressed; E-mail: bashivan@mit.edu.
∗ denotes equal contribution.

2

Particular deep artificial neural networks (ANNs) are today’s most accurate3

models of the primate brain’s ventral visual stream. Here we report that,4

using an ANN-driven image synthesis method, new luminous power patterns5

(i.e. images) can be applied to the primate retinae to predictably push the6

spiking activity of targeted V4 neural sites beyond naturally occurring levels.7

More importantly, this method, while not yet perfect, achieves unprecedented8

independent control of the activity state of entire populations of V4 neural9

sites, even those with overlapping receptive fields. These results show how the10

knowledge embedded in today’s ANN models might be used to noninvasively11

set desired internal brain states at neuron-level resolution, and suggest that12

more accurate ANN models would produce even more accurate control.13

Particular deep feed-forward artificial neural network models (ANNs) constitute today’s14

most accurate “understanding” of the initial∼200ms of processing in the primate ventral visual15

stream and the core object recognition behavior it supports (see (1) for the currently leading16
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models). In particular, visually-evoked internal neural representations of these specific ANNs17

are remarkably similar to the visually-evoked neural representations in mid-level (area V4) and18

high-level (area IT) cortical stages of the ventral stream (2, 3), a finding that has been extended19

to neural representations in visual area V1 (4), to patterns of behavioral performance in core20

object recognition tasks (5, 6), and to both magnetoencephalography and fMRI measurements21

from the human ventral visual stream (7, 8). Notably, these prior findings of model-to-brain22

similarity were not curve fits to brain data – they were predictions evaluated using images not23

previously seen by the ANN models, showing that these models have some generalization of24

their ability to capture key functional properties of the ventral visual stream.25

However, at least two important potential limitations of this claim have been raised. First,26

because the visual processing that is executed by the models is not simple to describe, and the27

models have only been evaluated in terms of internal functional similarity to the brain (above),28

perhaps they are more like a copy of, rather than a useful “understanding” of, the ventral stream.29

Second, because the images to assess similarity were sampled from the same distribution as that30

used to set the model’s internal parameters (photograph and rendered object databases), it is un-31

clear if these models would pass a stronger test of functional similarity – does that similarity32

generalize to entirely novel images? That is, perhaps their reported apparent functional similar-33

ity to the brain (3, 7, 9), substantially over-estimates their true functional similarity.34

Here we conducted a set of non-human primate visual neurophysiology experiments to as-35

sess the first potential limitation by asking if the detailed knowledge that the models contain is36

useful for one potential application (neural activity control), and to assess the second potential37

limitation by asking if the functional similarity of the model to the brain generalizes to entirely38

novel images.39

Specifically, we used one of the leading deep ANN ventral stream models (i.e. a specific40

model with a fully fixed set of parameters) to synthesize new patterns of luminous power (“con-41
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troller images”) that, when applied to the retinae, were intended to control the neural firing42

activity of particular, experimenter-chosen neural sites in cortical visual area V4 of macaques43

in two settings. i) Neural “Stretch”: synthesize images that “stretch” the maximal firing rate44

of any single targeted neural site well beyond its naturally occurring maximal rate. ii) Neu-45

ral Population State Control: synthesize images to independently control every neural site in a46

small recorded population (here, populations of 5-40 neural sites). We here tested that popu-47

lation control by aiming to use such model-designed retinal inputs to drive the V4 population48

into an experimenter-chosen “one hot” state in which one neural site is pushed to be highly49

active while all other nearby sites are simultaneously all “clamped” at their baseline activation50

level. We reasoned that successful experimenter control would demonstrate that at least one51

ANN model can be used to non-invasively control the brain – a practical test of useful, causal52

“understanding” (10, 11).53

We used chronic, implanted microelectrode arrays to record the responses of 107 neural54

multi-unit and single-unit sites from visual area V4 in three awake, fixating rhesus macaques55

(nM=52, nN=33, nS=22). We first determined the classical receptive field (cRF) of each site56

with briefly presented small squares (for details see Methods). We then tested each site using a57

set of 640 naturalistic images (always presented to cover the central 8◦ of the visual field that58

overlapped with the estimated cRFs of all the recorded V4 sites), and using a set of 370 complex59

curvature stimuli previously determined to be good drivers of V4 neurons (12) (location tuned60

for the cRFs of the neural sites). Using each site’s visually evoked responses (see Methods)61

to 90% of the naturalistic images (n=576), we created a mapping from a single “V4” layer of62

a deep ANN model (13) (Conv-3 layer; that we had established in prior work) to the neural63

responses. We selected the model layer that maximally predicted the area V4 responses to the64

set of naturalistic images using a linear mapping function (that model layer selection was also65

consistent with similarity analysis using representational dissimilarity matrix – see Methods66
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and Fig. S8). The predictive accuracy of this model-to-brain mapping has previously been used67

as a measure of the functional fidelity of the brain model to the brain (1, 3). Indeed, using the68

V4 responses to the held-out 10% of the naturalistic images as tests, we replicated and extended69

that prior work – we found that the neural predictor models correctly predicted 89% of the70

explainable (i.e. image driven) variance in the V4 neural responses (median over the 107 sites,71

each site computed as the mean over two mapping/testing splits of the data; see Methods).72

Besides generating a model-V4-to-brain-V4 similarity score (89%, above), this mapping73

procedure produces a potentially powerful tool – an image-computable predictor model of the74

visually-evoked firing rate of each of the V4 neural sites. If truly accurate, this predictor model75

is not simply a data fitting device and not just a similarity scoring method – instead it must76

implicitly capture a great deal of visual “knowledge” that may be difficult to express in human77

language, but is hypothesized (by the model) to be used by the brain to achieve successful78

visual behavior. To extract and deploy that knowledge, we used a model-driven image synthesis79

algorithm (see Fig. 1 and Methods) to generate controller images that were customized for80

each neural site (i.e. according to its predictor model) so that each image should predictably81

and reproducibly control the firing rates of V4 neurons in a particular, experimenter-chosen way.82

That is, we aimed to test the hypothesis that experimenter-delivered application of a particular83

pattern of luminous power on the retinae will reliably and reproducibly cause V4 neurons to84

move to a particular, experimenter-specified activity state (and that removal of that pattern of85

luminous power will return those V4 neurons to their background firing rates).86

While there are an extremely large number of possible neural activity states that an exper-87

imenter might ask a controller method to try to achieve, we restricted our experiments to the88

V4 spiking activity 70-170 ms after retinal power input (the time frame where the ANN models89

are presumed to be most accurate), and we have thus far tested two control settings: Stretch90

control and One-hot population control (described below). To test and quantify the goodness of91
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control, we applied patterns of luminous power specified by the synthesized controller images92

to the retinae of the animal subjects while we recorded the responses of the same V4 neural93

sites (see Methods).94

Each experimental manipulation of the pattern of luminous power on the retinea are col-95

loquially referred to as “presentation of an image”, but we state the precise manipulation here96

of applied power that is under experimenter control and fully randomized with other applied97

luminous power patterns (other images) to emphasize that this is logically identical to more98

direct energy application (e.g. optogenetic experiments) in that the goodness of experimental99

control is inferred from the correlation between power manipulation and the neural response100

in exactly the same way in both cases (see (11) for review). The only difference of the two101

approaches is the assumed mechanisms that intervene between the experimentally-controlled102

power and the controlled dependent variable (here V4 spiking rate) – steps that the ANN model103

aims to approximate with stacked synaptic sums, threshold non-linearities, and normalization104

circuits. In both the control case presented here and the optogenetics control case, those inter-105

vening steps are not fully known, but approximated by a model of some type. That is, neither106

experiment is “only correlational” because causality is inferred from experimenter-delivered,107

experimenter-randomized application of power to the system.108

Because each experiment was performed over separate days of recording (one day to build109

all the predictor models, one day to test control), only neural sites that maintained both high110

SNR and consistent rank order of responses to a standard set of 25 naturalistic images across111

the two experimental days were considered further (nM=38, nN=19, and nS=19 for Stretch112

experiments; nM=38, and nS=19 for One-hot-population experiments; see Methods).113

“Stretch” Control: Attempt to maximize the activity of individual V4 neural sites We114

first defined each V4 site’s “naturally-observed maximal firing rate” as that which was found115
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by testing its response to the best of the 640 naturalistic test images (cross-validated over re-116

peated presentations, see Methods). We then generated synthetic controller images for which117

the synthesis algorithm was instructed to drive one of the neural site’s firing rate as high as118

possible beyond that rate, regardless of the other V4 neural sites. For our first Stretch Control119

experiment, we restricted the synthesis algorithm to only operate on parts of the image that120

were within the classical receptive field (cRF) of each neural site. For each target neural site121

(nM=21, nN=19, and nS=19), we ran the synthesis algorithm from five different random image122

initializations. For 79% of neural sites, the synthesis algorithm successfully found at least one123

image that it predicted to be at least 10% above the site’s naturally observed maximal firing rate124

(see Methods). However, in the interest of presenting an unbiased estimate of the stretch con-125

trol goodness for randomly sampled V4 neural sites, we included all sites in our analyses, even126

those (∼20%) that the control algorithm predicted that it could not ”stretch.” Visual inspection127

suggests that the five stretch controller images generated by the algorithm for each neural site128

are perceptually more similar to each other compared to those generated for different neural site129

(see Figures 2 and S1), but we did not psychophysically quantify that similarity.130

An example of the results of applying the Stretch Control images to the retinae of one131

monkey to target one of its V4 sites is shown in Fig. 2-A), along with the ANN-model-predicted132

responses of this site for all tested images. A closer visual inspection of this neural site’s “best”133

natural and complex curvature images within the site’s cRF (Fig. 2 top) suggests that it might134

be especially sensitive to the presence of an angled convex curvature in the middle and a set135

of concentric circles at the bottom left side. This is consistent with extensive systematic work136

in V4 using such stimuli (12, 14), and it suggests that we had successfully located the cRF and137

tuned our stimulus presentation to maximize firing rate by the standards of such prior work.138

Interestingly however, we found that all five synthetic stretch control images (red) drove the139

neural responses above the response to each and every tested naturalistic image (blue) and above140
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the response to each and every complex curvature stimulus presented within the cRF (purple),141

(Fig. 2-A).142

To quantify the goodness of this stretch control, we measured the neural response to the best143

of the five synthetic images (again, cross-validated over repeated presentations, see Methods)144

and compared it with the naturally-observed maximal firing rate (defined above). We found that145

the stretch controller images successfully drove 68% of the V4 neural sites (40 out of 59) sta-146

tistically beyond its maximal naturally-observed firing rate (unpaired-samples t-test at the level147

of p < 0.01 between distribution of highest firing rates for naturalistic and synthetic images;148

distribution generated from 50 random cross-validation samples, see Methods). Measured as an149

amplitude, we found that the stretch controller images typically produced a firing rate that was150

39% higher than the maximal naturalistic firing rate (median over all tested sites, Fig. 2 panel151

B and C).152

Because our fixed set of naturalistic images was not optimized to maximally drive each V4153

neural site, we considered the possibility that our stretch controller was simply rediscovering154

image pixel arrangements that are already known from prior systematic work to be good drivers155

of V4 neurons (12,14). To test this hypothesis, we tested 19 of the V4 sites (nM = 11, nS = 8)156

by presenting – inside the cRF of each neural site – each of 370 complex curve shapes (14) – a157

stimulus set that has been previously shown to contain image features that are good at driving158

V4 neurons when placed within the cRF. Because we were also concerned that the fixed set159

of naturalistic images did not maximize the local image contrast within each V4 neuron’s cRF,160

we presented the complex curved shapes at a contrast that was matched to the contrast of the161

synthetic stretch controller images (see supplementary Fig. S4). Interestingly, we found that162

for each tested neural site, the synthetic controller images generated higher firing rates than163

the most-effective complex curve shape (Fig. 2-D). Specifically, when we used the maximal164

response over all the complex curve shapes as the reference (again, cross-validated over repeated165
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presentations), we found that the median stretch amplitude was even larger (187%) than when166

the maximal naturalistic image was used as the reference (73% for the same 19 sites). In sum,167

the ANN-driven stretch controller had discovered pixel arrangements that were better drivers of168

V4 neural sites than prior systematic attempts to do so.169

To further test the possibility that the relatively simple image transformations might also170

achieve neural response levels that were as high as the synthetic controller images, we carried171

out extensive simulations to test the predicted effects of a battery of alternative image manipula-172

tions. First, to ask if the response might be increased simply by reducing surround suppression173

effects (15), we assessed each site’s predicted response to its best naturalistic image, spatially174

cropped to match the site’s cRF. We also adjusted the contrast of that cropped image to match175

the average contrast of the synthetic images for the site (also measured within the site’s cRF).176

Over all tested sites, the predicted median stretch control gain achieved using these newly gen-177

erated images was 14% lower than the original naturalistic set (n=59 sites; see Fig. S7). To178

explore this further, we optimized the size and location of the cropped region of the natural179

image (see Methods). The stretch control gain achieved with this procedure was 0.1% lower180

than that obtained for the original naturalistic images. Second, we tested response-optimized181

affine transformations of the best naturalistic images (position, scale, rotations). Third, to place182

some energy from multiple features of natural images in the cRF, we tested contrast blends of183

the best 2-5 images for each site (see Methods). The predicted stretch control gain of each of184

these manipulations was still far below that achieved with the synthetic controller images. In185

summary, we report that the achieved stretch control ability is non-trivial in that, even at high186

contrast, it cannot be achieved by: simple curvature features, simple transformation on natural-187

istic images, combining good naturalistic images, or optimizing the spatial extent of the image188

(see Methods and Fig. S7.)189
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“One-Hot-Population” Control: Attempt to only activate one of many V4 neural sites190

Similar to prior single unit visual neurophysiology studies (16–18), the stretch control experi-191

ment attempted to optimize the response of each V4 neural site one at a time without regard to192

the rest of the neural population. But the ANN model potentially enables much richer forms193

of population control in which each neural site might be independently controlled. As a first194

test of this, we asked the synthesis algorithm to try to generate controller images with the goal195

of driving the response of only one “target” neural site high while simultaneously keeping the196

responses of all other recorded neural sites low (aka a “one-hot” population activity state; see197

Methods).198

We attempted this one-hot-population control on neural populations in which all sites were199

simultaneously recorded (One-hot-population Experiment 1; n=38 in monkey-M; Experiment200

2; n=19 in monkey-S). Specifically, we randomly chose a subset of neural sites as “target” sites201

(14 in monkey-M and 19 in monkey-S) and we asked the synthesis algorithm to generate five202

one-hot-population controller images for each of these sites (i.e. 33 tests in which each test is an203

attempt to maximize the activity of one site while suppressing the activity of all other measured204

sites from the same monkey). For these control tests, we allowed the controller algorithm to205

optimize pixels over the entire 8◦ diameter image (that included the cRFs of all the recorded206

neural sites, see Fig. 3), and we then applied the one-hot-population controller images to the207

monkey retinea to assess the goodness of control. The synthesis procedure predicted a softmax208

score of at least 0.5 for 77% of population experiments (as a reference, the maximum softmax209

score is 1 and is obtained when only the target neural site is active and all off-target neural sites210

are completely inactive; for an example near 0.3 see Fig. 3).211

While the one-hot-population controller images did not achieve perfect one-hot-population212

control, we found that the controller images were typically able to achieve enhancements in213

the activity of the target site without generating much increase in off-target sites (relative to214
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naturalistic images; see examples in Fig. 3-A). To quantify the goodness of one-hot-population215

control in each of the 33 tests, we computed a one-hot-population score on the responses of216

the activity profile of each population (softmax score, see Methods), and we referenced that217

score to the one-hot-population control score that could be achieved using only the naturalistic218

images (i.e without the benefit of the ANN model and synthesis algorithm). We took the ratio of219

those two scores as the measure of improved one-hot population control, and we found that the220

controller typically achieved an improvement of 57% (median over all 33 one-hot-population221

control tests; see Fig. 3-B and C) and we found that that improved control was statistically222

significant for 76% of the one-hot population control tests (25 out of 33 tests; unpaired-samples223

t-test at the level of p < 0.01).224

We considered the possibility that the improved population control was resulting from the225

non-overlapping cRFs that would allow neural sites to be independently controlled simply by226

restricting image contrast energy to each site’s cRF. To test this possibility, we analyzed a sub-227

sample of the measured neural population in which all sites had strongly overlapping cRFs (see228

Fig. 3-D). We considered a neural population of size 10 in monkey-M and of size 8 in monkey-229

S for this experiment with largely overlapping cRFs (see Fig. 3-D). In total we performed230

the experiment on 12 target neural sites in two monkeys (4 in monkey-M and 8 in monkey-231

S) and found that the amplitude of improved control was still 40%. Thus, a large portion of232

the improved control is the result of specific spatial arrangements of luminous power within233

the retinal input region shared by multiple V4 neural sites that the ANN-model has implicitly234

captured and predicted and the synthesis algorithm has successfully recovered (Fig. 4).235

As another test of one-hot-population control, we conducted an additional set of experiments236

in which we restricted the one-hot control synthesis algorithm to operate only on image pixels237

within the shared cRF of all neural sites in a sub-population with overlapping cRFs (Fig. 3-E).238

We compared this within-cRF synthetic one-hot population control with the within-cRF one-hot239
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population control that could be achieved with the complex curved shapes (because the prior240

experiments with these stimuli were also designed to manipulate V4 responses only using pixels241

inside the cRF). We found that, for the same set of neural sites, the synthetic controller images242

produced a very large one-hot population control gain (median 112%, Fig. 3-E) and the control243

score was significantly higher than best curvature stimulus for 86% of the neural sites (12 out244

of 14).245

Does the functional fidelity of the ANN brain model generalize to novel images? Besides246

testing non-invasive causal neural control, these experiments also aimed to ask if ANN models247

would pass a stronger test of functional similarity to the brain than prior work had shown (2,3).248

Specifically, does that model-to-brain similarity generalize to entirely novel images? Because249

the controller images were synthesized anew from random pixel arrangement and they were250

optimized to drive the firing rates of V4 neural sites both upwards (targets) and downwards251

(one-hot-population off-targets), we considered them to be a potentially novel set of neural-252

modulating images that is far removed from the naturalistic images. We quantified and con-253

firmed this notion of novelty by demonstrating that synthetic images were indeed statistically254

farther from the naturalistic images compared to the naturalistic image set to itself (measur-255

ing distances in pixels space, recorded V4 neural population space, and model-predicted V4256

population space; see Methods and Fig. S6).257

To ask how well the V4 predictor model generalizes to these novel synthetic images, for258

each neural site we compared the predicted response to every tested synthetic image with the259

actual neural response, using the same similarity measure as prior work (2, 3), but now with260

zero parameters to fit. That is, a good model-to-brain similarity score required that the ANN261

predictor model for each V4 neural site accurately predict the response of that neural site for262

all of many synthetic images that are each very different than those that we used to train the263
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ANN (photographs) and also very different from the images used to map ANN “V4” sites to264

individual V4 neural sites (naturalistic images).265

Consistent with the control results (above), we found that the ANN model accounted for266

54% of the explainable variance for the set of synthetic images (median over 76 neural sites267

in three monkeys; Fig. S3). While the model overestimates the neural responses to synthe-268

sized stimuli on many occasions and the model-to-brain similarity score is somewhat lower269

than that obtained for naturalistic images responses (89%), the model still predcits a substantial270

portion of the variance considering the fact that all parameters were fixed to make these “out-of-271

naturalistic-domain” image predictions. We believe this is the strongest test of generalization of272

today’s ANN models of the ventral stream thus far, and it again shows that the model’s internal273

neural representation is both remarkably similar to the brain’s intermediate ventral stream rep-274

resentation (V4), but also that it is still not a perfect model of the representation We also note275

that, because the synthetic images were generated by the model, we cannot assess the accuracy276

of predictions for images that are entirely ”out-of-model-domain”.277

How do we interpret these results? In sum, we here demonstrate that, using a deep ANN-278

driven controller method, we can push the firing rates of most V4 neural sites beyond naturally279

occurring levels and that V4 neural sites with overlapping receptive fields can be partly – but280

not yet perfectly – independently controlled. In both cases, we show that the goodness of this281

control is unprecedented in that it is superior to that which can be obtained without the ANN.282

Finally, we find that – with no parameter tuning at all – the ANN model generalizes quite well283

to predict V4 responses to synthetic images – images which are strikingly different than the284

real-world photographs used to tune the ANN synaptic connectivity and map the ANN’s “V4”285

to each V4 neural site. We believe that these results are the strongest test thus far of today’s286

deep ANN models of the ventral stream.287
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Beginning with the work of Hubel and Wiesel (19, 20), decades of visual neuroscience has288

closely equated an understanding of how the brain represents the external visual world with an289

understanding of what stimuli cause each neuron to respond the most. Indeed, textbooks and290

important recent results tell us that V1 neurons are tuned to oriented bars (20), V2 neurons291

are tuned to correlated combinations of V1 neurons found in natural images (21), V4 neu-292

rons are tuned to complex curvature shapes in both 2D and 3D (17, 22) and tuned to boundary293

information (12, 14), and IT neurons respond to complex object-like patterns (18) including294

faces (23, 24) and bodies as special cases (25).295

While these efforts have been essential to building both a solid foundation and intuitions296

about the role of neurons in encoding visual information, our results here show how they can be297

further refined by current and future ANN models of the ventral stream. For instance here we298

found that synthesis of only few images leads to higher neural response levels that was possible299

by searching in a relatively large space of natural images (n=640) and complex curved stimuli300

(n=370) derived from those prior intuitions. This shows that even today’s ANN models – which301

are clearly not yet perfect (1,6) – already give us new ability to find manifolds of more optimal302

stimuli for each neural site at a much finer degree of granularity and to discover such stimuli303

unconstrained by human intuition and difficult to fully describe by human spoken language (see304

examples in Fig. S1). This is likely to be especially important in mid and later stages of the305

visual hierarchy (e.g. in V4 and inferior temporal cortex) where the response complexity and306

larger receptive fields of neurons makes manual search intractable.307

In light of these results, what can we now say about the two important critiques of today’s308

ANN models raised at the outset of this study (understanding and generality)? In our view, the309

results strongly mitigate both of those critiques, but they do not eliminate them.310

On understanding: the ability to use knowledge to gain improved control over things of311

interest in the world (as we have demonstrated here) is an important test of understanding.312
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However we acknowledge that this is not the only possible view, and many other notions of313

“understanding” remain to be explored to see if and how these models add value.314

On generality: because we found that even today’s ANN models show good generalization315

to demonstrably novel images, we believe these results close the door on critiques that argue316

that current ANN models are extremely narrow in the scope of images they can accurately cover.317

However, we note that while 54% of the explainable variance in the generalization test was suc-318

cessfully predicted, this is somewhat lower than the 89% explainable variance that is found for319

images that are “closer” to (but not identical to) the mapping images. This not only re-confirms320

that these brain models are not yet perfect, but also suggests that a single metric of model simi-321

larity to each brain area is insufficient to characterize and distinguish among alternative models322

(e.g. (1)). Instead, multiple similarity tests at different generalization “distances” could be use-323

ful, as we can imagine future models that show less decline in successfully predicted variance324

as one moves from testing images “near” the training and mapping distributions (typically pho-325

tographs and naturalistic images) to “far”, such as the synthetic images like those used here, to326

”extremely far”, such as images that cannot even be synthesized under the guidance of current327

models and thus we did not test here.328

From an applications standpoint, the results presented here show how today’s ANN models329

of the ventral stream can already be used to achieve improved non-invasive, population control330

(e.g. Fig 4). However, the control results are clearly not yet perfect. For example, in the331

one-hot population control setting we were not able to fully suppress each and every one of332

the responses of the “off-target” neural sites while keeping the target neural site active (see333

examples in Figures-3, 4). Post-hoc analysis showed that we could partially anticipate which334

off-target sites would be most difficult to suppress – they were typically (and not surprisingly)335

the sites that had high patterns of response similarity with the target site (r = 0.49, p < 10−4;336

correlation between response similarity with the target neural site over naturalistic images and337
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the off-target activity level in the full image one-hot population experiments; n=37 off-target338

sites). Such results raise very interesting scientific and applied questions of if and when perfect339

independent control is possible at neuron-level resolution. Are our current limitations on control340

due to anatomical connectivity that restricts the potential population control, the non-perfect341

accuracy of the current ANN models of the ventral stream, non-perfect mapping of the model342

neurons to the individual neural site in the brain, the fact that we are attempting to control multi-343

unit activity, inadequacy of the controller image synthesis algorithm, or some combination of344

all of these and other factors?345

Consider the synthesis algorithm: Intuitively, each particular neural site might be sensitive346

to many image features, but maybe only to a few that the other neural sites are not sensitive347

to. This intuition is consistent with the observation that, using the current ANN model, it348

was more difficult for our synthesis algorithm to find good controller images in the One-hot-349

population setting than in the Stretch setting (the one-hot-population optimization typically350

took more than twice as many steps to find a synthetic image that is predicted to drive the351

target neural site response to the same level as in the Stretch setting), and visual inspection of352

the images suggests that the one-hot-population images have fewer identifiable “features” (Fig.353

5 and Fig. S2). As the size of the to-be-controlled neural population is increased, it would354

likely become increasingly difficult to achieve fully independent control, but this is an open355

experimental question.356

Consider the current ANN models: Our data suggest that future improved ANN models are357

likely to enable even better control. For example, better ANN V4 population predictor models358

generally produced better one-hot population control of that V4 population (Fig. S5). One359

thing is clear already – improved ANN models of the ventral visual stream have led to control360

of high-level neural population that was previously out of reach. With continuing improvement361

of the fidelity of ANN models of the ventral stream (1, 26, 27), the results presented here have362
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likely only scratched the surface on what is possible with such implemented characterizations363

of the brain’s neural networks.364

Methods365

Electrophysiological Recordings in Macaques We sampled and recorded neural sites across366

the macaque V4 cortex in the left, right, and left hemisphere of three awake, behaving macaques,367

respectively. In each monkey, we implanted one chronic 96-electrode microelectrode array368

(Utah array), immediately anterior to the lunate sulcus (LS) and posterior to the inferior occip-369

ital sulcus (IOS), with the goal of targeting the central visual representation (<5◦ eccentricity,370

contralateral lower visual field). Each array sampled from∼25 mm2 of dorsal V4. On each day,371

recording sites that were visually-driven as measured by response correlation (rpearson > 0.8)372

across split-half trials of a fixed set of 25 out-of-set naturalistic images shown for every record-373

ing session (termed, the normalizer image set) were deemed “reliable”.374

We do not assume that each V4 electrode was recording only the spikes of a single neuron.375

Hence we use the term neural “site” throughout the manuscript. But we did require that the376

spiking responses obtained at each V4 site maintained stability in its image-wise “fingerprint”377

between the day(s) that the mapping images were tested (i.e. the response data used to build the378

ANN-driven predictive model of each site, see text) and the days that the Controller images or379

the complex curvature images were tested (see below). Specifically, to be “stable,” we required380

an image-wise Pearson correlation of at least 0.8 in its responses to the normalizer set across381

recording days.382

Neural sites that were reliable on the experimental mapping day and the experimental test383

days, and were stable across all those days, were termed “validated.” All validated sites were384

included in all presented results. (Note that, to avoid any possible selection biases, this selection385

of validated sites was done on data that were completely independent from the main experimen-386
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tal result data.) In total, we recorded from 107 validated V4 sites during the ANN-mapping day387

which included 52, 33 and 22 sites in monkey-M (left hemisphere), monkey-N (right hemi-388

sphere), and monkey-S (left hemisphere), respectively. Of these sites, 76 of were validated for389

the Stretch control experiments (nM=38, nN=19, nS=19) and 57 were validated for the One-hot390

population control experiments (nM=38, nS=19).391

To allow meaningful comparisons across recording days and across V4 sites, the raw spik-392

ing rate of each site from each recording session was normalized (within just that session) by393

subtracting its mean response to the 25 normalizer images and then dividing by the standard394

deviation of its response over those normalizer images (these are the arbitrary units shown as395

firing rates in Figs. 2A, 3A and 4). The normalizer image set was always randomly interleaved396

with the main experimental stimulus set(s) run on each day.397

Control experiments consisted of three steps. In the first step, we recorded neural responses398

to our set of naturalistic images that were used to construct the mapping function between the399

ANN activations and the recorded V4 sites. In a second, offline step, we used these mapping400

functions (i.e. a predictive model of the neural sites) to synthesize the controller images. Finally401

in step three, we closed the loop by recording the neural responses to the synthesized images.402

The time between step 1 and step 3 ranged from several days to 3 weeks.403

Fixation Task All images were presented while monkeys fixated a white square dot (0.2◦)404

for 300 ms to initiate a trial. We then presented a sequence of 5 to 7 images, each ON for405

100 ms followed by a 100 ms gray blank screen. This was followed by a water reward and an406

inter-trial interval of 500 ms, followed by the next sequence. Trials were aborted if gaze was407

not held within ±0.5◦ of the central fixation dot during any point. To estimate the classical408

receptive field (cRF) of each neural site, we flashed 1◦×1◦ white squares across the central 8◦409

of the monkeys’ visual field, measured the corresponding neural responses, and then fitted a 2D410
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Gaussian to the data. We defined 1-std as the cRF of each site.411

Naturalistic Image Set We used a large set (N=640) of naturalistic images to measure the412

response of each recorded V4 neural sites and every model V4 neural site to each of these413

images. Each of these images contained a three-dimensional rendered object instantiated at a414

random view overlaid on an unrelated natural image background, see (28) for details.415

Complex Curvature Stimuli We used a set of images consisting of closed shapes constructed416

by combining concave and convex curves (12). These stimuli are constructed by parametrically417

defining the number and configuration of the convex projections that constituted the shapes. Pre-418

vious experiments with these shapes showed that curvature and polar angle were quite good at419

describing the shape tuning (12). The number of projections varied between 3 to 5 and the angu-420

lar separation between projections was in 45◦ increments. These shapes were previously shown421

to contain good drivers of V4 neurons of macaque monkeys (12,14). The complex curve images422

were generated using the code generously supplied by the authors of that prior work (http:423

//depts.washington.edu/shapelab/resources/stimsonly.php). The stim-424

uli were presented at the center of the receptive field of the neural sites (detailed below).425

Cross-Validation Procedure for Evaluating Control Scores To evaluate the scores from the426

neural responses to an image set, we divide the neural response repetitions into two, randomly-427

selected halves. We then compute the mean firing rate of each neural site in response to each428

image in each half. The mean responses from the first half are used to find the image that429

produces the highest score (in that half) and the response to that image is then measured in the430

second half (and this is the measurement used for further analyses). We repeat this procedure431

50 times for each neural site (i.e. 50 random half splits). For Stretch and One-hot population432

experiments the score functions were the “neural firing rate” and “softmax score” respectively.433
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We compute each score for the synthetic controller images and for the reference images (either434

the naturalistic or the complex curvature sets, see text). The synthetic “gain” in the control score435

is calculated as the difference between the synthetic controller score and the reference score,436

divided by the reference score.437

V4 encoding model To use the ANN model to predict each recorded neural site (or neural438

population), the internal V4-like representation of the model must first be mapped to the specific439

set of recorded neural sites. The assumptions behind this mapping are discussed elsewhere (9),440

but the key idea is that any good model of a ventral stream area must contain a set of artificial441

neurons (a.k.a. features) that, together, span the same visual encoding space as the brain’s442

population of neurons in that area (i.e. the model layer must match the brain area up to a linear443

mapping). To build this predictive map from model to brain, we started with a specific deep444

ANN model with locked parameters. Here we used a variant of Alexnet architecture trained on445

Imagenet (13) as we have previously found the feature space at the output of Conv-3 layer of446

Alexnet to be a good predictor of V4 neural responses (we here refer to this as model “V4”). We447

used the same training procedure as was described in (13), except we did not split the middle448

convolutional layers between GPUs.449

In addition, the input images were transformed using an eccentricity-dependent function450

that mimics the known spatial sampling properties of the primate retinae (details below). We451

termed this the “retinae transformation”. We had previously found that training deep convolu-452

tional ANN models with retinae-transformed images improves the neural prediction accuracy of453

V4 neural sites (an increase in explained variance by∼ 5−10%). The ”retinae transformation”454

was implemented by a fish-eye transformation that mimics the eccentricity-dependent sampling455

performed in primate retinae (code available at https://github.com/dicarlolab/456

retinawarp). All input images to the neural network were preprocessed by randomly crop-457
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ping followed by applying the fish-eye transformation. Parameters of the fish-eye transforma-458

tion were tuned to mimic the cones density ratio in fovea at 4◦ peripheral vision (29).459

We used the responses of the recorded V4 neural sites in each monkey and the responses of460

all the model “V4” neurons to build a mapping from model to the recorded population of V4461

neural sites (Fig. 1). We used a convolutional mapping function that significantly reduces the462

neural prediction error compared to other methods like principal component regression. Our463

implementation was a variant of the 2-stage convolutional mapping function proposed in (30)464

in which we substituted the group sparsity regularization term with an L2 loss term to allow465

for smooth (non-sparse) feature mixing. The first stage of the mapping function consists of a466

learnable spatial mask (Ws) that is parameterized separately for each neural site (n) and is used467

to estimate the receptive field of each neuron. The second stage consists of a mixing point-468

wise convolution (Wd) that computes a weighted sum of all feature maps at a particular layer469

of the ANN model (Conv3 layer in our case). The mixing stage finds the best combination of470

model features that are predictive of the each neural sites response. The final output is then471

averaged over all spatial locations to form a scalar prediction of the neural response. Param-472

eters are jointly optimized to minimize the prediction error Le on the training set regularized473

by combination of L2 and smoothing Laplacian losses Llaplace (defined below). By factorizing474

the spatial and feature dimensions, this method significantly improves the predictivity of neural475

responses over the traditional principle component regression. We interpret this improved pre-476

dictive power as resulting from the fact that it imposes a prior on the model-to-brain mapping477

procedure which is strongly in line with a an empirical fact – that each neuron in area V4 has a478

receptive field. That neuron is thus best explained by linear combinations of simulated neurons479

that have similar receptive fields.480

ŷn =
(∑

(W (n)
s ·X)

)
.W

(n)
d + w

(n)
b (1)
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∑
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√∑

n

(ŷn − y)2 (4)

L = Le + Llaplace + L2 (5)

We evaluated our model using 2-fold cross-validation and observed that ∼89% of the ex-481

plainable variance could be explained with our model in three monkeys (EVM = 92%, EVN =482

92%, EVS = 80%). The addition of the retinae transformation together with the convolutional483

mapping function increased the explained variance by ∼13% over the naive principal compo-484

nent regression applied on features from the model trained without the retinae transformation485

(EVM = 75%, EVN = 80%, EVS = 73%). Ablation studies on data from each monkey486

suggested that on average about 3-8% of the improvements were due to the addition of the487

retinae transformation (see Table-S1). For constructing the final mapping function, adopted for488

image synthesis, we optimized the mapping function parameters on 90% of the data, selected489

randomly.490

The resulting predictive model of V4 (ANN features plus linear mapping) is referred to as491

the mapped v4 encoding model and, by construction, it produces the same number of artificial492

V4 “neurons” as the number of recorded V4 neural sites (52, 33, and 22 neural sites in monkeys493

M, N and S respectively).494

Retinae Transformation To retain the resolution of the retinae-transformed images as high495

as possible, we did not subsample the input image with a fixed sampling pattern. Instead, our496
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implementation of the retinae sampling utilizes a backward function r = g(r′) that maps the497

radius of points in the retinae transformed image (r′) to those in the input image (r). In this way,498

for every pixel in the output image, we can find the corresponding pixel in the input image using499

the pixel-mapping function g. To formulate the pixel-mapping function g, we take advantage of500

the known rate of change of cones density (ρ) in the primate retinae that exponentially decreases501

with eccentricity (29).502

ρ =
1

πd2
= e−ar

′
(6)

where d is the distance between nearby cones and r′ is the radial distance from the fovea in503

the transformed image. From this, we can write d as a function of r′.504

d =
1√
π
ear

′/2 (7)

The ratio between the cones density in the fovea and the outmost periphery given the specific505

visual field size in which the stimulus has been presented in the experiment could be written as:506

ρf
ρp

= ear
′
max (8)

where ρf and ρp are the cone densities at the fovea and periphery respectively, and r′max507

is the highest radial distance in the output image (e.g. 150 for an image of size 300). From508

equation (8) above we can calculate a as a function of ρf , ρp, and r′max.509

a =
ln

ρf
ρp

r′max
(9)

The ρf
ρp

ratio is known given the size of the visual field in which the stimuli were presented510

(e.g. 10 for fovea to 4-degrees in this study) and the output image size (e.g. 150 in this study).511
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We can now formulate the function g(r′) as the sum of all the distances d up to radius r′512

weighted by a factor b.513

g(r′) = b√
π

r′−1∑
k=0

dk =
b√
π

r′−1∑
k=0

e
ar
2 =

b√
π

1− ear′/2

1− ea/2
(10)

where b is found so that rmax

g(r′max)
= 1. In our implementation we use Brents method to find514

the optimal b value.515

Finding the best representation in the ANN model: We used linear mapping from model516

features to neural measurements to compare the representation at each stage of processing in the517

ANN model. For features in each layer of the ANN model, we applied the principal component518

analysis and extracted the top 640 dimensions. We then fitted a linear transformation to the519

data using Ridge regression method and computed the amount of explained variance (EV) by520

the mapping function. For each neural site we normalized the EV by the internal consistency521

of measurements across repetitions. The median normalized EV across all measured sites was522

used to select the best representation in the ANN model (Fig. S8-A). We also quantified the523

similarity of representations at each layer of the ANN model and the neural measurements using524

the image-level representational dissimilarity matrix (RDM) that followed the same pattern as525

that which was obtained from linear mapping method (Fig. S8-B). RDMs were computed using526

the principle components of the features at each layer in response to the naturalistic image set527

(n=640).528

Synthesized “Controller” Images The “response” of artificial neuron in the mapped V4 en-529

coding model (above) is a differentiable function of the pixel values f : Iw×h×c → Rn that530

enables us to use the model to analyze the sensitivity of neurons to patterns in the pixels space.531

We formulate the synthesis operation as an optimization procedure during which images are532
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synthesized to control the neural firing patterns in the following two settings:533

1. Stretch: We synthesize controller images that attempt to push each individual V4 neural534

site into its maximal activity state. To do so, we follow an approach first introduced in (31)535

and iteratively change the pixel values in the direction of the gradient that maximizes the firing536

rate of the corresponding model V4 neural site. We repeated the procedure for each neural site537

using five different random starting images, thereby generating five “stretch” controller images538

for each V4 neural site.539

2. One Hot Population: Similar to “Stretch” scenario, except that here we chose the opti-540

mization to change the pixel values in a way that (i) attempts to maximize firing rate of the target541

V4 neural site, and (ii) attempts to maximally suppress the firing rates of all other recorded V4542

neural sites. We formalize the One-hot population goal in the following objective function that543

we then aim to maximize during the image synthesis procedure:544

S = Softmaxt(y) =
eyt∑
eyi

(11)

where t is the index of the target neural site, and yi is the response of the model V4 neuron i to545

the synthetic image.546

For each optimization run, we start from an image that consists of random pixel values547

drawn from a standard Normal distribution and optimize the objective function for a pre-548

specified number of steps using gradient ascend algorithm (steps=700). We also use the total549

variation (defined below) as additional regularization in the optimization loss to reduce the high550

frequency noise in the generated images:551

LTV =
∑
i,j

(
‖Ii+1,j − Ii,j‖2 + ‖I:,j+1 − Ii,j‖2

)
(12)

During the experiments, monkeys are required to fixate within a 1◦ circle at the center of the552

screen. This introduces an uncertainty on the exact gaze location. For this reason, images are553
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synthesized to be robust to small translations of maximum 0.5◦. At every iteration, we translate554

the image in random directions (i.e. jittering) with a maximum translation length of 0.5◦ in each555

direction, thereby, generating images that are predicted to elicit similarly high scores regardless556

of the translations within the range. The total-variation loss and the translation-invariance pro-557

cedure reduce the amount of high-frequency noise patterns in the generated images commonly558

known as adversarial examples (32,33). In addition, at every iteration during the synthesis pro-559

cedure, we normalize the computed gradients by its global norm and clip the pixel values at -1560

and 1.561

Contrast Energy It has been shown that neurons in area V4 respond more strongly to higher562

contrast stimuli (34). To ask if contrast energy (CE) was the main factor in “stretching” the563

V4 neural firing rates, we computed the contrast energy within the receptive field of the neural564

sites for all the synthetic and the classic V4 stimuli. Contrast energy was calculated as the ratio565

between the maximum and background luminances. For all images, the average luminance566

was used as the background value. Because the synthetic images consisted of complex visual567

patterns, we also computed the contrast energy using an alternative method based on spectral568

energy within the receptive field. We calculated the average power in the cRF in the frequency569

range of 1-30 cycles/degree. We ensured that for all tested neural sites, CE within the cRF for570

synthetic Stretch Controller images were less than or equal to the classic, complex curvature571

V4 stimuli (Supp Fig. S4).572

cRF-cropped contrast-matched naturalistic stimuli: For each neural site, we first produced573

a new naturalistic image-set by cropping the older naturalistic image-set at the estimated cRF574

of the respective site. We then matched the contrast of these naturalistic images (within the575

cRF of that neuron) to the average contrast across all five synthesized images (generated for576

the same neural site). We then computed the predicted neural responses to all these new cRF-577
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masked, contrast matched naturalistic images and evaluated the Stretch control gain achieved578

with this set over the original naturalistic images. The stretch control gain using these images579

showed a 14% decrease in the median gain over all target neurons. This meant that the original580

naturalistic image-set without the cRF masking and contrast-matching contained better drivers581

of the neural sites measured in our experiments. We noticed that masking the images with582

the estimated cRF was responsible for most of the drop in the observed stretch control gain583

(11%; see Fig. S7). We also noted that the contrast energy within the cRF was higher for584

best naturalistic images compared to synthetic images for most sites (median ratio of synthetics585

contrast to best naturalistic images was 0.76 over all tested sites).586

Monte-Carlo mask optimization: We estimated the optimal mask parameters formulated587

as a 2-D Gaussian function (i.e. mu, sigma1, sigma2, rho) for each neural site via Monte-588

Carlo simulations (n=500). We sampled each parameter from the corresponding distribution589

derived from the measured neural sites in each monkey. For each Monte-Carlo simulation,590

we sampled the mask parameters from the above-mentioned distributions and constructed a 2-591

D mask. We then masked the naturalistic images with the sampled mask (cropped at 1-SD)592

and matched image contrasts to the average contrast of synthetic images produced for each593

neural site within the mask. For each neural site, we picked the optimal mask parameters that594

elicited the maximum average firing rate (predicted) across all images in the naturalistic set.595

The maximum predicted output for each neural site in response to these images was used to596

evaluate the stretch control gain that showed a non-significant gain over the naturalistic images.597

Affine transformations of the naturalistic image-set: There might be simple image trans-598

formations that could achieve the same level of control as that obtained by the synthetic images.599

To test this, we conducted an additional analysis in which we randomly transformed the best600

naturalistic image for each neural site using various affine transformations (i.e. translation,601
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scale, and rotation; n=100) and calculated the predicted responses to those images. We consid-602

ered four experiments with the following transformations used in each one 1) random scaling603

between 0.5 to 2; 2) random translation between -25 to 25 pixels in each direction; 3) random604

rotation between 0 to 90 degrees; and 4) mixture of all three transformations. For each experi-605

ment, we evaluated the stretch control gain over the naturalistic image set achieved with these606

new images that showed significantly lower gains for all of the alternative methods compared607

to our proposed model-based method (see Fig. S7).608

Combining best driver images: Images that are good drivers of the measured neurons could609

be combined together to form new mixed images that might drive the neurons even higher. To610

test this hypothesis, we combined the top naturalistic images for each neuron by taking the611

average pixel value over all select images and matched the contrast (within cRF of each neural612

site) of the mixed image to the average contrast across synthetic images generated for each613

neuron. We tried various number of top images to create the mixed image (i.e. top-2, 3, 4,614

and 5). We computed the predicted stretch control gain using these mixed images over the615

naturalistic image set and found that these images were considerably weaker drivers of same616

neurons (see Fig. S7).617

Quantifying the novelty of synthetic images: We hypothesized that if the synthetic stimuli618

are indeed novel, they should be less similar (i.e. correlated) to any of the naturalistic images619

than the naturalistic images are to themselves. We computed the distances between synthetic620

and naturalistic images in pixel-space as well as in the space of neural responses. To test this, we621

measured the minimum Euclidean distance (in the space of measured neural responses) between622

each synthetic image and all naturalistic images and compared them with minimum distances623

obtained for naturalistic images. Fig. S6 shows the distribution of minimum distances synthetic624

and naturalistic images to any naturalistic images and illustrates the point that the responses625
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to synthetic images are significantly farther from the distribution of responses to naturalistic626

images than expected from sampling within the naturalistic space (Fig. S6-A, -C and -E) or627

by applying simple image transformations on images sampled from that space (Fig. S6-B and628

-D). Therefore, we can quantifiably call these images out-of-domain (Wilcoxon rank-sum test;629

Z(3798) = 30.8; p< 0.0001). We also computed the distances between synthetic and naturalistic630

images in the pixel space using the correlation distance (1−ρ) that showed a similar distinction631

between the two (Wilcoxon rank-sum test; Z(37120) = 29.3; p < 0.0001).632
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Figure 1: Overview of the synthesis procedure. A) Schematic illustration of the two tested
control scenarios. Left - the controller algorithm synthesizes novel images that it believes will
maximally drive the firing rate of a target neural site (Stretch). In this case, the controller
algorithm does not attempt to regulate the activity of other measured neurons (e.g. they might
also increase as shown). Right - the controller algorithm synthesizes images that it believes
will maximally drive the firing rate of a target neural site while suppressing the activity of other
measured neural sites (one-hot population). B) Top - gray lines (overlapping): responses of a
single example V4 neural site to 640 naturalistic images (averaged over∼40 repetitions for each
image). Vertical wide black line marks the image presentation period. Bottom - raster plots of
highest (black) and lowest (purple) neural response to naturalistic images. Shaded area indicates
the time window over which the activity level of each V4 neural site is computed (i.e. one value
per image for each neural site). C) The neural control experiments are done in four steps. (1)
Parameters of the neural network are optimized by training on a large set of labeled natural
images (Imagenet (35)) and then held constant thereafter. (2) ANN “neurons” are mapped to
each recorded V4 neural site. The mapping function constitutes an image-computable predictive
model of the activity of each of those V4 sites. (3) The resulting differentiable model is then
used to synthesize “controller” images for either single-site or population control. (4) The
luminous power patterns specified by these images are then applied by the experimenter to the
subject’s retinae and the degree of control of the neural sites is measured. D) Classical receptive
fields of neural sites in monkey M (black), Monkey N (red) and Monkey S (blue; see Methods).
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Figure 2: Maximal drive of individual neural sites (Stretch). A) Results for an example
successful “stretch” control test. Normalized activity level of the target V4 neural sites is shown
for all of the naturalistic images (blue dots), complex curved stimuli (purple dots) and for its
five synthetic “stretch” controller images (red dots; see Methods). Best driving images within
each category, and the zoomed view of the receptive field are shown on the top. B) Difference
in firing rate in response to naturalistic (blue boxes) and synthetic images (red boxes) for each
neural site in three monkeys. Controller image synthesis was restricted within the receptive
field of the target neural site. C) Histogram of increase in the firing rate over naturalistic images
for cRF-restricted synthetic images. D) Histogram of increase in the firing rate over complex
curved stimuli. Black triangle with dotted black line marks the median of the scores over all
tested neural sites. The red arrow highlights the gain in firing rate in each experiment achieved
by the controller images. “N” indicates the number of neural sites included in each experiment.
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Figure 3: Neural Population Control. We synthesized controller images that aimed to set
the neural population in a one-hot state (OHP) in which one target neural site is active and
all other recorded neural sites are suppressed. A) Two example OHP experiments (left and
right). In each case, the neural activity of each of the validated V4 sites (see Methods) in the
recorded population are plotted (most have overlapping cRFs), with the target V4 site indicated
in dark blue/red). Note that responses are normalized individually on a normalizer image set
to make side-by-side comparison of the responses meaningful (see Methods). Upper panel:
activity pattern for the best (“best” in the sense of OHP control, see Methods) naturalistic image
(shown on the right). Lower panel: activity pattern produced by retinal application of the
ANN-model-synthesized controller image (shown on the right). The red dashed line marks the
extended receptive field (2-std) of each site. B) Distribution of control scores for best synthetic
and naturalistic images for all 33 OHP full-image controller experiments (nM = 14, nS =
19). Control Scores are computed using cross-validation (see Methods). C) Histogram of OHP
control gain (i.e. improvement over naturalistic images) for results in (B). (i) and (ii) indicate
the scores corresponding to example experiments shown in (A). D) Same experimental data
as (C) except analyzed for sub-populations selected so that all sites have highly overlapping
cRFs (see cRFs below). E) OHP control gain where gain is relative to best complex curvature
stimulus in the shared cRF (see text) and controller algorithm is also restricted to operate only
in that shared cRF (n=14 OHP experiments). Receptive fields of neural sites in each setting
(C-E) (black: monkey-M; blue: monkey-S). “N” indicates the number of experiments in each
setting. Red arrow highlights the median gain in control (black triangle) achieved in each case.
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Figure 4: Example of independent control of each neural site on a subset of V4 neural sites
with highly overlapping cRFs. Controller images were synthesized to try to achieve a one-
hot-population over a population of eight neural sites (in each control test, the target neural site
is shown as dark red). Despite highly overlapping receptive fields (center), most of the neural
sites could be individually controlled to a reasonable degree. Controller images are shown along
with the extended cRF (2-std) of each site (red).
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Figure 5: Example controller images synthesized in “Stretch” and “One-hot population”
settings for six example target neural sites. Controller images were synthesized from the
same initial random image, but optimized for each target neural site and for each control goal
(“Stretch” or “One-hot population”, see text). Visual inspection suggests that, for each target
site, the One-hot population control images contain only some aspects of the image features in
the “Stretch” images.
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Figure S1: Stretch synthetic controller images for 21 example V4 neural target sites in
Monkey-M. Each column displays images generated using the same random starting image,
but optimized for each target site. Note the perceptual similarity of the controller images syn-
thesized for each site and the dissimilarity between the controller images across sites.
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Figure S2: Comparison of population response in Stretch and One-hot Population settings.
Population responses in Stretch and One-hot Population settings are demonstrated for two ex-
ample neural sites. One-hot population images were generated with an objective function in-
cluding 16 neural sites with highly overlapping receptive fields. Compared to the Stretch con-
troller images, the one-hot-population images have fewer identifiable “features”. The displayed
images were synthesized using the same initial random image.

N=76

54%A B

Figure S3: Predictability of synthetic controller images. A) Scatter plots of predicted and
measured V4 neural responses to synthetic controller images for four example neural sites.
For most target neural sites, the predicted and measured neural responses were significantly
correlated. Each dot represents the prediction and average measured response to a single image.
B) The model accounted for 54% (median across all tested neural sites in three monkeys;N=76)
of the explainable variance.
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Figure S4: Comparison of contrast energy between synthetic, naturalistic, and curvature
images for each monkey. A) Distribution of the mean spectral power within target neural
sites’ classic receptive fields for “Stretch” controller (red), naturalistic (blue), contrast-matched
naturalistic (green), and complex curvature (purple) images. Spectral power was computed
using 2-D FFT transformation and summed in the frequency range of 1-30 cycles/degree. B)
Distribution of contrast energy within target neural sites’ classic receptive fields for “Stretch”
controller, naturalistic, contrast-matched naturalistic and complex curvature images.
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r =0.41
p<0.0001

r =0.39
p<0.0001

Monkey-M Monkey-S

Functional Fidelity of V4 Population Model

Figure S5: Higher functional fidelity models increase the ability to control neural re-
sponses. We evaluated the one-hot population control score for each target neural site in each
monkey subject for a range of possible models with different prediction accuracy levels. In
each monkey session, the functional fidelity of a V4 population model (measured by the mean
of: 1) explained variance of target neural site and 2) the mean of the explained variance for all
the off-target sites) was plotted against the one-hot population control score achieved with that
population model. We found that these were significantly correlated as assessed by Spearman
rank order correlation, shown on each panel. For this analysis, for each target neural site, we
included not only the original tests, but also tests in which we swapped the predictive model
of the target neural site with the model of randomly-chosen off-target site (we do this ”mis-
match” test because it is an example of what would have happened in the experiment if the
synthesis algorithm had been given the wrong models – it would have produced OHP control
stimuli that we already tested – so we can compute the resulting control score without doing
new recording experiments). We simply assessed the functional fidelity of V4 population model
using the mismatched models and the population control score achieved using the new popula-
tion model’s synthetic control images (again, from population responses to images that we had
already tested). Red dots correspond to cases where the target neural site’s model and responses
were matched (i.e. results of the original OHP tests, see text), and gray dots correspond to the
cases where they were mismatched. Dark blue line shows an exponential function fitted to the
data points, highlighting the tendency for higher model fidelity to support better control.
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Figure S6: How ”novel” and ”out-of-domain” are the synthetic images? A-E) Each distri-
bution plots the minimum distance of each of the images in the test set to the full set of 640
naturalistic images (i.e. minimum over 640). In each case, the reference is the minimum dis-
tance of any given naturalistic image to the other naturalistic images (blue distribution in each
plot). Note that, in all cases, the synthetic images (red) are farther from the naturalistic images.
A) Pixel-space distances (within the receptive field of each neural site). B) Same as panel-A but
also showing a new test set: random affine transformations of naturalistic images (black). The
random affine transformations naturalistic image set was generated by randomly performing
combination of scaling, translation and rotation transformations on random naturalistic images
for n=6400. C) Euclidean distances in the predicted V4 population response space (nM=21,
nN=19, and nS=19 simulated V4 neural sites). D) Same as Panel-C but also showing a new
test set: random affine transformations of naturalistic images (black). E) Euclidean distances
in measured neural population responses (nM=21, nN=19, and nS=19 actual V4 neural sites).
F) Scatter plot of 640 naturalistic images (blue) and 285 synthetic images (red) where the axes
are the first two principle components of the measured V4 population response space (using
Multi-Dimensional Scaling; data from Monkey-S).
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Predicted Measured

Figure S7: Comparison of stretch control gain using alternative control methods. Results
on the left panel are computed using the model predictions for each case. Red bar plot on the
right indicates the achieved stretch control gain using the synthesis procedure (reported in the
main text, see Fig. 2). Control methods are color coded into four categories: ANN-synthesis
(red), affine transformations (blue), mask optimization (gray), and image mixing (green). Each
bar indicates the median stretch control gain over the naturalistic image set.
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Layer

Figure S8: Similarity of representations to measured neural activities at different stages
of processing in the artificial neural network. A) ANN features at the output of each layer
are used to predict the measurements from V4 sites. Amount of explained variance by these
features are normalized by the internal consistency of neurons across stimulus presentations.
B) Consistency between V4 representation (spanned by the measured neural responses) and
representations at each layer of the ANN model is quantified by constructing the image-level
representational dissimilarity matrix (RDM) for each one and computing the Pearson correlation
between the elements in the upper-triangle of the two matrices.
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Mapping Type Model Type Median Normalized EV (%)

Monkey-M
PCR Conv3 80

Klindt et al. Conv3 88
Klindt et al. Retinae-Conv3 92

Monkey-N
PCR Conv3 75

Klindt et al. Conv3 84
Klindt et al. Retinae-Conv3 92

Monkey-S
PCR Conv3 72

Klindt et al. Conv3 77
Klindt et al. Retinae-Conv3 80

Table S1: Median prediction accuracy over all measured neural sites in three monkeys using
different mapping methods and model features. Addition of the Retinae transformation and
convolutional mapping in Klindt et al. (30) account for 3-8% and 5-9% of the improvement in
prediction accuracy compared to the principle component regression method respectively.
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