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Abstract

We propose a method that can generate an unambigu-
ous description (known as a referring expression) of a spe-
cific object or region in an image, and which can also com-
prehend or interpret such an expression to infer which ob-
ject is being described. We show that our method outper-
forms previous methods that generate descriptions of ob-
jects without taking into account other potentially ambigu-
ous objects in the scene. Our model is inspired by recent
successes of deep learning methods for image captioning,
but while image captioning is difficult to evaluate, our task
allows for easy objective evaluation. We also present a new
large-scale dataset for referring expressions, based on MS-
COCO. We have released the dataset and a toolbox for visu-
alization and evaluation, see https://github.com/
mjhucla/Google_Refexp_toolbox.

1. Introduction

There has been a lot of recent interest in generating text
descriptions of images (see e.g., [13, 48, 9, 5, 12, 24, 26, 37,
50, 8]). However, fundamentally this problem of image cap-
tioning is subjective and ill-posed. With so many valid ways
to describe any given image, automatic captioning methods
are thus notoriously difficult to evaluate. In particular, how
can we decide that one sentence is a better description of an
image than another?

In this paper, we focus on a special case of text gen-
eration given images, where the goal is to generate a text
description of a specific object or region in the image.
Such a description is known as a “referring expression”
[45, 47, 38, 39, 14, 19, 25]. This approach has a major
advantage over generic image captioning, since there is a
well-defined performance metric: a referring expression is
considered to be good if it uniquely describes the relevant
object or region within its context, such that a listener can
comprehend the description and then recover the location
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Figure 1. Illustration of our generation and comprehension system.
On the left we see that the system is given an image and a region
of interest; it describes it as “the man who is touching his head”,
which is unambiguous (unlike other possible expressions, such as
“the man wearing blue”, which would be unclear). On the right we
see that the system is given an image, an expression, and a set of
candidate regions (bounding boxes), and it selects the region that
corresponds to the expression.

of the original object. In addition, because of the discrim-
inative nature of the task, referring expressions tend to be
more detailed (and therefore more useful) than image cap-
tions. Finally, it is easier to collect training data to “cover”
the space of reasonable referring expressions for a given ob-
ject than it is for a whole image.

We consider two problems: (1) description generation,
in which we must generate a text expression that uniquely
pinpoints a highlighted object/region in the image and (2)
description comprehension, in which we must automati-
cally select an object given a text expression that refers to
this object (see Figure 1). Most prior work in the litera-
ture has focused exclusively on description generation (e.g.,
[29, 25]). Golland et al. [19] consider generation and com-
prehension, but they do not process real world images.

In this paper, we jointly model both tasks of description
generation and comprehension, using state-of-the-art deep
learning approaches to handle real images and text. Specif-
ically, our model is based upon recently developed methods
that combine convolutional neural networks (CNNs) with
recurrent neural networks (RNNs). We demonstrate that
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our model outperforms a baseline which generates referring
expressions without regard to the listener who must com-
prehend the expression. We also show that our model can
be trained in a semi-supervised fashion, by automatically
generating descriptions for image regions.

Being able to generate and comprehend object descrip-
tions is critical in a number of applications that use nat-
ural language interfaces, such as controlling a robot (e.g.,
“Rosie, please fetch me the beer from the top shelf of the
fridge”, cf. [4]), or interacting with photo editing software
(“Picasa, please replace the third car behind the fence with
a motorbike”, cf. [6]). In addition, it is a good test bed
for performing research in the area of vision and language
systems because of the existence of a useful objective per-
formance measure.

In order to train and evaluate our system, we have col-
lected and released a new large scale referring expressions
dataset based on the popular MS-COCO dataset [34].

To summarize, our main contributions are as follows.
First, we present a new large scale dataset for referring ex-
pressions. Second, we evaluate how existing image caption-
ing methods perform at the referring expression task. Third,
we develop a new method for joint generation and compre-
hension that outperforms current methods.

2. Related Work
Referring expressions. Referring expression generation is
a classic NLP problem (see e.g., [49, 29]). Important is-
sues include understanding what types of attributes people
typically use to describe visual objects (such as color and
size) [39], usage of higher-order relationships (e.g., spatial
comparison) [47], and the phenomena of over and under-
specification, which is also related to speaker variance [14].

Context (sometimes called pragmatics [20]) plays a crit-
ical role in several ways [28]. First, the speaker must dif-
ferentiate the target object from a collection of alternatives
and must thus reason about how the object differs from its
context. Second, the perception of the listener is also valu-
able. In particular, Golland et al. [19] recently proposed a
game theoretic formulation of the referring expression prob-
lem showing that speakers that act optimally with respect to
an explicit listener model naturally adhere to the Gricean
Maxims of communication [22].

In most of this previous work, authors have focused
on small datasets of computer generated objects (or pho-
tographs of simple objects) [45, 38] and have not connected
their text generation systems to real vision systems. How-
ever there has been recent interest in understanding refer-
ring expressions in the context of complex real world im-
ages, for which humans tend to generate longer phrases
[18]. Kazemzadeh et al (2014) [25] were the first to collect
a large scale dataset of referring expressions for complex
real world photos.

We likewise collect and evaluate against a large scale
dataset in this paper. However we go beyond expression
generation and jointly learn both generation and compre-
hension models. And where prior works have had to explic-
itly enumerate attribute categories (such as size, color, etc),
our deep learning-based models are able to learn to directly
generate surface expressions from raw images without hav-
ing to first convert to a formal object/attribute representa-
tion.
Image captioning. Our methods are inspired by a long line
of inquiry in joint models of images and text, primarily in
the vision and learning communities [13, 23, 44, 40, 31, 51,
33]. From a modeling perspective, our approach is closest
to recent works applying RNNs and CNNs to this problem
domain [48, 9, 5, 12, 24, 26, 37, 50]. The main approach
in these papers is to represent the image content using the
hidden activations of a CNN, and then to feed this as input to
an RNN, which is trained to generate a sequence of words.

Most papers on image captioning have focused on de-
scribing the full image, without any spatial localization.
However, we are aware of two exceptions. Xu et al. [50]
propose a visual attention model which is able to associate
words to spatial regions within an image; however, they still
focus on the full image captioning task.

Karpathy et al [24] propose a model for aligning words
and short phrases within sentences to bounding boxes; they
then train an RNN based model to generate these short snip-
pets given features of the bounding box. Their model is sim-
ilar to our baseline model, described in Section 5 (except we
provide the alignment of phrases to boxes in the training set,
similar to [42]). However, we show that this approach is not
as good as our full model, which takes into account other
potentially confusing regions in the image.
Visual question answering. Referring expressions is re-
lated to the task of VQA (see e.g., [2, 35, 36, 16, 15]).
In particular, referring expression comprehension can be
turned into a VQA task where the speaker asks a question
such as “where in the image is the car in red?” and the sys-
tem must return a bounding box (so the answer is numer-
ical, not linguistic). However there are philosophical and
practical differences between the two tasks. A referring ex-
pression (and language in general) is about communication
— in our problem, the speaker is finding the optimal way to
communicate to the listener, whereas VQA work typically
focuses only on answering questions without regard to the
listener’s state of mind. Additionally, since questions tend
to be more open ended in VQA, evaluating their answers
can be as hard as with general image captioning, whereas
evaluating the accuracy of a bounding box is easy.

3. Dataset Construction
The largest existing referring expressions dataset that we

know of is the ReferIt dataset, which was collected by [25],



A boy brushing his hair 
while looking at his 
reflection.

A young male child in 
pajamas shaking around a 
hairbrush in the mirror.

Zebra looking towards 
the camera.

A zebra third from the 
left.

The black and yellow 
backpack sitting on top 
of a suitcase.

A yellow and black 
back pack sitting on top 
of a blue suitcase.

A girl wearing glasses 
and a pink shirt.

An Asian girl with a 
pink shirt eating at the 
table.

An apple desktop 
computer.

The white IMac 
computer that is also 
turned on.

A bird that is close to 
the baby in a pink shirt.

A bird standing on the 
shoulder of a person 
with its tail touching her 
face.

The woman in black 
dress.

A lady in a black dress 
cuts a wedding cake 
with her new husband.

A woman in a 
flowered shirt.

Woman in red shirt.

Figure 2. Some sample images from our Google Refexp dataset. We use a green dot to indicate the object that the descriptions refer to.
Since the dataset is based on MS COCO, we have access to the original annotations such as the object mask and category. Some of the
objects are hard to describe, E.g., in the third image in the first row, we need to distinguish the boy from his reflection in the mirror.

Bottom left apple.

Bottom left.

The bottom apple.

Green apple on the bottom-left corner, 
under the lemon and on the left of the 
orange.

A green apple on the left of a orange.

Goalie.

Right dude.

Orange shirt.

The goalie wearing an orange and 
black shirt.

A male soccer goalkeeper wearing an 
orange jersey in front of a player ready 
to score.

COCO-refexp (Berg) Google Refexp

Figure 3. Comparison between our dataset and Tamara Berg’s.

and contains 130,525 expressions, referring to 96,654 dis-
tinct objects, in 19,894 photographs of natural scenes. Im-
ages in this dataset are from the segmented and annotated
TC-12 expansion of the ImageCLEF IAPR dataset [11].
Two drawbacks of this dataset, however, are that (1) the im-
ages sometimes only contain one object of a given class,
allowing speakers to use short descriptions without risking
ambiguity, and (2) the ImageCLEF dataset focuses mostly
on “stuff” rather than “things”.

In this paper, we use a similar methodology to that
of [25], but building instead on top of the MSCOCO dataset
[34], which contains more than 300,000 images, with 80
categories of objects segmented at the instance level.

For each image, we selected objects if (1) there are be-
tween 2 and 4 instances of the same object type within the
same image, and (2) if their bounding boxes occupy at least
5% of image area. This resulted in selecting 54,822 ob-
jects from 26,711 images. We constructed a Mechanical
Turk task in which we presented each object in each im-
age (by highlighting the object mask) to a worker whose
task was to generate a unique text description of this ob-
ject. We then used a second task in which a different
worker was presented with the image and description, and
was asked to click inside the object being referred to. If
the selected point was inside the original object’s segmen-
tation mask, we considered the description as valid, and
kept it, otherwise we discarded it and re-annotated it by
another worker. We repeated these description generation
and verification tasks on Mechanical Turk iteratively up to
three times. In this way, we selected 104,560 expressions.
Each object has on average 1.91 expressions, and each im-

age has on average 3.91 expressions. This dataset is denoted
as Google Refexp dataset and some samples are shown in
Figure 2. We have released this dataset and a toolbox for vi-
sualization and evaluation, see https://github.com/
mjhucla/Google_Refexp_toolbox.

While we were collecting our dataset, we learned that
Tamara Berg had independently applied her ReferIt game
[25] to the MSCOCO dataset to generate expressions for
50,000 objects from 19,994 images. She kindly shared her
data with us; we will refer to this as COCO-refexp (Berg).
We report results on both datasets in this paper. However,
due to differences in our collection methodologies, we have
found that the descriptions in the two overlapped datasets
exhibit significant qualitative differences, with descriptions
in Berg’s dataset tending to be more concise and to contain
less flowery language than our descriptions. More specif-
ically, the average lengths of expressions from our dataset
and Berg’s dataset are 8.43 and 3.61 respectively. And the
size of the word dictionaries (keeping only words appearing
more than 3 times) from our dataset and Berg’s dataset are
4849 and 2890 respectively. See Figure 3 for some visual
comparisons.

4. Tasks
In this section, we describe at a high level how we solve

the two main tasks of description and generation. We will
describe the details of models and training in the next sec-
tion.

4.1. Generation

In the description generation task, the system is given
a full image and a target object (specified via a bound-
ing box), and it must generate a referring expression
for the target object. Formally, the task is to compute
argmaxSp(S|R, I), where S is a sentence, R is a region,
and I is an image.

Since we will use RNNs to represent p(S|R, I), we can
generate S one word at a time until we generate an end of
sentence symbol. Computing the globally most probable
sentence is hard, but we can generate a good local maximum
using beam search (we use a beam size of 3). This is very
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<bos> the ingirl pink

the girl pinkin <eos>
LSTMRegion CNN

Figure 4. llustration of the baseline model architecture. 〈bos〉 and
〈eos〉 stand for beginning and end of sentence.

similar to a standard image captioning task, except the input
is a region instead of a full image. The main difference is
that we will train our model to generate descriptions that
distinguish the input region from other candidate regions.

4.2. Comprehension

In the description comprehension task, we are given a
full image and a referring expression and are asked to lo-
calize the the object being referred to within the image by
returning a bounding box. One approach would be to train
a model to directly predict the bounding box location given
the referring expression (and image). However, in this pa-
per, we adopt a simpler, ranking-based approach. In partic-
ular, we first generate a set C of region proposals, and then
ask the system to rank these by probability. Then we se-
lect the region using R∗ = argmaxR∈Cp(R|S, I), where,
by Bayes’ rule, we have

p(R|S, I) = p(S|R, I)p(R|I)∑
R′∈C p(S|R′, I)p(R′|I)

. (1)

If we assume a uniform prior for p(R|I),1 we can select the
region using R∗ = argmaxR∈Cp(S|R, I). This strategy is
similar to image retrieval methods such as [27, 37], where
the regions play the role of images.

At test time, we use the multibox method of [10] to gen-
erate objects proposals. This generates a large number of
class agnostic bounding boxes. We then classify each box
into one of the 80 MS-COCO categories, and discard those
with low scores. We use the resulting post-classification
boxes as the proposal set C. To get an upper bound on per-
formance, we also use the ground truth bounding boxes for
all the objects in the image. In both cases, we do not use the
label for the object of interest when ranking proposals.

5. The Baseline Method
In this section we explain our baseline method for com-

puting p(S|R, I).

5.1. Model Architecture

Our baseline model is similar to other image captioning
models that use a CNN to represent the image, followed by
an LSTM to generate the text (see e.g., [37, 9, 48]). The

1 This implies that we are equally likely to choose any region to de-
scribe. This is approximately true by virtue of the way we constructed the
dataset. However, in real applications, region saliency p(R|I) should be
taken into account.

main difference is that we augment the CNN representation
of the whole image with a CNN representation of the region
of interest, in addition to location information. See Figure 4
for an illustration of our baseline model.

In more detail, we use VGGNet [43] as our CNN, pre-
trained on the ImageNet dataset [7, 30]. The last 1000 di-
mensional layer of VGGNet is used as our representation of
the object region. In addition, we compute features for the
whole image, to serve as context. In experiments, we only
fine-tuned the weights for the last layer of the CNN and
fixed all other layers. To feed a region to the CNN, we keep
the aspect ratio of the region fixed and scale it to 224× 224
resolution, padding the margins with the mean pixel value
(this is similar to the region warping strategy in [17]). This
gives us a 2000-dimensional feature vector, for the region
and image.

We encode the relative location and size of the
region using a 5 dimensional vector as follows:
[xtl

W , ytl

H , xbr

W , ybr

H , Sbbox

Simage
], where (xtl, ytl) and (xbr, ybr)

are the coordinates of the top left and bottom right corners
of the object bounding box, H and W are height and width
of the image, and Sbbox and Simage are the sizes of the
bounding box and image respectively.

Concatenating with the region, image, and location/size
features, we obtain a 2005-dimensional vector which we
feed as input into an LSTM sequence model, which pa-
rameterizes the form of the distribution p(S|R, I). For
our LSTMs, we use a 1024-dimensional word-embedding
space, and 1024-dimensional hidden state vector. We adopt
the most commonly used vanilla LSTM structure [21] and
feed the visual representation as input to the LSTM at each
time step.

5.2. Maximum Likelihood Training

Our training data (discussed in Section 3) consists of ob-
served triplets (I,R, S), where I is an image, R denotes a
region within I , and S denotes a referring expression for R.
To train the baseline model, we minimize the negative log
probability of the referring expressions given their respec-
tive region and image:

J(θ) = −
N∑

n=1

log p(Sn|Rn, In, θ), (2)

where θ are the parameters of the RNN and CNN, and
where we sum over the N examples in the training set. We
use ordinary stochastic gradient decent with a batch size of
16 and use an initial learning rate of 0.01 which is halved ev-
ery 50,000 iterations. Gradient norms are clipped to a max-
imum value of 10. To combat overfitting, we regularize us-
ing dropout with a ratio of 0.5 for both the word-embedding
and output layers of the LSTM.



<bos> the ingirl pink

the girl pinkin <eos>
LSTMRegion CNN

Loss

... ...

R

R’1

R’m

Figure 5. Illustration of how we train the full model using the soft-
max loss function. R (green) is the target region, R′ are the incor-
rect regions. The weights of the LSTMs and CNNs are shared for
R and R′s. (Best viewed in color)

6. The Full Method
The baseline method is to train the model to maximize

p(S|R, I), as is common for CNN-LSTM based image cap-
tioning models. However a strategy that directly generates
an expression based only on the target object (which [19]
calls the reflex speaker strategy) has the drawback that it
may fail to generate discriminative sentences. For exam-
ple, consider Figure 4: to generate a description of the girl
highlighted by the green bounding box, generating the word
“pink” is useful since it distinguishes this girl from the other
girl on the right. To this end, we propose a modified training
objective, described below.

6.1. Discriminative (MMI) Training

Section 5.2 proposed a way to train the model using max-
imum likelihood. We now propose the following alternative
objective function:

J ′(θ) = −
N∑

n=1

log p(Rn|Sn, In, θ), (3)

where

log p(Rn|Sn, In, θ) = log
p(Sn|Rn, In, θ)∑

R′∈C(In) p(Sn|R′, In, θ)
. (4)

We will call this the softmax loss. Note that this is the same
as maximizing the mutual information between S and R
(assuming a uniform prior for p(R)), since

MI(S,R) = log
p(S,R)

p(R)p(S)
= log

p(S|R)
p(S)

. (5)

where p(S) =
∑

R′ p(S|R′)p(R′) =
∑

R′ p(S|R′). Hence
this approach is also called Maximum Mutual Information
(MMI) training [3].

The main intuition behind MMI training is that we want
to consider whether a listener would interpret the sentence
unambiguously. We do this by penalizing the model if it
thinks that a referring expression for a target object could
also be plausibly generated by some other object within the
same image. Thus given a training sample (I,R, S), we
train a model that outputs a high p(S |R, I), while main-
taining a low p(S |R′, I), whenever R′ 6= R. Note that

this stands in contrast to the Maximum Likelihood (ML)
objective function in Equation 2 which directly maximizes
p(S|R) without consider other objects in the image.

There are several ways to select the region proposals C.
We could use all the true object bounding boxes, but this
tends to waste time on objects that are visually very easy
to discriminate from the target object (hence we call these
“easy ground truth negatives”). An alternative is to select
true object bounding boxes belonging to objects of the same
class as the target object; these are more confusable (hence
we call them “hard ground truth negatives”). Finally, we
can use multibox proposals, the same as we use at test time,
and select the ones with the same predicted object labels as
R (hence we call them “hard multibox negatives”). We will
compare these different methods in Section 8.2. We use 5
random negatives at each step, so that all the data for a given
image fits into GPU memory.

To optimize Equation 3, we must replicate the network
(using tied weights) for each region R′ ∈ C(In) (including
the true region Rn), as shown in Figure 5. The resulting
MMI trained model has exactly the same number of param-
eters as the ML trained model, and we use the same opti-
mization and regularization strategy as in Section 5.2. Thus
the only difference is the objective function.

For computational reasons, it is more convenient to use
the following max-margin loss, which compares the target
region R against a single random negative region R′:

J ′′(θ) = −
N∑

n=1

log p(Sn|Rn, In, θ)+

λmax(0, M − log p(Sn|Rn, In, θ) + log p(Sn|R′
n, In, θ)).

(6)

This objective, which we call max-margin MMI (or MMI-
MM) intuitively captures a similar effect as its softmax
counterpart (MMI-SoftMax) and as we show in Section 8.2,
yields similar results in practice. However, since the max-
margin objective only compares two regions, the network
must only be replicated twice. Consequently, less mem-
ory is used per sentence, allowing for more sentences to be
loaded per minibatch which in turn helps in stabilizing the
gradient.

7. Semi-supervised Training
Collecting referring expressions data can be expensive.

In this section we discuss semi-supervised training of our
full model by making use of bounding boxes that do not
have descriptions, and thus are more ubiquitously available.
Our main intuition for why a bounding box (region) R can
be useful even without an accompanying description is be-
cause it allows us to penalize our model during MMI train-
ing if it generates a sentence that it cannot itself decode to
correctly recover R (recall that MMI encourages p(S|R, I)
to be higher than p(S|R′, I), whenever R′ 6= R).

In this semi-supervised setting, we consider a small
dataset Dbb+txt of images with bounding boxes and de-



scriptions, together with a larger dataset Dbb of images
and bounding boxes, but without descriptions. We use
Dbb+txt to train a model (which we call model G) to com-
pute p(S|R, I). We then use this model G to generate
a set of descriptions for the bounding boxes in Dbb (we
call this new dataset Dbb+auto). We then retrain G on
Dbb+txt ∪Dbb+auto, in the spirit of bootstrap learning.

The above strategy suffers from the flaw that not all
of the generated sentences are reliable, which may “pol-
lute” the training set. To handle this, we train an ensem-
ble of different models on Dbb+txt (call them model C),
and use these to determine which of the generated sen-
tences for Dbb+auto are trustworthy. In particular, we ap-
ply each model in the ensemble to decode each sentence in
Dbb+auto, and only keep the sentence if every model maps
it to the same correct object; we will call the resulting veri-
fied datasetDfiltered. This ensures that the generator creates
referring expressions that can be understood by a variety of
different models, thus minimizing overfitting. See Figure 6
for an illustration. In the experiments, we show that our
model benefits from this semi-supervised training.

8. Experiments
We conducted experiments on both of the COCO refer-

ring expression datasets mentioned in Section 3: ours and
Berg’s. We randomly chose 5,000 objects as the validation
set, 5,000 objects as the testing set and the remaining ob-
jects as the training set (44,822 for our dataset and 40,000
for Berg’s dataset).

8.1. Evaluation Metrics

In this section, we describe how we evaluate perfor-
mance of the comprehension and generation tasks.

The comprehension task is easy to evaluate: we simply
compute the Intersection over Union (IoU) ratio between
the true and predicted bounding box. If IoU exceeds 0.5, we
call the detection a true positive, otherwise it is a false pos-
itive (this is equivalent to computing the precision@1 mea-
sure). We then average this score over all images.

The generation task is more difficult — we can evaluate
a generated description in the same way as an image de-

The girl in pink.

Fully Supervised Images

Model G

Model C

Tr
ai

n

Only Bounding Boxes With Generated Descriptions

The woman in blue.

Generate descriptions

Verification
Re-Train

Dbb+txt Dbb Dbb+auto

Dfiltered

Figure 6. Ilustration of the semi-supervised training process. See
text for details.

Proposals GT Multibox
Descriptions GEN GT GEN GT

ML (baseline) 0.803 0.654 0.564 0.478
MMI-MM-easy-GT-neg 0.851 0.677 0.590 0.492
MMI-MM-hard-GT-neg 0.857 0.699 0.591 0.503
MMI-MM-multibox-neg 0.848 0.695 0.604 0.511
MMI-SoftMax 0.848 0.689 0.591 0.502

Table 1. We measure precision@1 on Berg’s validation data. Each
row is a different way of training the model. The columns show
performance on ground truth or multibox proposals, and ground
truth (human) or generated descriptions. Thus the columns with
GT descriptions evaluate the performance of the comprehension
system, and the columns with GEN descriptions evaluate (in an
end-to-end way) the performance of the generation system.

scription, using metrics such as CIDEr [46], BLEU [41] and
METEOR [32]. However these metrics can be unreliable
and do not account for semantic meaning. We rely instead
on human evaluation, as was done in the most recent image
captioning competition [1]. In particular, we asked Amazon
Mechanical Turk (AMT) workers to compare an automati-
cally generated object description to a human generated ob-
ject description, when presented with an image and object
of interest.

In addition to human evaluation, which does not scale,
we evaluate our entire system by passing automatically gen-
erated descriptions to our comprehension system, and veri-
fying that they get correctly decoded to the original object
of interest. This end-to-end test is automatic, objective, and
much more reliable than standard image captioning metrics.

8.2. Comparing different training methods

In this section, we compare different ways of training our
model: maximum likelihood training (the baseline method);
max-margin loss with easy ground truth negatives (“MMI-
MM-easy-GT-neg”); max-margin loss with hard ground
truth negatives (“MMI-MM-hard-GT-neg”); max-margin
loss with hard multibox negatives (“MMI-MM-multibox-
neg”); softmax/MMI loss with hard multibox negatives
(“MMI-SoftMax”). For each method, we consider using
either ground truth or multibox proposals at test time. In
addition, we consider both ground truth descriptions and
generated descriptions.

In this experiment we focus exclusively on Berg’s
dataset, running on our dataset only after having fixed a
training method (Section 8.3). The results are summarized
in Table 1 and we draw the following conclusions:
• All models perform better on generated descriptions

than the groundtruth ones, possibly because the gener-
ated descriptions are shorter than the groundtruth (5.99
words on average vs 8.43), and/or because the genera-
tion and comprehension models share the same param-
eters, so that even if the generator uses a word incor-
rectly (e.g., describing a “dog” as a “cat”), the compre-



Proposals GT multibox
Descriptions GEN GT GEN GT

Google Refexp-Val
Baseline 0.751 0.579 0.468 0.425
Full Model 0.799 0.607 0.500 0.445

Google Refexp-Test
Baseline 0.769 0.545 0.485 0.406
Full Model 0.811 0.606 0.513 0.446

COCO-refexp (Berg)-Val
Baseline 0.803 0.654 0.564 0.478
Full Model 0.848 0.695 0.604 0.511

COCO-refexp (Berg)-Test
Baseline 0.834 0.643 0.596 0.477
Full Model 0.851 0.700 0.603 0.518

Table 2. Precision@1 for baseline (ML) method and our full model
with max-margin objective function on various datasets.

hension system can still decode it correctly. Intuitively,
a model might “communicate” better with itself using
its own language than with others.
• All the variants of the Full model (using MMI training)

work better than the strong baseline using maximum
likelihood training.
• The softmax version of MMI training is similar to the

max-margin method, but slightly worse.
• MMI training benefits more from hard negatives than

easy ones.
• Training on ground truth negatives helps when using

ground truth proposals, but when using multibox pro-
posals (which is what we can use in practice), it is bet-
ter to use multibox negatives.

Based on the above results, for the rest of the paper we
will use max-margin training with hard multibox negatives
as our Full Model.

8.3. Fully-supervised Training

In this section, we compare the strong baseline (maxi-
mum likelihood) with our max-margin MMI method on the
validation and test sets from our dataset and Berg’s dataset.
As before, we consider ground truth and multibox proposals
at test time, and ground truth (human) or generated (auto-
matic) descriptions. The results are shown in Table 2. We
see that MMI training outperforms ML training under ev-
ery setting, and that performance is higher on Berg’s data
(presumably because the language used is easier).

In addition to the above end-to-end evaluation, we use
human evaluators to judge generated sentence quality. In
particular, we selected 1000 objects at random from our test
set, and showed them to Amazon Mechanical Turk workers.
The percentage of descriptions that are evaluated as better
or equal to a human caption for the baseline and the full
model are 15.9% and 20.4% respectively. This shows that
MMI training is much better (4.5% absolute improvement,
and 28.5% relative) than ML training.

Proposals GT multibox
Descriptions GEN GT GEN GT

Google Refexp
Dbb+txt 0.791 0.561 0.489 0.417
Dbb+txt ∪Dbb 0.793 0.577 0.489 0.424

COCO-refexp (Berg)
Dbb+txt 0.826 0.655 0.588 0.483
Dbb+txt ∪Dbb 0.833 0.660 0.591 0.486

Table 3. Performance of our full model when trained on a small
strongly labeled dataset vs training on a larger dataset with auto-
matically labeled data.

8.4. Semi-supervised Training

To conduct the semi-supervised training experiment, we
separate the training set of our dataset and Berg’s dataset
into two parts with the same number of objects. The first
part (denoted by Dbb+txt) has the object description anno-
tations while the second part (denoted by Dbb) only has
object bounding boxes. Table 3 shows the results of semi-
supervised training on the validation set of our dataset and
Berg’s. We see that we get some improvement by training
on Dbb+txt ∪Dbb over just using Dbb+txt.

8.5. Qualitative Results

In Figure 7 we show some qualitative results of our full
generation model (above the dashed line) and the baseline
generation model (below the dashed line) on some of our
test images. We see that the descriptions generated by our
full model are typically longer and more discriminative than
the baseline model. In the second image, for example, the
baseline describes one of the cats as “a cat laying on a bed”,
which is not sufficiently unambiguous for a listener to un-
derstand which cat is being described. Our full model, on
the other hand, describes the same cat as “a cat laying on
the left” which is completely unambiguous.

Figure 8 shows some qualitative results of our full com-
prehension model on our test dataset. The first and second
columns show the original image and the multibox propos-
als respectively. The last four columns show the bounding
boxes (denoted as a red bounding box in the figure) selected
by our full model in response to different input sentences
(both ground truth sentences and ones we created to probe
the comprehension abilities of the model). To better inter-
pret these results, we also show the bounding boxes that are
within the margin of the model (see Eqn. 6) with dashed
blue bounding boxes. Their bounding boxes are considered
as “possible candidates” but their scores (i.e. p(S|R, I)) are
not as high as the chosen one.

In general, we see that the comprehension model does
quite well from short two word phrases to longer descrip-
tions. It is able to respond correctly to single word changes
in a referring expression (e.g., “the man in black” to “the
man in red”). It also correctly identifies that the horse is the



A cat laying on the left.
A black cat laying on 
the right.

A cat laying on a bed.
A black and white cat.

A zebra standing 
behind another zebra.
A zebra in front of 
another zebra.
A zebra in the middle.
A zebra in front of 
another zebra.

A baseball catcher.
A baseball player swing a bat.
The umpire in the black shirt.

The catcher.
The baseball player swing a bat.
An umpire.

A brown horse in 
the right.
A white horse.

A brown horse.
A white horse.

Figure 7. The sample results of the description generation using our Full model (above the dashed line) and the strong baseline (below the
dashed line). The descriptions generated by our Full model are more discriminative than those generated by the baseline.

The skis.

Guy with dark short hair 
in a white shirt.

A woman with curly hair 
playing Wii.

The controller in the 
woman's hand.

*The woman in white.

The giraffe behind the 
zebra that is looking up.

The giraffe with its back 
to the camera. The giraffe on the right. A zebra.

A dark brown horse with a white stripe 
wearing a black studded harness.

A white horse 
carrying a man.

A woman on the dark 
horse.

A dark horse carrying a 
woman.

A red suitcase.A black suitcase.A black carry-on suitcase 
with wheels The truck in the background.

The man in black. The man in red.
A skier with a black helmet, light 
blue and black jacket, backpack, 
and light grey pants standing.

Image Multibox Proposals Description Comprehension Results

Figure 8. Sample results of the description comprehension task using our Full model. The first and second column shows the original
image and the multibox proposals. The third to sixth columns show the results of our model when input an arbitrary description of an
object in the image. The red bounding box denotes the most probable object predicted by the model while the blue dashed ones denote the
bounding boxes within the margin of the most probable one. The descriptions can be the groundtruth ones in the dataset (third column) or
an customized descriptions (fourth to sixth columns). (Best viewed in color)

referent of the expression “a dark horse carrying a woman”
whereas the woman is the referent in “a woman on the dark
horse” — note that methods that average word embeddings
would most likely fail on this example. However, there
are also failure cases. For example, in the fifth row, “the
woman in white” selects a woman in black; this is because

our model cannot handle the case where the object is not
present, although it makes a reasonable guess. Also, in the
fifth row, “the controller in the woman’s hand” selects the
woman, the orange juice and the controller, since this partic-
ular kind of object is too small to detect, and lacks enough
training data.



9. Conclusions
To conclude, we leave the reader with two simple points.

First, referring expressions have been studied for decades,
but in light of the recent burst of interest in image caption-
ing, referring expressions take on new importance. Where
image captioning itself is difficult to evaluate, referring ex-
pressions have an objective performance metric, and require
the same semantic understanding of language and vision.
Thus success on datasets such as the one contributed in this
paper is more meaningful than success by standard image
captioning metrics.

Second, to be successful at generating descriptions, we
must consider the listener. Our experiments show that
modeling a listener that must correctly decode a gener-
ated description consistently outperforms a model that sim-
ply emits captions based on region features. We hope that
in addition to our dataset, these insights will spur further
progress on joint models of vision and language.
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