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Although path planning is one of the hardest problems to 
solve computationally1, humans plan remarkably efficient 
paths when navigating cities, and do so at various scales. 

Although human path planning can be near-optimal, it also exhib-
its systematic divergences from the shortest available path2–4, and 
these divergences are still not well understood. We hypothesize that 
a contribution to such divergences arises from a common mental 
computational mechanism, which is shared among humans, that 
can be modeled in precise quantitative terms, and generalizes across 
urban environments. Describing this mechanism by a formal com-
putational account can help explain mental computations in the 
brain that support human mobility, inform the design of real-time 
planning tools that can better couple human and machine intelli-
gence, and improve urban planning.

In the laboratory setting, humans often rely on the ‘approximate 
rationality principle’, whereby humans use approximate planning 
heuristics to maximize their goals, while limiting subjective costs5–9. 
In the real world, these costs may be a combination of mental and 
physical effort10; for example, the mental cost of planning a route 
comes with the physical cost of travel. Multiple studies have inves-
tigated aggregate mobility flows11–21 and the cognitive abilities that 
support navigation22–29. Quantitative models of how humans may 
plan their routes in real cities have also been proposed, although 
these are limited to a small neighborhood in which the planning 
problem could be optimally solved with exhaustive route enumera-
tion by a ‘breadth-first search’4. However, generalizable computa-
tional models that can generate precise quantitative predictions 
in large-scale city environments are still lacking. It is thus unclear 
which subjective costs and planning heuristics may explain human 
routes in real urban environments.

In this Article, we investigate this question by analyzing a large 
dataset of GPS traces of 552,478 pseudo-anonymized human paths 
undertaken by 14,380 pedestrians in two major US cities—Boston 
and San Francisco (Methods). The original dataset was retrieved 
from a company that runs one of the largest mobile apps for mobility 

tracking. With full consent from users, the app records high-resolu-
tion trajectories of human movements in complex urban environ-
ments while going about their daily life. Activity types have been 
labeled by the company using proprietary machine learning tools; 
only activities labeled as ‘walking path’ were analyzed in this work. 
Unlike previous studies of aggregate human mobility, which mostly 
rely on sparse location sampling (such as the serial numbers of US 
banknotes12, surveys18,30, commuting trips20, mobile communica-
tion records13, social-media check-ins31,32 or location history15,17), 
we study high-resolution routes of individual pedestrians, recon-
structed from their GPS traces. Thanks to pseudo-anonymization, 
which assigned a unique anonymous ID to each individual in the 
dataset, we could also associate multiple trajectories to the same 
individual, allowing the study of individual-level properties of pedes-
trian routes (Supplementary Section 5). Importantly, the majority of 
human trajectories in our dataset were substantially different from 
routes suggested by Google Maps (Supplementary Tables 1–3 and 
Supplementary Fig. 3), indicating the minimal bias introduced by 
machine-generated trajectories on our data. This property, along 
with recordings of multiple trips by the same individual and between 
the same locations, enabled us to fit and evaluate alternate quanti-
tative models of pedestrian navigation. In particular, we restricted 
our attention to simple geometric, computational models that can be 
used to at least partially explain human navigation ability.

Results
Evaluating paths based on distance. As a first approximation, con-
sider a simple way to formalize the cost of a path as equal to its 
distance:

Cdist[P] =
∑

Si∈P

li.

Here, P denotes a path connecting the origin to the destination, 
which is composed of a list of street segments S1, S2, …, and li 
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denotes the walking distance along segment Si. Although this sim-
ple model captures the motivation to reduce distance, which is cen-
tral to human planning33,34, several studies show that humans often 
deviate from the shortest paths2,11,26,34,35.

Indeed, Fig. 1a shows that the human paths recorded in our 
dataset were consistently longer than the shortest-distance path 
computed using the standard Dijkstra algorithm36. The tendency to 
deviate from the shortest path increases with distance between the 
origin and destination (Fig. 1b), which could be due to the increas-
ing complexity of evaluating relatively longer paths, in line with the 
approximate rationality principle. However, it is also interesting to 
observe that most of the relative deviation from the shortest path is 
achieved by paths of length around 1 km, and only a modest further 
increasing deviation is observed for longer paths.

Stochastic distance minimization. The increasing deviation from 
the shortest path observed in the data could arise from uncertainty 
about the lengths of street segments, which leads to an accumula-
tion of errors over time. Formally, we can describe this process by an 
error term in the evaluation of street segment lengths:

li → eN (log (li),σ) = c(li)

and

Cdist[P] =
∑

Si∈P

c(li), (1)

where the new cost function c(li) is obtained by applying a log-
normally distributed random noise to the original street segment 
length li. The use of a log-normal distribution to model uncertainty 
in street length estimation is motivated by the widely accepted 
Weber–Fechner law of just noticeable difference37, which states that 
humans perceive measurable quantities on a logarithmic scale. We 
will refer to equation (1) as the ‘stochastic distance minimization’ 
model. The number of street segments in the cost function (1) tends 
to increase with the Euclidean distance separating the origin and 
destination. Hence, the deviation from the shortest distance tends 
to accumulate with increased separation between origin and desti-
nation, as we observed.

Importantly, in the Methods we show that this model predicts 
path choices to be symmetrical—the available paths are ranked in 
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Fig. 1 | Differences between human paths and shortest paths. a, Aggregated comparisons of the lengths of human and shortest paths (y axis) in Boston 
and San Francisco, as a function of the Euclidean distance between the origin (O) and destination (D) (x axis). b, Relative differences between human 
and shortest path lengths (y axis) as a function of the Euclidean distance between origin and destination (x axis). In the top plot, the bars denote the 
interquartile range, and the lines demonstrate the change of median % deviation values with increased origin–destination separation. The lower plot is a 
frequency histogram of sample distribution over origin–destination separations in log scale. c, Two examples of the difference between human paths (in 
red) and their corresponding shortest paths (in blue). Map data © OpenStreetMap contributors.
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the same order of preference regardless of travel direction, which 
may not be the case in human paths. Navigation asymmetry has 
been demonstrated in the laboratory38–41 and empirically noted—
although never statistically tested—in pedestrian flows35 and driv-
ing routes34. A well-established theory of navigation by line of sight 
predicts asymmetric routes by suggesting that people travel along 
straight lines of sight in the desired direction and, when their view 
is obstructed, establish a new line of sight11. Empirical findings in 
neuroscience42,43 and psychology25,38 further suggest that neural and 
mental representations of space and direction could lead to asym-
metry in two ways. Landmark-based navigation, extensively docu-
mented in humans22,23,25,29 and animals44, may lead to asymmetric 
paths that depend on the distribution of views in the environment. 
Furthermore, many animals, such as rodents45, bats46,47 and cats48, 
rely on direction42,43,45,49,50 for vector navigation50,51. Human subjects 
in laboratory studies likewise rely on direction for navigation, tak-
ing a route to the first destination that begins in the direction of sub-
sequent destinations52, and rely on neural representations of both 
Euclidian distance and direction to destination42. Several small-scale 
studies have found that human routes exhibit systematic biases, such 
as bias toward paths that begin with a longer initial segment39–41, or 
a southern bias53, which may contribute to asymmetries. However, 

such biases have not yet been computationally modeled, nor quanti-
tatively evaluated, in large-scale urban environments.

If present in human paths, asymmetric routes would falsify the 
stochastic distance minimization model as the only main contribu-
tor to pedestrian path formation. We tested for asymmetry as fol-
lows. First, we tested for asymmetric path choices within the same 
individual repeatedly visiting any given two locations in either order. 
If present, such individual-level asymmetries could arise from a cog-
nitive cost heuristic used to evaluate trajectories, which depends on 
direction, or from stochasticity in distance evaluation, followed by 
memorizing the planned routes. Second, to disambiguate these two 
scenarios, we tested for asymmetries in repeated paths aggregated 
over different pedestrians. Such an asymmetry would indicate a 
persistent quality of human path planning that cannot be explained 
by stochastic route learning, and thus may be attributed to a com-
mon direction-dependent cost heuristic. We performed extensive 
statistical asymmetry tests at both individual and aggregate levels 
(see Methods for details). The results of the tests, reported in Fig. 2, 
show a statistically significant asymmetry in individual walking tra-
jectories, as well as in aggregate trajectories, suggesting that asym-
metries are a persistent quality of pedestrian navigation in urban 
street networks (see Methods for details).
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Fig. 2 | Asymmetric human paths. a, Examples of asymmetric human paths in street networks. Red paths start at red markers and blue paths at blue 
markers. b, Cumulative distribution function (CDF) of one-tailed P values for the asymmetry test in Boston and San Francisco (Methods). P values 
consistently above the diagonal dashed line indicate a statistically significant deviation from symmetric paths. Solid lines refer to individual-level tests and 
dotted lines to aggregate-level tests. Shortest-distance paths used in the tests are obtained by simulating the stochastic distance minimization model. 
Map data © OpenStreetMap contributors.
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Vector-based navigation model. Other geometric models, such as 
the ‘initial straightest segment’ (ISS) strategy proposed by Bailenson 
et al. in ref. 40, could be used to explain the observed asymmetry in 
human paths. If humans manifested a preference for the straightest 
first segment, we would expect to observe relatively longer first road 
segments in the human path than in the shortest path. However, 
human paths have consistently shorter initial segments than short-
est paths, hinting that the ISS strategy is probably not a cause of the 
observed asymmetry (Supplementary Section 5.2).

Inspired by the evidence of asymmetry in human paths and the 
prevalence of vector navigation in animal models, we then hypoth-
esized that humans use direction when planning their paths. We 
formalize the ‘vector-based navigation model’ as a cost that depends 
on the angular deviation of the street segment from the destination:

Cdir[P] =
∑

Si∈P

c(θi, li), (2)

where

c(θi, li) = eN (log (|θi|li),σ)

and θi ∈ [−π, π] represents the angle between the tangent to the path 
at street segment Si and the straight line to the destination (Fig. 3). 
In the example reported in Fig. 3a, the stochastic distance minimi-
zation model using equation (1) slightly prefers the blue path (for 
which ∑li = 935 m) over the red path (∑li = 938 m). The vector-
based navigation model prefers what we call the pointiest path, 
meaning the path that more directly points towards the destination, 
which in this case is the red path (∑∣θi∣li = 400 m rad) over the blue 
path (∑∣θi∣li = 516 m rad). Because the angular deviations of street 
segments in this model depend on direction, the cost estimate of a 
path may change if its direction is reversed, implying that vector-
based navigation could explain the asymmetries observed in human 
trajectories (see Methods for a detailed proof).

Model comparison. Having formally defined the two models, 
we compared their explanatory power relative to each other. We 

aggregated all paths by origin–destination (OD) distance separa-
tion, in steps of 50 m, and estimated the most likely parameters 
for the stochastic distance minimization and for the vector-based 
model in each bin (Methods). We measured the fraction of paths in 
each bin for which the vector-based model had a higher pointwise 
likelihood than the stochastic distance minimization model, and 
we called this the directional prevalence fraction (DPF). A value 
higher than 50% would imply a higher probability that a class of 
paths is explained through the vector-based model than the sto-
chastic distance minimization model. The results reported in Fig. 
4 show that, for each bin of OD distance separation with enough 
samples to reach statistical significance (Supplementary Section 3), 
the DPF is consistently above 50%, suggesting the higher explana-
tory power of the vector-based model. The decreasing trend of the 
DPF function as OD distance separation increases can be consis-
tently observed both in Boston and in San Francisco. Moreover, the 
value of the DPF function is very similar across the entire range of 
OD distance separation, ranging from a peak of 68% at 150-m sepa-
ration—which corresponds to 35% better predictive power of the 
vector-based model versus the stochastic shortest distance model—
to 53% at 1-km separation. For the sake of completeness, note that 
the σ parameters for both models reach overall different values, 0.44 
and 1.06 for the stochastic vector-based and shortest path models in 
Boston and 0.42 and 1.1 in San Francisco. More details on the cali-
bration process and the detailed shape of the σ function are reported 
in Supplementary Figs. 4 and 5.

The decreasing trend of the DPF function suggests a metacogni-
tive mental computational mechanism that trades off mental and 
physical costs during navigation. As the length of the planned path 
increases, humans probably shift from the relatively easier direc-
tion optimization strategy towards optimizing the distance to save 
physical effort and travel time. This hypothesis is also supported by 
the observed deviation of human trajectories from shorter paths, 
which tends to level off for paths longer than 1 km (recall Fig. 1). 
Observing this trend in two cities with drastically different street 
network topologies suggests that this mental process generalizes 
across city environments.
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Fig. 3 | Model design. Example illustrating the calculation of the vector-based cost approximated by equation (2). a, The human path is shown in red and 
the shortest path in blue. The quantities li and θi appearing in equations (1) and (2) are shown for the first street segment of the blue path. b, Alternate 
paths produced by Google Maps. (Note that Google reports both path lengths as 950 m.) Map data © OpenStreetMap contributors.
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Discussion
The data-driven approach used in this Article illustrates how large-
scale observations of behavior in natural settings can be used to 
derive quantitative models of complex cognitive and physical tasks, 
and complements studies of cognition in the laboratory by provid-
ing a unique insight into how the different cognitive faculties work 
together in real life. Despite all the challenges of an uncontrolled 
real city environment—as well as the lack of information about 
users and their activities that limits the range of applicability of 
our findings—we have discovered behavioral trends that general-
ize across cities, attesting to the potential of big data in the fields of 
psychology and cognitive science.

Our results suggest that vector navigation may be a common 
property of human route planning in cities and also establish direct 
connections between the study of human mobility, human cognitive 
psychology and neuroscience. Empirical support of the vector navi-
gation model by real human behavior provides evidence in favor 
of theoretical claims that human minds and brains represent both 
Euclidean maps and graphs of street networks, as suggested in previ-
ous work54. The quantitative cost models described in this work sug-
gest a possible computational mechanism by which route planning 
may be implemented in the brain. However, more work is needed 
to overcome the limitations of our study (lack of information about 
users and their activity) and understand, for instance, the effect of 
individual differences and the extent to which people pre-plan their 
routes, use hierarchical map representations, develop routing habits 
and diversify path alternates as a result of map learning.

The requirement to implement precise falsifiable models has 
limited our study to factors that could be measured objectively and 
exactly—such as direction and distance—as well as a number of 
simplifying assumptions. Although our models assume that pedes-
trians have accurate map knowledge, future work should consider 
how human path planning may depend on mental representations 
of the street networks, which may include larger streets and omit 
secondary ones55. Future work should also consider other factors 
that can influence navigation decisions, to the extent that these fac-
tors can be quantitatively tracked—such as day of the week, sun-
light, weather, trees, attractions, presence of crowds, fatigue, time 
of the day, neighborhood safety and elevation gradient—as well as 
individual differences in responsiveness to these factors.

Our results extend our understanding of human route plan-
ning, and could have significant implications for those areas where 
route planning is a basic mechanism, such as transportation, cog-
nitive maps and real-time planning algorithms. We expect our 

methodology to be of even greater use with increasingly accurate 
5G and 6G tracking data. The latter should allow monitoring on 
which side of the street someone is walking, the time spent at inter-
sections, forward-facing direction and speed, supporting a more 
detailed investigation of internal planning mechanisms. Future 
models should account for walking speed, tendency to change 
direction at a red light, as well as tendency to consistently orient 
toward specific visual landmarks. We hope that our findings will 
stimulate new research exploring these connections.

Methods
Dataset description and preparation. The full dataset comprises 579,231 pseudo-
anonymized human paths produced by 14,380 pedestrians—5,590 in Boston and 
8,790 in San Francisco—recorded by an always-on pedestrian tracking smartphone 
application over a time period of one year. As is customary in research based on 
datasets acquired through mobile applications, we do not have information about 
the demographics of the population of app users, which thus does not necessarily 
represent an unbiased sample of the population in Boston and San Francisco. 
The two cities differ in street network geometry (Supplementary Fig. 1). The San 
Francisco street network is designed as a grid, while the Boston street network 
is highly irregular, for historical reasons. The app was continuously recording 
individuals’ movements throughout the day. Accordingly, the dataset consists of 
raw high-quality GPS traces, which include a range of pedestrian activities. The 
analysis reported in this Article focuses on activities that have been labeled as 
‘walking activity’ by the app using proprietary machine learning algorithms. Also, 
due to privacy limitations, we have no information about user profiles, such as 
whether they are resident in the city, their level of familiarity with the environment 
and so on. The average recording gap is 15 s, and the positioning accuracy is 
within 10 m. The GPS traces were segmented to individual paths based on tracking 
continuity, with a path considered to end at a destination if the walking activity 
was paused for longer than 5 min. To preserve privacy, the origin and destination 
of each trip were randomly relocated within a 100-m radius centered at the original 
location. To remove any possible bias resulting from this randomization procedure, 
we trimmed the beginning and end of each path within this range. All paths were 
map-matched to the Open Street Map network available at www.openstreetmap.org 
using a hidden Markov chain algorithm56. We also screened all map-matched paths 
using the Douglas–Peucker (DP) algorithm57 to exclude any detours that could be 
caused by GPS jitters that were not fully removed by the trimming.

We analyzed a subset of walking paths, selected from the full dataset, that met 
the following criteria: (1) no straight-line paths and (2) a path was not more than 
80% longer than the shortest possible path connecting the origin and destination. 
The 80% cutoff was taken as the 95% quantile. The first criterion removed 
straightforward (from a navigational perspective) paths. The second criterion was 
implemented to exclude multi-purpose trips, sight-seeing and exercise. We also 
excluded paths with a shortest network distance smaller than 200 m. After this 
pre-processing, 165,645 trajectories by 4,879 pedestrians from Boston and 189,075 
trajectories by 7,372 pedestrians from San Francisco remained in the analysis, 
comprising ~60% of paths from the original dataset.

The paths in Boston had a mean length of 856.0 m (s.d. = 843.6 m) and the 
paths in San Francisco had a mean length of 868.1 m (s.d. = 912.1 m). Detailed 
aggregate statistics of the human paths included in the study are reported in 
Supplementary Table 1.

Street networks. We retrieved the street network of the city of Boston and San 
Francisco and their surrounding areas from Open Street Map (Supplementary Fig. 
1). All walkable street segments were included to form the walkable street network, 
which is used consistently for all the following calculations and analyses, including, 
but not limited to, map-matching of the human path, calculation of the shortest 
path, and random walk paths.

We simplified the retrieved street networks to speed up the calculation by 
cleaning up redundant nodes and edges around intersections. Specifically, we 
grouped adjacent intersections into one by applying a hierarchical clustering 
using the complete linkage and network distance among nodes. We selected 30 m 
as the threshold of the diameter of the clusters through repeated experiments. 
This simplification eliminated unnecessary details around intersections, while 
preserving network topology. The street networks of Boston and San Francisco 
used in our data analysis are illustrated in Supplementary Fig. 1.

Walking paths. The GPS trajectories of human paths were map-matched to the 
walking street network from Open Street Map (Supplementary Section 1.1) using 
a hidden Markov chain algorithm56. The algorithm was implemented using the 
map-matching application programming interface (API) of GraphHopper (https://
graphhopper.com/api/1/docs/map-matching/). A small number of paths that were 
not successfully matched were eliminated from the dataset. The map-matched 
human paths were projected onto the simplified network utilizing the link table 
between nodes in the original network and the simplified network (Supplementary 
Section 1.1). The summary statistics of the shortest paths in both Boston and San 
Francisco are shown in Supplementary Table 1.
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For each human path, the corresponding shortest-distance path was calculated 
based on the street network from Open Street Map (Supplementary Section 1.1) 
using the classic Dijkstra’s algorithm implemented in the Python package of 
igraph-python (http://igraph.org/python/). The map-matched shortest paths were 
projected onto the simplified network utilizing the link table between nodes in 
the original network and the simplified network. The summary statistics of the 
shortest paths in both Boston and San Francisco are shown in the Supplementary 
Table 1. The trip velocity distribution is reported in Supplementary Fig. 2.

The Google paths were retrieved from the Google Map Routing API and 
map-matched to the original street network using the identical hidden Markov 
model algorithm as applied to the human paths. Because of resource limitations, 
we randomly extracted a subset of paths for the comparison between human and 
Google paths in Boston and San Francisco, respectively. We retrieved Google 
paths for 9,254 OD pairs in Boston and 1,492 OD pairs in San Francisco. The 
comparison was restricted to the human paths for which we could obtain a 
corresponding Google path between the given origin and destination. If multiple 
human paths existed for one OD pair, all human paths were compared separately 
to the Google path, and average similarity performances were taken for the 
comparison. All retrieved Google trajectories were map-matched to the original 
street networks before being projected onto the simplified network.

To examine the probability of pedestrians following app-planned paths, 
we compared human paths to paths planned by the most widely used routing 
app—Google Map. The results show that Google paths are significantly different 
from human paths. First, the length distribution of Google paths is significantly 
different from that of human paths in both cities (Supplementary Fig. 3). Metrics 
comparing the geometries of Google paths with the geometries of human paths 
also demonstrate a significant difference in Jaccard similarity measured as 
exact overlaps, and in geometric similarity measured using Hausdorff distance 
(Supplementary Tables 2 and 3).

Detection of asymmetries. To test whether the sample probability distribution of 
paths chosen between any specific OD pair depends on the direction, we needed 
to aggregate trips across OD pairs. However, because the sample size obtained by 
considering the original OD pair was limited, we also considered intermediate 
points in a trajectory as possible OD pairs. To achieve a sufficiently large sample 
size, we considered only OD pairs within a Euclidean separation distance between 
200 m and 250 m, with at least 50 recorded paths, including at least 20 paths in each 
direction, that do not lie on a straight line path. We define a straight-line path for 
an OD if there exists a path that simplifies to two points with the DP algorithm57, 
with a cutoff of 30 m. Note that this approach is conservative, because a symmetric 
model must necessarily be symmetric at all scales.

For the individual-level asymmetry test, this criterion is met by 235 OD pairs 
generated by 73 pedestrians in San Francisco and by 316 OD pairs generated by 
101 pedestrians in Boston. For the aggregate asymmetry analysis, we also include 
any OD pairs that have a sufficient number of paths combined between different 
pedestrians, giving 2,865 and 3,000 OD pairs in San Francisco and Boston, 
respectively. Note that a single pedestrian path could be counted multiple times by 
considering different sub-parts of the original trajectory.

Aggregate-level analysis is done as follows. For a specific OD pair, we consider 
the universe of all paths followed by humans in each direction, and represent 
them as an unordered set of street intersection points. For each intersection 
point, we record the occurrence of out-bound OD→

= {n→1 , ... , n→m } and 
in-bound OD←

= {n←1 , ... , n←m } paths. Individual-level analysis is done as 
follows. We group all paths taken by an individual between a specific OD pair, 
OD = {P1, …,Pm}, to determine the universe of observed paths in each 
direction. We count the number of occurrences of these paths in the forward and 
reverse directions, defined as OD→

= {n→1 , …, n→m } and OD←
= {n←1 , …, n←m },  

and establish an analogy with the process of extracting with replacement marbles 
from an urn containing m different types of marble—one for each possible path. 
More specifically, the urn contains n→i + n←i  marbles of type i, for each i. Given 
this analogy, the observed group of paths in one direction, say OD→, can be seen 
as an instance of a random extraction of q→ =

∑
in

→

i  marbles from the urn. 
If the paths were symmetric—null hypothesis—the extraction would obey a 
multinomial distribution. We can thus apply the standard statistical hypothesis test 
to the null hypothesis that the observations from sets OD→ and OD← follow such a 
distribution. The results of the test, reported in Fig. 2, show that the null hypothesis 
can be rejected with a 0.05 significance threshold for 32% and 24% of the OD pairs 
for Boston and San Francisco, respectively, and that the cumulative distribution 
of the resulting P values is considerably skewed towards lower values than 
those expected under the null hypothesis. We thus find a statistically significant 
asymmetry in individual human paths.

The proposed statistical test, which applies to both individual- and aggregate-
level analyses, builds on the analogy with the process of independently extracting 
m marbles from an urn. If the null hypothesis that paths are symmetric is true, 
there exists a set of probabilities {p1,..., pm} with 

∑m
i=1 p

i
= 1 associated to each 

path that are direction-independent. In such a case, the best estimates for such 
probabilities can be obtained as

pi = n←i + n→i
q← + q→ , (3)

with q← =

∑m
i=1 n

←

i  and q→ =

∑m
i=1 n

→

i .
To assess the validity of the null hypothesis, we test whether the sample 

occurrences OD→ and OD← are statistically compatible with the process of 
repeatedly and independently extracting q→ + q← elements from an urn with m 
marbles (with replacement). The resulting distribution is multinomial and defined 
by probabilities Pi. The exact P value for the test cannot be obtained analytically; 
however, the likelihood-ratio test58 provides an asymptotic distribution in the case 
the null hypothesis holds. Specifically, the maximum likelihood estimate is

logLM =

m∑

i=1
n←i log

( n←i
q←

)

+

m∑

i=1
n→i log

( n→i
q→

)

(4)

and the alternate model is

logLA =

m∑

i=1
n←i log (pi) +

m∑

i=1
n→i log (pi). (5)

Finally, according to Wilks’ theorem 58, the likelihood-ratio statistic should 
converge to a chi square with m − 1 degrees of freedom:

2(logLM − logLA)
d
→ χ

2
(m − 1). (6)

The results of the test are reported in the main text. Because the underlying 
distribution on which the statistical test is performed is unknown, we proceed with 
a more conservative test based on a null sampled distribution. This implies that the 
real null expectation should be slightly below the first bisector, as depicted by the 
shortest distance P-value distribution in Fig. 2b.

Asymmetry proofs. To prove that the stochastic distance minimization model 
cannot explain asymmetry, consider the (random) cost Cdist(OD→

) of a path 
between a certain OD pair, and the cost Cdist(OD←

) of the reverse path. Because 
both costs are obtained as the sum of independent random variables, and the 
random variables considered in the summation are the same (except for their 
order), both Cdist(OD→

) and Cdist(OD←
) have the same probability distribution, 

which contradicts our empirical observations of asymmetric human paths.
To prove that the vector-based navigation model can explain asymmetry, note 

that, for a given path between origin and destination, the costs of the path in the 
forward and reverse directions, Cdir(OD→) and Cdir(OD←), are obtained from the 
summation of different random variables, because the value θ→

i  for street segment 
Si in the forward direction is different from that of θ←

i  in the reverse direction 
(Fig. 3). Thus, the probability distribution of Cdir(OD→) is different from that of 
Cdir(OD←), which implies that the stochastic distance minimization model can 
support the hypothesis of asymmetric human navigation.

Model fitting and comparison. We compared the explanatory power of the two 
models by performing a set of 1,000 simulations in Boston and San Francisco to 
optimally tune the error parameter σ for both the stochastic distance minimization 
and the vector-based model (details about the exploration ranges for σ are 
provided in Supplementary Section 3). Given a human path OD(h)→ from origin 
to destination, we ran both models on that OD pair for 1,000 simulations, and 
recorded the number of times each of the two models selected exactly path OD(h)→. 
To determine which of the two models performed statistically better in this task, 
we compared their respective likelihood values. The likelihood of a model is 
obtained from

logL(x)
=

N∑

i=1
log P(OD(h)→

|ODi , C(x), σx),

that is, the sum over all N paths of the logarithm of the probability

P(OD(h)→
|ODi , C(x), σx)

of selecting the human path OD(h)→ for OD pair ODi, computed using the cost 
function of the specific model x = {dist, dir} with the optimal value σx for model x 
of the error parameter.

We aggregated paths into bins by OD separation, in steps of 50 m. For each 
bin we calibrated σ and tested model performances with a leave-one-out cross-
validation59. Accordingly, we found the value of σ that maximizes the likelihood of 
Ns − 1 paths associated with bin s, and measured the likelihood of the out-of-sample 
path. We repeated this procedure by leaving out another path until we covered the 
whole set of paths in each bin. We also included a cutoff parameter c to account for 
paths with zero sample probability, which would cause divergence of the likelihood 
metric. This parameter was set to c = 1/Ns = 0.001, which is the expected minimal 
detectable probability with Ns = 1,000 simulations. A detailed exploration of the 
dependency of c is reported in Supplementary Section 3. However, we did not 
observe a substantial change in our results with different values of c.

Data availability
Due to privacy constraint policies and a signed data usage agreement, we are not 
allowed to share the full GPS tracks considered in this work. For this reason, we 
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generated a small sample of 100 trajectories for Boston. We also make available 
the pre-processed pedestrian street networks for Boston and San Francisco. The 
sample dataset and street network data can be accessed at Zenodo60. Figures 1c, 
2a and 3a used basemap from Open Street Map (https://www.openstreetmap.
org) under an Open Database license (https://www.openstreetmap.org/
copyright). Figure 3b uses Google Map data (2021) under fair-use guidelines 
(https://about.google/brand-resource-center/products-and-services/geo-
guidelines/#general-guidelines-copyright-fair-use). Source data are provided 
with this paper.

Code availability
The version of PedNav package used in this study and a guide to reproducing the 
results is available through GitHub under a GNU GPL-3.0 license (https://github.
com/cbongiorno/pednav). The specific version of the package used to generate 
the results in the current study is available at Zenodo60. A pseudo-code description 
of the algorithms used for human navigation based on stochastic distance 
minimization and vector navigation is reported in Supplementary Section 4.
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