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Abstract

From a quick glance or the touch of an object, our brains
map sensory signals to scenes composed of rich and detailed
shapes and surfaces. Unlike the standard pattern recognition
approaches to perception, we argue that this mapping draws on
internal causal and compositional models of the outside phys-
ical world, and that such internal models underlie the general-
ization capacity of human perception. Here, we present a gen-
erative model of visual and multisensory perception in which
the latent variables encode intrinsic properties of objects such
as their shapes and surfaces in addition to their extrinsic prop-
erties such as pose and occlusion. These latent variables can
be composed in novel ways and are inputs to sensory-specific
causal models that output sense-specific signals. We present a
novel recognition network that performs efficient inference in
the generative model, computing at a speed similar to online
perception. We show that our model, but not an alternative
baseline model or a lesion of our model, can account for hu-
man performance in an occluded face matching task and in a
cross-modal visual-to-haptic face matching task.
Keywords: generative models; recognition models; visual
perception; multisensory perception; analysis-by-synthesis

Introduction
Human perception is unmatched in its generalization capac-
ity. Unlike modern machine perception systems, we acquire
novel object categories from one or very few examples, pro-
cess previously unseen or unusual objects and scenes, and
parse complicated scenes into their underlying individual
components and perceive their three-dimensional (3D) struc-
ture. Humans can imagine novel objects and scenes by com-
posing together previously acquired shape parts, texture parts,
and objects (Lake, Salakhutdinov, & Tenenbaum, 2015). Per-
ception is online and remarkably fast – we process a novel
scene to know its elements, including shapes, textures, and
occluding relationship within hundreds of milliseconds.

Consider the image of a horse in Fig 1. Despite the horse
being mostly occluded, your percept of it will be rich: you
will know the three-dimensional shape of the horse and its
pose. You will also know that the zebra-like patterns are be-
cause the cloth has such texture and not because of an actual
zebra in the image. Moreover, if you were tempted to lift the
cloth to see more of the horse, you could imagine where and
how you would grasp the cloth to do so.

The standard machine approaches to perception – vision in
particular – are mainly pattern recognition systems that are
trained for object categorization or identification from vast
image datasets (Yamins et al., 2014; Krizhevsky, Sutskever,
& Hinton, 2012). These approaches compute quickly, similar
to the speed of online perception, but they don’t attempt to
explain the variation in the input, and are restricted in their

Figure 1: It may be the
first time you are seeing a
horse under a zebra outfit,
but you will have no diffi-
culty knowing, and know-
ing quickly, that the scene
is composed of a horse
draped under a cloth.

generalization capacity (Fig 1). For example, Krizhevsky’s
Alexnet (Krizhevsky et al., 2012) that is trained to recognize
both horses and zebras incorrectly sees a “zebra” in Fig 1.
In fact, for such pattern recognition systems, generalization
to novel tasks would require non-trivial amounts of data and
that amount would have to scale with the number of novel
tasks.

We postulate that to deeply understand scenes underlying
sensory inputs and to generalize strongly, a computational
model of perception needs to explain the variation in the
inputs as opposed to ignoring it (Dayan, Hinton, Neal, &
Zemel, 1995). Our guiding desiderata for a computational
model of perception are compositionality, causality, and ef-
ficiency (Lake, Ullman, Tenenbaum, & Gershman, in press).
Causality refers to the relationship between cause and effect.
A perception system should implement forward models of
individual sense modalities, such as the optics processes de-
scribing how elements of a scene (e.g., shapes, textures, light-
ing, camera, etc.) give rise to images (Yildirim & Jacobs,
2013). Compositionality refers to combining primitives and
parts to obtain new parts and wholes. A perceptual system
should allow composing causal elements such as shapes and
textures and their parts (e.g., Biederman, 1987). And finally,
given an input, a perceptual system should compute its causal
and compositional explanation efficiently without extensively
iterative algorithms, in line with our online perceptual expe-
rience.

Here, we present an efficient analysis-by-synthesis model
of visual and cross-modal perception. The latent variables
in this model are 3D shape and texture, extrinsic scene vari-
ables such as pose and lighting, and occluders. The model can
compose 3D shapes and occluders in novel ways. The model
consists of causal sensory-specific forward models that can
project these latent variables to visual and haptic signals. In
order to perform inference in this highly expressive model,
we introduce a structured recognition model. The recogni-
tion model is trained using samples from a generative model



to map inputs to their underlying latent variables as accurately
as possible. Once trained, the model can infer the underlying
components and causes efficiently: exclusively through feed-
forward computations without any iterative algorithms.

Our computational model builds upon a number of recent
studies: (1) analysis-by-synthesis approaches to vision (e.g.,
Kulkarni, Kohli, Tenenbaum, & Mansinghka, 2015; Egger
et al., 2016) and (2) efficient analysis-by-synthesis in which
neural networks markedly speed up inference in expressive
generative models (e.g., Eslami et al., 2017; Yildirim, Kulka-
rni, Freiwald, & Tenenbaum, 2015; Moreno, Williams, Nash,
& Kohli, 2016). Further, our model goes beyond these lines
of works with efficient and occlusion-aware 3D scene recon-
struction, applying it to a cross-modal recognition task, and
by showing that such a model can account for the detailed
gradations of human subjects’ responses.

We study two perceptual tasks where perception as expla-
nation should be crucial. First is the task of matching objects
across occluded and unoccluded scenes. Second is the task
of matching objects across their visual and haptic presenta-
tions (cross-modal recognition). In both cases, we show that
our model closely predicts human behavior, to a much better
extent than all the alternative models considered here.

In this study, we concentrate on faces as our object cat-
egory and various everyday objects (e.g., window blinds,
fences, curtains) as occluders. Using faces has several advan-
tages: (1) we can incorporate existing high quality 3D gen-
erative shape and texture models (Blanz & Vetter, 1999), (2)
faces present us with a rich space of possible shapes and tex-
tures and constitute a behaviorally significant class of stim-
uli, and (3) the study of faces drew extensive attention across
the fields of psychology (e.g., Bruce & Young, 1986), neu-
roscience (e.g., Freiwald & Tsao, 2010), and computer vi-
sion (e.g., Parkhi, Vedaldi, & Zisserman, 2015), and therefore
concentrating on faces under our occlusion and cross-modal
tasks provides the opportunity to make various contact points
with researchers from these fields.

Model
Generative Model
Our generative model of faces is parametrized by face shape
S, texture T , pose P, and lighting conditions L. As in
(Kulkarni et al., 2015), we use the 3D Morphable Face Model
(MFM) as a prior distribution over S and T (Blanz & Vetter,
1999). The MFM provides independent linear models of face
shape and texture derived from 200 laser-scanned faces. The
model consists of means µ{shape,tex} and covariance matrices
Σ{shape,tex} for both the shape and texture. New faces can be
drawn from the model by sampling from a multivariate Gaus-
sian with the MFM parameters: S ∼ N (µshape,Σshape) and
T ∼ N (µtex,Σtex). The prior distribution over face pose is
uniform from −25◦ to 25◦ in azimuth.

Given face parameters from the MFM, an approximate ren-
dering engine g(·) provides a projection of the face into im-
age space, I f ace = g({S,T,P,L}). Occlusion of such faces

Figure 2: A) Overview of the generative model producing
occluded face images. B) Recognition model structure, in
which an input image is first decomposed into face and oc-
cluder layers and then the unoccluded face reconstruction is
used to make latents estimations. C) Samples from the train-
ing set.

is treated as an image-level operation, in which the pixels
of the occluding object mask those of the rendered face:
Iscene = Ioccl⊕ I f ace.

Recognition Model
Following (Yildirim et al., 2015), we use a recognition model
to invert the generative model of face generation. However,
in the current work, our scenes take on extra structure, in
the form of an occluding object, that makes direct mapping
from images to face latent variables difficult. Indeed, we find
that the occluders consistently interfere with shape and tex-
ture predictions from pretrained neural models, and that such
models are not easily adapted to be invariant to a general class
of occluders. In order to deal with this issue, we explicitly
represent occlusion in a structured manner in our model.

The first stage of our recognition model, shown in Fig 2B,
consists of two Layer Reconstruction (LR) networks. These
networks separate an input image into their underlying inde-
pendent layers for the face and the occluder mask: I f ace =
LR f ace(Iscene) and Ioccl = LRoccl(Iscene). As opposed to pre-
dicting Ioccl , which is essentially an assignment problem
where pixels are denoted as ”occluder” or ”other”, predicting
I f ace requires reconstructing portions of the face not visible
in the input image. LR f ace reconstructs the face image at its
original pose. Both LR networks are implemented as convo-
lutional autoencoders, with 5 layers for the occluder model
and 11 layers for the face model, and trained via stochastic
gradient descent.

We use the face layer output from LR f ace as input to the



second stage of our recognition model, deemed the Efficient
Inverse Graphics (EIG) network. EIG consists of linear map-
pings from a generically-trained neural model to the latent
variables of our generative model. We found the second fully
connected layer of the AlexNet architecture (Krizhevsky et
al., 2012) trained on the ImageNet database (Deng et al.,
2009) to yield the best performance. By taking as input unoc-
cluded reconstructions of the input image as opposed to the
raw occluded scene, we avoid issues with the occluder affect-
ing the predictions of EIG.

Data Generation
A dataset of 40,000 occluded face images was generated us-
ing the Blender rendering engine. Accompanying each oc-
cluded image was the rendered unoccluded face and a single-
channel mask of the occluder locations for training the LR
networks.

Faces were produced from random samples from the MFM
and occluders were selected from the ShapeNet core dataset
(Chang et al., 2015). For each image, an occluder category
was selected uniformly at random from the 55 available and
then a model was selected uniformly from the chosen cate-
gory. Our test occluders, for both our models and behavioral
stimuli, were not a part of ShapeNet core and were not seen
during training.

It is worth noting that Blender’s rendering is more com-
prehensive than the pixel-wise masking process of occlusion
in our generative model. Not existing in such simple mask-
ing, for example, is ray-tracing, meaning that the Blender-
rendered images contain shadows on the face from the oc-
cluder that our generative model’s outputs lack. This mask-
ing approximation allows for occlusion to be encoded in the
generative model in a straightforward manner while still re-
taining the most important attributes of the data generation
process.

Experiments
The goal of our behavioral experiments is to test human sub-
jects’ performance in matching occluded to unoccluded face
images and to test the generative model’s ability to predict hu-
mans’ detailed behavioral patterns. In all experiments, sub-
jects were asked to judge whether a test face is the same as a
study face (Fig 5).

Participants
A total number of 178 participants were recruited from Ama-
zon’s crowdsourcing service Mechanical Turk. The experi-
ment took about 12 minutes to complete. Participants were
paid $1.5. The study was approved by the Massachusetts In-
stitute of Technology IRB. All participants were 18 years or
older and provided their informed consent.

Stimuli
Stimuli were 200x200 color images of photo-realistic faces.
The view of the faces could be occluded by five types of
objects: jail bars, window blinds, a curtain, a fence, and a

Figure 3: Evaluation pipelines contrasting the full model,
resulting in an image-space comparison, to the recognition
model alone, which results in a comparison in the latents
space of the MFM.

half-transparent door. Face models were generated using the
MFM and occluding object models and their textures were
downloaded from individual online model banks. They were
then rendered orthographically using ray-tracing in Blender,
an open-source computer animation software. Prior to ren-
dering, face models were randomly rotated along the z-axis
with angles spanning the range of 25◦ to 25◦.

The face images could be occluded at three levels: low
(15% of all the face pixels), medium (35% of all the face pix-
els), and high (55% of all the face pixels). The occlusion lev-
els were obtained by rotating and modifying the base occluder
models: by increasing the diameter of the jail bar cylinders,
by rotating the window blinds along the x-axis (i.e., closing
the window blinds), by translating the curtain along the z-
axis (i.e., closing the curtain), by increasing the diameter of
the fence mesh, and by rotating the door along the z-axis (i.e.,
closing the door).

Procedure
Participants were assigned to one of the two groups: either
they matched occluded study items to unoccluded test items
(Oc → Un) or they matched unoccluded study items to oc-
cluded test items (Un → Oc; Fig 5A). In both groups, the
study items were always randomly rotated along the z-axis,
but the test item was always frontal.

The study item was presented for 250 msecs, followed by



Figure 4: Sample model outputs on the behavioral set occlud-
ers. “Layer Reconstructions” are the interior representations
of the recognition model. “Rendered EIG” shows the result
of transforming the latents estimations from the EIG network
into a textured face mesh and rendering it in frontal orienta-
tion.

a mask image (a scrambled face image) for 500 msecs. Then
the test item appeared and stayed on the screen until the user
entered their response: either an “f” for “same” or a “j” for
“different”.

There were a total of 96 trials, divided equally between
“same” and “different” pairs. The study identities (shape and
texture latents in the MFM) were unique to each trial, and
trials were randomly shuffled for each participant. Each par-
ticipant saw each occluder type in 18 to 20 trials, and they
saw each level of occlusion equally often (32 trials each).

Model evaluation pipelines and the alternative
models
We evaluated the generative model and two alternative mod-
els (described below) on the identical stimuli that the partici-
pants saw. We obtained a “same” or “different” response from
the generative model in the following way (Fig 3). First, us-
ing the recognition model on the study item, I, we obtain a
point estimate of its shape and texture latent variables, S∗,T ∗.
We also use the recognition model on the test item, O, to ob-
tain a point estimate of its occlusion mask and pose, M∗,P∗.
We then reconstruct S∗,T ∗, and P∗ using the approximate
renderer. We layer M∗ on top of the rendered face, giving
the model’s reconstruction image, R∗. The resultant score is
the similarity of reconstruction, R∗, to the test item, O. Fi-
nally, we independently run the same pipeline by reversing
the study and test items – i.e., by reconstructing the study
item from the test item – and obtain the final score as the av-
erage of the two directions. We visualize the the interior layer
representations, as well as the rendered EIG predictions, in
Fig 4.

We considered two alternative models: The first alternative
model is obtained by the lesion of the generative components
of our model and uses only the recognition model (evalua-

tion pipeline resulting in latent-space comparisons shown in
Fig 3). We also consider a second baseline model using the
VGG Face network, a state-of-the-art machine face recogni-
tion system. The VGG Face network is a particularly deep
Convnet, with more than twice as many convolutional layers
as our EIG network, trained with millions of labeled images
of faces to identity thousands of individuals. This network
is evaluated by using the similarity of activations at its sec-
ond fully connected layer between the study and test items.
(We found that there was no other layer in the network that
performed better than its second fully connected layer.)

Results
Performance of the subjects in the two groups was strongly
above chance. Participants in the Oc→Un group performed
with 77%,73%, and 67% accuracy under low, medium, and
high occlusion levels. Participants in the Un→Oc group
performed with 78%,76%, and 70% accuracy under low,
medium, and high occlusion levels. We did not find a sta-
tistically significant difference between the two groups’ per-
formance (p = 0.08, two-tailed t-test).

We tested how well each of the models captured the av-
erage subject responses, Pr(Same). We compared the models
and humans on a trial-by-trial basis for all six conditions (two
directions and three levels of occlusions with a total num-
ber of 96 trials in each). In order to quantify how well each
model accounted for the behavior, we performed a bootsrap-
ping analysis where we sampled individual subjects with re-
placement 1000 times. For each bootstrap sample, Pr(Same)
was obtained for each trial as the proportion of the “same”
responses in that sample. We found that our model cap-
tured subjects responses consistently better than the alterna-
tive models across all six conditions (p < 0.05 using direct
hypothesis testing with the bootstrap samples for all compar-
isons between the generative model and each of the alterna-
tive models; Fig 5B).

We also analyzed the inter-subject consistency in our be-
havioral data using bootstrapping analysis. We generated
1000 random equal splits of the subjects into two exclusive
sets for each condition. We then correlated the Pr(Same) vec-
tor of one set with the Pr(Same) vector of the other set. We
found relatively high-levels of inter-subject consistency de-
spite the difficulty of our task (Fig 5B; all values in the range
of r = 0.78 to r = 0.85). We also found that our model’s
account of the data was close to this effective noise-ceiling
level in half of the conditions: Oc→Un and low occlusion,
Un→Oc and low occlusion, Un→Oc and medium occlusion.
The model seemed to perform worse for, but yet still better
than the alternatives, for Oc→Un and high occlusion.

Cross-modal recognition
Multisensory representations and perception systems based
on causal generative models are closely related through the
multisensory hypothesis, which states that people extract the
intrinsic and modality-independent properties of objects and



Figure 5: (A) We studied humans’ occluded-unoccluded face recognition performance using “same”/“different” judgment tasks
(B) Quantified Spearman rank correlations. Error bars indicate standard deviation of the correlations of the bootstrap samples.
The horizontal lines indicate the average inter-subject consistency and its standard deviation calculated using bootstrap samples.

Figure 6: (A) A generative model of multisensory visual-
haptic perception. The haptic generative model is a grasp
synthesis engine that takes as input a 3D shape and outputs
hand joint configurations. (B) In the pre-planning stage of
grasp generation, we target each of these 9 cells on the face
mesh. (C) Example grasps that passed filtering. (D) Example
rejected grasps.

events, and represent these properties in multisensory repre-
sentations (Yildirim, 2014).

We obtained a model of multisensory perception by com-
posing the face generative model (MFM) with a a causal
forward model of human-hand grasp generation (Fig 6A).
The latter model divides a 3D face mesh into 9 spatial cells
(Fig 6B), heuristically evaluates a grasp position and rotation,
and interfaces with Graspit!, a grasping engine, to execute
an Autograsp (e.g. close the fingers of a hand at the given
transformation). Each grasp consists of 16 joint-angles and
a 3D mesh of the grasping hand (e.g., Fig 6C). We rejected
any grasps that had less than 10 of the joint angles with 0.01
radians away from an open or closed hand; fully open grasps
occurred due to the heuristic algorithm generating hand trans-
formations that initially collided with the face (e.g., Fig 6D).

Figure 7: (A) The model evaluation pipeline for visual-to-
haptic transfer. (B) Performance increases using more grasps
per comparison. Shaded region indicates the approximated
behavioral performance from (Dopjans et al., 2009).

In order to test our model’s performance, we simulated
a visual-to-haptic recognition experiment. The model was
tasked with judging whether an unoccluded face image (study
item) and a 3D face mask (test item) were identical or differ-
ent. The model inferred a point estimate of the 3D shape
given the study item using its EIG network. The model then
generated grasps on the estimated 3D mesh using its forward
model (Fig 7A). The model also generated grasps on the test
3D face mask. That results in 9 grasps for each of the study
and test items, but we keep the pairs of grasps that are ac-
cepted for both items. Object dis-similarity was computed as
the average Euclidean distance between the volumetric prop-
erties of each of the accepted grasp pairs. Volumetric proper-
ties consisted of the hand grasp bounding box and its center.

On a dataset of 96 pairs (half “same” , half “different”),
the model responded “same” to pairs that had a distance less
than the total average and “different” otherwise. We found
that the model performed 80% of the trials correctly using
all accepted grasps (corresponding to an average number of



6.89 grasps per comparison). We inspected the model’s per-
formance using different numbers of grasps per comparison.
The model’s performance was strongly above chance even
when using one grasp per comparison, which resulted in an
accuracy of 66%. However, increasing the number of grasps
did not lead to much higher accuracy indicating the difficulty
of the task (Fig 7B).

We found that the performance of our model approxi-
mately corresponded to the only behavioral report on cross-
modal face recognition (Dopjans et al., 2009). Based on this
study, we estimated the performance of the human subjects
in the visual-to-haptic condition would be between 75−80%
(Fig 7B)1. Although they did not record the number of grasps
participants performed per face, they reported that the haptic
stimulus presentation time was 7 secs, which would indicate
7 to 10 grasps per stimulus under the assumption that a grasp
on a face mask takes about 1 sec. If so, this suggests a reason-
able level of correspondence between the maximum average
number of grasps that our model used, 6.89, and the average
number of grasps performed by the participants.

Discussion
We presented a generative model of visual and multisensory
perception in which inference leads to (1) a causal explana-
tion of sensory inputs (e.g., shape, texture, and layers under-
lying an image) and (2) these resulting scene elements can be
composed in novel ways to then imagine new objects. An-
other way in which our model affords composition is through
the integration of multiple generative models that share the
same causal space (Grosse, Salakhutdinov, & William, 2012).
Modality-invariance, an important perceptual invariance, falls
out as a consequence of this kind of composition. We show
that, unlike other models, this model accounts for human be-
havior across a wide range of scenarios – quantitatively in
a visual same/different judgment task and qualitatively in a
multisensory task.

Our results show that using causal generative models in
the forward mode during recognition (a form of imagination)
is crucial to account for behavioral performance. Future re-
search is needed to understand how and where such genera-
tive models might be implemented in the brain.

Our work presents a neurally-plausible solution to the tra-
ditionally difficult problem of inference in rich and structured
generative models by using a recognition model consisting
of neuron-like units. This recognition model is trained with
synthesized samples from the generative model in the style
of Helmholtz machines (Dayan et al., 1995). Future work
will explore variants of the recognition model where the train-
ing can be performed with less supervision from the genera-
tive model, such as a weakly supervised scheme in which the
model may only know that certain objects don’t change.

Future work will also explore a vision-to-touch trans-

1Although this study used face masks generated using MFM,
their experiments differed from our simulated experiment both in
terms of the identities and the total number of faces used.

fer experiment based on the stimuli and “same”/“different”
paradigm presented here.
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