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Abstract

A glance at an object is often sufficient to recognize it and
recover fine details of its shape and appearance, even under
highly variable viewpoint and lighting conditions. How can
vision be so rich, but at the same time robust and fast? The
analysis-by-synthesis approach to vision offers an account of
the richness of our percepts, but it is typically considered too
fragile to apply robustly to real scenes, and too slow to explain
perception in the brain. Here we propose a version of analysis-
by-synthesis in the spirit of the Helmholtz machine (Dayan,
Hinton, Neal, & Zemel, 1995) that can be implemented effi-
ciently and robustly, by combining a generative model based
on a realistic 3D computer graphics engine with a recognition
model based on a deep convolutional network fine-tuned by
brief runs of MCMC inference. We test this approach in the
domain of face recognition and show that it meets several chal-
lenging desiderata: it can reconstruct the approximate shape
and texture of a novel face from a single view, at a level indis-
tinguishable to humans; it accounts quantitatively for human
behavior in “hard” recognition tasks that foil conventional ma-
chine systems; and it qualitatively matches neural responses in
a network of face-selective brain areas. Comparison to other
models provides insights to the success of our model.

Keywords: analysis-by-synthesis, 3d scene understanding,
face processing, neural, behavioral.

Introduction
Everyday vision requires us to perceive and recognize objects
under huge variability in viewing conditions. In a glance, you
can often (if not always) identify a friend whether you catch
a good frontal view of their face, or see just a sliver of them
from behind and on the side; whether most of their face is
visible, or occluded by a door or window blinds; or whether
the room is dark, bright, or lit from an unusual angle. You
can likewise recognize two images of an unfamiliar face as
depicting the same individual, even under similarly severe
variations in viewing conditions (Figure 1), picking out fine
details of the face’s shape, color, and texture that are invariant
across views and diagnostic of the person’s underlying phys-
iological and emotional state. Explaining how human vision
can be so rich, so robust and so fast at the same time is a
central challenge for any perceptual theory.

The analysis-by-synthesis or “vision as inverse graphics”
approach presents one way to think about how vision can be
so rich in its content. The perceptual system models the gen-
erative processes by which natural scenes are constructed, as
well as the process by which images are formed from scenes;
this is a mechanism for the hypothetical “synthesis” of nat-
ural images, in the style of computer graphics. Perception
(or “analysis”) is then the search for or inference to the best

Figure 1: Same scene viewed
at two different angles, illus-
trating level of viewing vari-
ability in everyday vision.

explanation of an observed image in terms of this synthe-
sis model: what would have been the most likely underlying
scene that could have produced this image?

While analysis-by-synthesis is intuitively appealing, its
representational power is generally considered to come at the
cost of making inference almost impossible. There are two
factors at work: First, the generative model’s rich representa-
tional power leads to a very large space of latent scene vari-
ables to be inferred, and hence a hard search problem in in-
verting the graphics pipeline to get the right set of parameters
that can explain the scene reasonably well. Second, the poste-
rior space of the latent variables is highly multimodal, which
could lead to local minima and potential high sensitivity to
the viewing conditions of scenes.

Here, we propose an efficient implementation of the
analysis-by-synthesis approach that is faster and more ro-
bust to viewing conditions while also preserving rich repre-
sentations. In particular, we use deep learning approaches
from computer vision to learn a recognition network with the
goal of “recognizing” certain latent variables of the genera-
tive model in a fast feed-forward manner, and then using those
initial guesses to bootstrap a search for the globally best scene
interpretation. The recognition network is trained with scenes
that themselves are hallucinations from the generative model.
Wrapping this recognition network in our generative model
leads to speed and robustness: (1) our system can “recognize”
scene-generic latent variables such as pose or lighting in a sin-
gle feed-forward pass, and (2) our inference algorithm starts
sampling from a good initial guess of object-specific latents
such as 3d shape and texture arising from the feed-forward
pass. Our approach is inspired by and builds upon earlier
proposals such as the Helmholtz machine and breeder learn-
ing (Dayan et al., 1995; Nair, Susskind, & Hinton, 2008), but
it goes beyond these earlier proposals in the following three
ways.

• We apply this approach to much richer generative models
than previously considered, including 3d shape and tex-
ture, graphics rendering, lighting, shading, and pose. This
lets us apply to approach to harder invariance problems in
much more natural scenes.

• We test this approach using psychophysics as an account



of human behavior, and we compare it to other recently
popular approaches to vision such as convolutional net-
works (Krizhevsky, Sutskever, & Hinton, 2012).

• We explore this approach as an account of actual neural
representations arising from single-unit cell recordings.

Here, in order to assess how our model performs in these three
fronts, we picked face processing as our domain of applica-
tion. Face processing is an appealing domain for several rea-
sons. First, faces are behaviorally significant, perhaps more
so than any other object category. Therefore, an account of
vision in the case of faces is very valuable, and can be gen-
eralized to a certain extent. Second, almost all types of mod-
eling approaches have been tested on faces (e.g., Taigman,
Yang, Ranzato, & Wolf, 2014). Therefore, there is plenty
of opportunity for comparing different models. Third, the
shape and the texture of faces are complex and carry rich
content. Therefore, it provides a good test bed for models
with rich representations. Finally, recent neurophysiology re-
search in macaques revealed a functionally specific hierarchy
of patches of neurons selective for face processing (e.g., Frei-
wald & Tsao, 2010). As far as high-level vision is concerned,
this level of a detailed picture from a neural perspective is so
far unheard of. Therefore, faces provide an excellent oppor-
tunity to relate models of high-level vision to neural activity.

The rest of this paper is organized as follows. We start
with introducing our model implementing efficient and robust
analysis-by-synthesis. Next, we test our model in a compu-
tationally difficult 3D face reconstruction from a single im-
age task. Next, we describe a behavioral experiment testing
people’s face recognition abilities under “hard” viewing con-
ditions, and show that our model can account for people’s be-
havior. Following this, we show that our model qualitatively
accounts for neural face processing system as documented
in macaque monkeys. And finally, we discuss our model by
comparing it to several alternative models, before concluding
our paper.

Model
Our model takes an inverse graphics approach to face pro-
cessing. Latent variables in the model represent facial shape,
S, and texture, T , lighting, l, and head pose, r. Once these
latent variables are assigned values, an approximate render-
ing engine, g(·) generates a projection in the image space,
IS = g({S,T, l,r}). See Figure 2a for a schematic of the
model.

We use the Morphable Face Model (MFM; Blanz & Vet-
ter, 1999) as a prior distribution over facial shapes and tex-
tures, S and T , respectively. This model, obtained from
a dataset of laser scanned heads of 200 people, provides a
mean face (both its shape and texture) in a part-based man-
ner (four parts: nose, eyes, mouth, and outline) and a covari-
ance matrix to perturb the mean face to draw new faces by
eigendecomposition. Therefore, we can consider both shape
and texture as multivariate Gaussian random variables: S ∼
N(µshape,Σshape) and T ∼ N(µtexture,Σtexture), where µshape
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Figure 2: (a) Overview of the inverse graphics model. (b)
Random draws from the model. (c) Recognition network to
acquire good feature representations.

and µtexture are mean shape and texture vectors respectively,
and Σshape and Σtexture are the covariances defining variability
in shape and texture respectively. MFM is flexible in terms
of the length of mean vectors. In our simulations we chose
S and T to be vectors of length 200 each. The prior distri-
butions over light source location and head pose are selected
to be uniform over a discrete space (the light source could be
at locations that vary in the elevation axis frontal to the face
from −80◦ to 80◦; the head pose could vary along the z-axis,
from one profile view to the other). Figure 2b shows several
random draws from this model.

Given a single image of a face as observation, ID and an
approximate rendering engine, g(·), face processing can be
defined as inverse graphics through the use of Bayes formula:

P(S,T, l,r|ID) ∝ P(ID|IS)P(IS|S,T, l,r)P(S,T, l,r)δg(·) (1)

The likelihood of the model is chosen to be noisy Gaussian,
P(ID|IS) = N(ID; IS,Σ). Note that the posterior space is of
high-dimensionality consisting of more than 400 highly cou-
pled shape, texture, lighting, and head pose variables, render-
ing inference intractable.

Learning feature representations by training a
recognition network
The idea of training a recognition network to invert generative
models has been proposed in various influential forms (e.g.,
Dayan et al., 1995; Nair et al., 2008). Here, we build upon
these ideas while taking advantage of the more successful
feed-forward (i.e., bottom-up) architectures.

In particular, we took a Convolutional network (ConvNet)
trained on ImageNet (a labeled dataset of more than million
images collected from the internet, Deng et al., 2009) that
is very similar in architecture to that of (Krizhevsky et al.,
2012), and fine-tuned its feature representations to turn the
network to a bottom-up latent variable recognition pipeline
for our generative model.1 Similar in spirit to Nair et al.

1We used the Caffe system to train our recognition network (Jia
et al., 2014).



(2008), we generated many hallucinations from our genera-
tive model for which we know the values of the latent vari-
ables, and then updated the weights of the ConvNet via back-
propagation to predict these latents.

However, because the dimensionality of our latent space is
very large, and because there is much coupling between the
latent variables, this approach does not work as is. Instead,
we fine-tuned the ImageNet trained network on a face iden-
tity dataset from our generative model to learn good feature
representations. The dataset consisted of more than a 10000
labeled images of 200 facial identities projected under a vari-
ety of lighting conditions and poses. Pilot investigations sug-
gested that the feature representations at layers “conv5” and
“fc6” —the top convolutional layer and the first fully con-
nected layer in the network— were most promising. As de-
scribed below, we used linear mappings from these acquired
feature representations to predict or to fix latent variables of
the generative model in a bottom-up manner (Figure 2c).

Inference
We use the feature representations ν f c6(·) and νconv5(·) aris-
ing from the fine-tuned ConvNet to learn a linear mapping
from ConvNet features to each of the latent variables. In
learning these mappings, we used Lasso linear regression,
which is a linear model with L1 regularization on the weights:

min
w

1
2N
‖ ν f c6(I)w− v ‖2

2 +α ‖ w ‖1 (2)

where ν f c6(I) is the ConvNet representations of our training
images, and v is a latent shape or texture variable, and α is
the regularization term. We chose the value of α close to 0
on the basis of a held-out dataset. Similarly, we estimated
linear mappings for the lighting, l, and pose, r, in the forms
of fl : νconv5(I)→ l and fr : νconv5(I)→ r. Our pilot experi-
ments on a held out dataset indicated that these linear models
worked very well for lighting and pose variables. Therefore,
in our simulations, we decoupled l and r from each other and
from the rest of the latent variables, and assigned them to the
values “recognized” by our fine-tuned network in a bottom-up
manner. However, linear mappings were not sufficient for the
shape and texture latents. Instead, we resorted to Metropolis-
Hastings sampling. We performed multi-site elliptical slice
sampling (Murray, Adams, & MacKay, 2009) on the shape
and texture latents. The basic idea is to define an ellipse us-
ing an auxiliary variable x ∼ N(0,Σ) and the current state of
the random variables, and propose from an adaptive bracket
on this ellipse based upon the log-likelihood function.

3d reconstruction from single images
Clearly, human vision is computationally extremely power-
ful. Models that want to be on par should be able to perform
computationally hard but relevant challenges. 3d reconstruc-
tion from a single image under challenging viewpoints is one
such challenge. Here, we tested our model on this task us-
ing a held-out data set from (Blanz & Vetter, 1999). In Fig-
ure 3a, top row shows several inputs to our model, whereas
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function PROGRAM(MU, PC, EV, VERTEX_ORDER)
# Scene Language: Stochastic Scene Gen
face=Dict();shape = []; texture = [];
for S in ["shape", "texture"]
for p in ["nose", "eyes", "outline", "lips"]
coeff = MvNormal(0,1,1,99)
face[S][p] = MU[S][p]+PC[S][p].*(coeff.*EV[S][p])

end
end
shape=face["shape"][:]; tex=face["texture"][:];

#camera:[rotation, translation]
camera = [Normal(0,5,1,3) Uniform(-1,1,1,2)]
light = Uniform(-1,1,1,2)

# Approximate Renderer
openGLInit()
rendered_img=openGLRender(shape,tex,light,camera)

# Representation Layer
ren_ftrs = getFeatures("CNN_FC8", rendered_img)

# Stochastic Comparator
#Using Pixel as Summary Statistics
observe(MvNormal(0,0.01), rendered_img-obs_img)
#Using CNN FC-8 as Summary Statistics
observe(MvNormal(0,10), ren_ftrs-obs_cnn)

end

global obs_img = imread("test.png")
global obs_cnn = getFeatures("CNN_FC8", img)
#Load args from file
TR = trace(PROGRAM,args=[MU,PC,EV,VERTEX_ORDER])
# Data-Driven Learning
learn_proposals(TR,100000,"CNN_FC8")
load_proposals(TR)
# Inference
infer(TR,callback,100,["ELLIPTICAL","DATA-DRIVEN"])

(B)

Figure 2: (A)Picture code illustration for 3D face analysis: Mod-
ules from Fig1 are highlighted in bold. (B)Unconditionally (with-
out data, by commenting observe’s in code) sampling this program
generates random faces. Running program 2 conditional on data
results in posterior inference (see Fig3).

putational approaches have to scale not just with respect to
data size but also with respect to model and scene complexity.
This scaling would gain significantly from, and will arguably
require, general-purpose frameworks to compose, extend
and automatically perform inference in complex structured
models.

In the context of generative scene perception, genera-
tive probabilistic graphics programming (GPGP)[18] tried
to address several of these challenges by representing vi-
sual scenes as short probabilistic programs with random
variables and using single-site metropolis hastings propos-
als for inference. However, due to modeling and inference
difficulties, demonstrations of GPGP have been limited to

Figure 3: Inference on representative faces using Picture: We
tested our approach in comparison with Vizago[11], a commer-
cial 3D face reconstruction system, on a held-out dataset of laser-
scanned data from [4]. The baseline system requires 12 2D land-
marks on every input image and therefore fails for non-profile
views. Our probabilistic program under 30 lines of code is ap-
plicable to non-profile faces and provides competitive results as
illustrated above just using general-purpose inference machinery.
For quantitative metrics, refer to section4.1.

low-dimensional scenes, restricted shapes, and low levels
of appearance variability. Moreover, GPGP does not sup-
port expressing and integrating bottom-up discriminative
models such as conditional random fields[7], deep neural
networks[12] and other structured output predictors[22] that
are essential for several computer vision tasks.

This paper describes Picture, a probabilistic program-
ming language that aims to provide a common representa-
tion language and inference engine suitable for a broad class
of scene perception problems. Generative models can be
represented via stochastic code that samples hypothesized
scenes and samples images given those scenes. Discrim-
inative models can be represented by code for evaluating
the objective function, and trained using efficient algorithms
based on automatic gradients. Picture contains multiple mod-
eling and inference innovations that together significantly
improve the scalability of models, including: (a) rich deter-
ministic and stochastic data structures to express complex
3D scenes, (b) reasoning over coarse-to-fine representations
in contrast to just raw pixel data, (c) integrating top-down
generative inference with bottom-up discriminative methods
and (d) advanced general-purpose techniques for inference
in high-dimensional continuous spaces, such as elliptical
slice sampling and Hamiltonian Monte Carlo, as well as
Metropolis-Hastings with both automatic and data-driven
proposals. Picture is an imperative language, embedded in
the high-performance Julia platform, and is efficient enough
for real-world use.

We also demonstrate Picture on four challenging 3D vi-
sion problems, which perhaps surprisingly requires less than
50 lines of probabilistic code: inferring 3D pose of artic-
ulated humans, 3D reconstruction of medially-symmetric
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Figure 3: (a) Top: input images from a held-out laser scanned
dataset (Blanz & Vetter, 1999). Middle: Our inverse graph-
ics model’s reconstructions. Bottom: Reconstructions on the
basis of the initial bottom-up pass. (b) Log-likelihood scores
arising from random vs. bottom-up initialization of Markov
chains based upon a dataset of 2500 images. Error bars show
standard deviation.

bottom row shows reconstructions based only on the bottom-
up pass. Figure 3a, middle row shows the reconstructions by
our model. In addition to frontal faces, our model can re-
construct the shape and the texture of images of faces under
non-frontal lighting and non-frontal pose.

The bottom-up initialization of the latent variables using a
recognition network improves both the quality and the speed
of inference. Figure 3b shows the log-likelihood traces of a
number of chains for multiple input images that started with
bottom-up initializations. As a comparison, we also show the
initial log-likelihood score distribution of chains for 2500 dif-
ferent images that started from a random state. The bottom-
up pass by itself gets about 70% of the whole improvement
in log-likelihood score if one were to start from a random ini-
tialization, leading to more efficient search of the posterior
space. Beyond that, in most cases, less than 100 iterations of
inference is sufficient to achieve good results. And these re-
sults are robust to viewing conditions as shown Figure 3a, and
as indicated by the successful modeling of behavior below.

Experiment

On common benchmark databases, face recognition appears
to be solved by Machine Vision (e.g., Taigman et al., 2014).
However, Leibo, Liao, and Poggio (2014) observed that most
face databases are “easy”, in the sense that the faces in the im-
ages are often frontal and fully visible. They found increas-
ing viewing variability deteriorated the performance of these
systems. Building upon this observation, we asked the fol-
lowing research question: How well can people perform face
recognition under “hard” invariance conditions? Here we op-
erationally define “hard” invariance conditions as abundant
variability in the viewing conditions. The task was as sim-
ple as the passport-photo verification task, where participants
saw images of two faces sequentially, and their task was to
judge whether the images belonged to the same person or to
two different people. In addition to highlighting the extent
of people’s abilities, this experiment serves as a challenge for
our model (and alternative models) to explain human behav-
ior.
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Figure 4: (a) Stimuli from the experiment illustrating the variability of lighting, pose, and identities. (b) Participants’ average
performance across all possible test viewing conditions. (c) Participants’ and models’ accuracy. Error bars shows 95% CIs. (d)
Coefficients of mixed effects logistic regression analyses. Error bars show standard deviations.

Participants

24 participants were recruited from Amazon’s crowdsourc-
ing web-service Mechanical Turk. The experiment took
about 10 minutes to complete. Participants were paid $1.50
($9.00/hour).

Stimuli and Procedure

The stimuli were generated using our generative model de-
scribed above (Figure 2a). A stimulus face could be viewed
at one of the five different poses (right profile to left profile)
and under five different lighting conditions (at top to bottom),
making a total of 25 possible viewing conditions. A subset
of the facial identities and the 25 possible viewing conditions
are shown in Figure 4a.

On a given trial, participants saw a study image briefly
for 750ms. After a brief period of blank interval (750ms),
they saw the test image, which remained visible until they
responded. Subjects were asked to fixate to a cross in the
center of the screen at the beginning of each trial and be-
tween the study and the test stimuli presentations. The view-
ing conditions for the study image was always frontal lighting
at frontal pose (e.g., center image in Figure 4a). The viewing
conditions for the test image could be any of the remaining 24
possible combinations of lighting and pose. The participants’
task was to judge whether the faces in the study and the test
image belonged to the same person or to two different people.
Participants entered their responses by pressing “s” for same
or “k” for different on their keyboards.

There were a total number of 96 trials, with 48 of the tri-
als being same trials. Each test image viewing condition was
repeated four times (4× 24 = 96), split half between same
different trials. The presentation order of the 96 pairs of im-
ages were randomized across subjects. None of the identities
on the study images were repeated twice except the same trial
identities, in which the identity presented twice (once in the
study image and once in the corresponding test image). Care
was given in choosing the faces of different trials so that they
were not very different from each other.

Results
Participants performed remarkably despite the difficulty of
the task: their performance was always above chance for
all possible test face viewing conditions (Figure 4b; perfor-
mance ranged between 65% for light at the bottom and right-
profile pose to 92% for frontal light and right-half profile
pose). In addition, there was not a strong pattern to suggest
much systematic effect of viewing conditions over people’s
performance. Overall, participants performed at an average
accuracy of 78% (red dot and the associated error bars in Fig-
ure 4c). This level of performance in this task challenges the
most capable computational systems.

Simulation details
We ran our model on the identical 96 pairs of images as the
participants in the experiment saw. For each pair, we ran our
inference algorithm independently once for the study image
and once for the test image for about 100 iterations. For a
given image, the values of the latent shape and texture vari-
ables at the last iteration were taken as model’s representation
of identity. We denote the representation of the study image i
as studyi, and of the test image i as testi for i ∈ 1, . . . ,96.

We calculated the performance of our model (and the alter-
native models that we introduce later) in the following man-
ner. We first scaled the study and the test image representa-
tions independently to be centered at 0 and have a standard
deviation of 12. Then, for each pair i, we calculated the Pear-
son correlation coefficient between the representations of the
study and the test images, denoted as corri. Below, we used
these pair-specific correlation values to model people’s binary
responses (same vs. different) in regression analyses.

Finally, we need to obtain same vs. different judgments
from the model to measure its performance with respect to
the ground truth. Similar to a ROC analysis, we searched for
a threshold correlation ∈ [−1,1] such that the model’s per-
formance will be highest with respect to ground truth. The

2This scaling step was not crucial for our model, but it was re-
quired to obtain the best out of other models that we will introduce
below



search was such that the pairs of correlation values lower than
the threshold were assigned different, and the pairs of equal
or higher correlation values than the threshold were assigned
same. We report results based upon the threshold that gave
the highest performance.

Simulation results
Our inverse graphics model performs at 80% (the purple dot
in Figure 4c, denoted as “GenVis”), closely matching to the
participants’ performance.3 We note that matching people’s
overall performance is an important criteria in evaluating a
model, but only a crude one.

We also tested whether the internal representations of our
model (corri for i ∈ 1, . . . ,96) could predict participants’
same/different responses on unique stimuli pairs. We per-
formed mixed effects logistic regression from our model’s in-
ternal representations (corri for i ∈ 1, . . . ,96) to participants’
judgments while allowing for a random slope for each partic-
ipant. We performed this regression using the lme4 package
in R statistics toolbox (R Core Team, 2013). The coefficient
and the standard deviation estimated for our model are shown
in Figure 4d (denoted as “GenVis”). The internal representa-
tions of our model can strongly predict participants responses,
providing further evidence for an inverse graphics approach
to vision (β̂ = 1.74,σ = 0.58, p < 0.01).

Macaque face patch system as inverse graphics
Encouraged by the behavioral findings, we asked the follow-
ing research question: Can our model explain the face pro-
cessing hierarchy in the brain and generate testable predic-
tions? To our advantage, face processing is the area of the
visual neuroscience where we know most about higher-level
vision. The spiking patterns of the neurons at different fMRI-
identified face patches in macaques show a hierarchical orga-
nization of selectivity for faces: neurons at the more poste-
rior patch (ML/MF) appear to be tuned to specific poses, AL
(a more anterior patch) neurons exhibit specificity to mirror-
symmetric poses, and the most anterior patch (AM) appear to
be largely view-invariant, i.e., neurons there show specificity
to individuals (Freiwald & Tsao, 2010).4

We ran our model on a dataset of faces generated using
our generative model, which mimicked the FV image dataset
from Freiwald and Tsao (2010). Our dataset contained 7
head poses of 25 different identities under one lighting con-
dition (e.g., Figure 5, top row). We compared the repre-
sentational similarity matrices of the population responses
from Freiwald and Tsao (2010) in patches ML/MF, AL, and
AM, and the representational similarity matrices arising from
the representations of the different components of our model:
νconv5(·),ν f c6(·) from the recognition network, and the latent
shape, texture, pose, and lighting variables from the genera-
tive model.

3Our model with only bottom-up initializations of shape and tex-
ture performs at about 70%.

4Recent studies suggest homologue architecture between human
and macaque face processing systems.
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ues of the latent variables, and then update the weights of the
ConvNet via the backpropagation to predict these variables.

However, because the dimensionality of our latent space is
very large, and because there is much coupling between the
latent variables, this approach doesn’t work as is. Instead,
we fine-tuned the ImageNet trained network on a face iden-
tity dataset from our generative model. The dataset consisted
of more than a 10000 labeled images of 200 facial identities
projected under a variety of lighting conditions and poses.
The output of the network was the identity, whereas the in-
put to network were images. On prior investigations, the
feature representations at layers “conv5” and “fc6” —the top
convolutional layer and the first fully connected layer in the
network— appeared most promising. As described below, we
used linear mappings from these acquired feature represen-
tations to predict or to fix latent variables of the generative
model in a bottom-up manner (Figure 1b).

ABC characterization of the model
Human vision researchers have argued that a summary-
statistic representation of the visual input is a key element
of the human visual system (Balas, Nakano, & Rosenholtz,
2009). However, this observation raises a computational chal-
lenge: if the summary statistic, n(·) comes from a black-box
system (e.g., feedforward processing hierarchy in the visual
system or a ConvNet) where a likelihood function is often
not available, how can these summary statistics be modeled
probabilistically? To our help, recently, the field of statistics
made progress in probabilistically characterizing likelihood-
free settings, albeit not in the context of vision, under the um-
brella of Approximate Bayesian Computation (ABC) tech-
niques (e.g., Wilkinson, 2013).

Here, we propose to incorporate the ConvNet-based feature
representations in our model by modifying Equation 1 in the
following way.

P(S,T, l,r|ID,g(·),r(ID, IS)  e) µ IAID ,e(IS)

P(IS|S,T, l,r,g(·))P(S,T, l,r,g(·))
(2)

where P(S,T, l,r|ID,g(·),r(ID, IS)  e) is the approximation
to actual posterior, r(·, ·) is a distance metric (in our case L1-
norm), e is the error-tolerance level. The indicator function
IAID ,e(IS) of our ABC characterization is defined as the fol-
lowing.

AID,e(IS) = {IS 2 D | r(n f c6(ID),n f c6(IS))  e} (3)

where n f c6(·) is the summary statistic obtained from Con-
vNet. Loosely speaking, the indicator function, IAID ,e(IS), can
be likened to the noisy Gaussian observation model, and e
can be likened to the variance parameter of the observation
model, S.

Inference
We use the feature representations n f c6(·) and nconv5(·) aris-
ing from the fine-tuned ConvNet to learn a linear mapping

from ConvNet features to the latent variables. For each of the
latent shape and texture variable, si and ti,1 we learned a lin-
ear mapping fsi : n f c6(I) ! si and fti : nconv5(I) ! ti where
n f c6(I) is the matrix consisting of feature representations of
the training images that we used to fine-tune the network. In
learning this mappings, we use Lasso linear regression, which
is a linear model with L1 regularization on the weights:

min
w

1
2N

k n f c6(I)w� vi k2
2 +a k w k1 (4)

Similarly, we estimated linear mappings for the lighting,
l, and pose, r, in the forms of fl : nconv5(I) ! l and fr :
nconv5(I) ! r. Our pilot experiments on a held out dataset in-
dicated that these linear models worked very well for lighting
and pose variables. Therefore, in our simulations, we decou-
pled l and r from each other and from the rest of the latent
variables, and assigned them to the values “recognized” by
our fine-tuned network in a bottom-up manner.

However, linear mappings were not sufficient for the shape
and texture latents. Instead, we resorted to Metropolis-
Hastings sampling. We performed multi-site elliptical slice
sampling (Murray, Adams, & MacKay, 2009) on the shape
and texture latents. The basic idea is to define an el-
lipse using an auxiliary variable x ⇠ N(0,S) and the current
state of the random variables, and propose from an adap-
tive bracket on this ellipse based upon the log-likelihood
function. For the ABC characterization of the model, we
modified the probabilistic approximate Markov chain Monte
Carlo (MCMC) algorithm (Wilkinson, 2013) as described
in (Kulkarni, Yildirim, Kohli, Freiwald, & Tenenbaum,
2014). We performed several sweeps using the ABC scheme
before we collected more samples modeling pixels directly.

Experiment
On common face recognition databases, face recognition ap-
pears solved by Machine Vision (e.g., Taigman, Yang, Ran-
zato, & Wolf, 2014). However, Leibo, Liao, and Pog-
gio (2014) observed that most benchmark face recognition
databases are “easy”, in the sense that the images are often
frontal and full face visible. In fact, Leibo et al. (2014) re-
ported that all common face recognition systems fail when
there is much variability in the viewing conditions. Building
upon this observation, we asked the following research ques-
tion: Howe well can people perform face recognition under
“hard” invariance conditions? Here we operationally define
“hard” invariance conditions as abundant variability in the
viewing conditions of faces. The task was as simple as the
passport-photo verification task, where participants saw im-
ages of two faces, and their task was to judge whether the
faces belonged to the same individual or to two different peo-
ple. In addition to highlighting the extent of people’s abilities,
this experiment serves as a challenge for our model (and other
models) to fit human behavior.

1Our notation here is that S = {s1,s2, . . . ,sK}, where K is the
dimensionality of the shape latents. Notation is similar for texture
latents.
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Figure 5: Side by side presentation of the neural data and the
simulations. Middle row is included from (Freiwald & Tsao,
2010) with permission.

Figure 5 shows the results. ML/MF representations are
captured best by the top convolutional layer of our recogni-
tion network νconv5(·), suggesting that pose-specificity arises
from a computational need to make inverse graphics tractable.
Our results also suggest that this layer might carry informa-
tion about the lighting of the scene, which is experimentally
not systematically tested yet. AL representations were best
accounted by the first fully connected layer of the network,
ν f c6(·). Our models also provides a reason why mirror sym-
metry should be found in the brain: Computational experi-
ments showed that mirror symmetry arises only at fully con-
nected layers (i.e., dense connectivity) and when the training
data contains mirror symmetric images of the same identity.

Our model captures AM patterns by the latent represen-
tations of the model. A representation that only consists of
shape and texture variables achieves almost full invariance
(bottom third column, Figure 5). However, we account for
the neural data better only if we copy the scene-generic latent
variables (lighting and pose) to the end of the shape and tex-
ture latents (last column, Figure 5), suggesting a separable
and equivariant code at AM.

Discussion: Comparison to other models
We wish to compare our model against other approaches.
This can be daunting if we were to consider all families of
face processing models. Instead, we concentrated on models
that are based upon ConvNets due to their success in many
visual tasks including face recognition (DeepFace, Taigman
et al., 2014).5 We considered three alternative models: (1)
a baseline model, which simply is a ConvNet trained on Im-
ageNet (CNN baseline), (2) a ConvNet that is trained on a
challenging real faces dataset called SUFR-W introduced in

5We attempted to evaluate the DeepFace on our behavioral
dataset. However, email exchanges with its authors suggested that a
component of the model (3d spatial alignment) would not work with
images of profile faces. Accordingly, we estimate the performance
of that model on our behavioral dataset to be around 65%.



Leibo et al. (2014) (CNN faces), and (3) a ConvNet that is
selected from a number of networks that were all fine-tuned
using samples from our generative model (CNN optimized).

We mainly compared these alternative models’ perfor-
mances in explaining our behavioral data. But, we should
note that ConvNets, on their own, cannot do 3D reconstruc-
tion. Also, even though each ConvNet can partially ac-
count for the neural data such as the pose specificity at patch
ML/MF, and mirror symmetry at AL, they cannot explain the
observed view-invariance at AM.

All alternative models’ performance on our behavioral
dataset was obtained the same way we evaluated our model.
The only difference in that for a given model, the internal
representation of an image was obtained as the “fc6” layer
activations given that image as input to the model. For the
mixed effects logistic regressions, a given pair of study and
test images is represented by the correlation of the internal
representations of the two images.

The baseline model (CNN baseline) performed at 67%
(Figure 4c). This is remarkable given that the model was not
trained to recognize faces explicitly. This justifies our use
of ConvNets as good feature representations. The ConvNet
trained on SUFR-W dataset (CNN faces) performed at 72%
(Figure 4c), closer to but significantly worse than human-
level performance. We should note that CNN faces is remark-
able for its identification performance on a held-out portion of
the SUFR-W dataset (67%; chance level = 0.25%). The last
ConvNet, CNN optimized, performed better than people did
with 86% (Figure 4c).

We are not the first to show that a computer system can
tap human performance in unfamiliar face recognition. How-
ever, we argue that the discrepancy between people and
CNN optimized points to the computational superiority of
human face processing system: our face processing machin-
ery is not optimized for a single bit information (i.e., identity),
but instead can capture much richer content from an image of
a face. This comes with the cost of accuracy in our same vs.
different task. Our model accounts for the rich content vs.
accuracy trade-off by acquiring much richer representations
from faces while performing slightly worse than an optimized
ConvNet.

This argument is supported by the behavioral data: in-
ternal representations of the CNN optimized, corri for i ∈
1, . . . ,96, unlike our model, could not account for people’s
responses (another mixed effects logistic regression model;
β̂ = 0.31,σ = 0.19, p = 0.098; Figure 4d). For that matter,
none of the alternative models could account for participants’
responses (Figure 4d).6

Do our computational and behavioral approaches extend
to other object categories? A representational aspect of our
model that lets us account for behavioral and neural data at
the same time is that it represents 3D content in the form of a

6The significant negative coefficient for CNN faces indicates
that this model’s error patterns should be different from that of peo-
ple, which we confirmed quantitatively in another set of logistic re-
gression models.

vector. Therefore, our approach should be easily extended to
the classes of 3D objects that can be represented similarly by
vectors. Immediate possibilities include bodies, classes of an-
imals such as birds, generic 3D objects such as vases, bottles,
etc. These object classes, in particular bodies, are exciting
future directions, where revealing neural results have been
accumulating, our psychophysics methods can be straightfor-
wardly extended to, and a generalization of our model already
efficiently handles 3D reconstruction for these classes of ob-
jects (Kulkarni, Kohli, Tenenbaum, & Mansinghka, submit-
ted).

Conclusion
This paper shows that an efficient implementation of the
analysis-by-synthesis approach can account for people’s be-
havior on a “hard” visual recognition task. This same model
also achieves the computationally very difficult task of recon-
structing 3d shape and texture from a single image. Further-
more, it also accounts well for the currently known aspects of
face processing system in macaque monkeys. None of the al-
ternative ConvNet models can account for all three. These
results point to an account of vision with inverse graphics
at its center, where it is supported by recognition networks
that provide speed and robustness via good feature represen-
tations.
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